Orbital Magnetization in Periodic Systems

Raffaele Resta

Dipartimento di Fisica Teorica, Università di Trieste,
and CNR-INFM DEMOCRITOS National Simulation Center, Trieste

MSSC2009, Torino, September 2009
Modern theory of electrical polarization

Theory developed since \(\sim 1992 \), nowadays mature.

- The theory is based on a Berry phase.
- Several first-principle calculations have been performed in many nonmetallic materials: spontaneous polarization in ferroelectrics, piezoelectricity, infrared spectra in solids and liquids....
- Most electronic-structure computer codes on the market implement the Berry phase as a standard option: CRYSTAL, PWSCF, ABINIT, VASP, SIESTA, CPMD...
Modern theory of electrical polarization

Theory developed since ~ 1992, nowadays mature.

- The theory is based on a Berry phase.
- Several first-principle calculations have been performed in many nonmetallic materials: spontaneous polarization in ferroelectrics, piezoelectricity, infrared spectra in solids and liquids....
- Most electronic-structure computer codes on the market implement the Berry phase as a standard option: CRYSTAL, PWSCF, ABINIT, VASP, SIESTA, CPMD...
Modern theory of **electrical** polarization

Theory developed since $\simeq 1992$, nowadays mature.

- The theory is based on a **Berry phase**.
- Several first-principle calculations have been performed in many nonmetallic materials: spontaneous polarization in ferroelectrics, piezoelectricity, infrared spectra in solids and liquids....
- Most electronic-structure computer codes on the market implement the Berry phase as a standard option: CRYS\textsc{tal}, PW\textsc{scf}, AB\textsc{init}, V\textsc{asp}, SI\textsc{esta}, CP\textsc{md}...
Theory started in 2005, and is still work in progress.

- Only model-Hamiltonian results published so far.
- The very first ab-initio calculations are in press by now:
- These are pseudopotential implementations; there are good reasons which make all-electron implementations desirable.
Modern theory of orbital magnetization

Theory started in 2005, and is still work in progress.

- Only **model**-Hamiltonian results published so far.
- The very first **ab-initio** calculations are in press by now:
- These are **pseudopotential** implementations; there are good reasons which make **all-electron** implementations desirable.
Modern theory of **orbital** magnetization

Theory started in 2005, and is still work in progress.

- Only **model**-Hamiltonian results published so far.
- The very first **ab-initio** calculations are in press by now:

- These are **pseudopotential** implementations; there are good reasons which make **all-electron** implementations desirable.
Modern theory of orbital magnetization

Theory started in 2005, and is still work in progress.

- Only \textit{model}-Hamiltonian results published so far.
- The very first \textit{ab-initio} calculations are in press by now:
 - NMR shielding tensors in several materials:
 - Spontaneous magnetization in Fe, Co, and Ni:
 \textit{D. Ceresoli, U. Gertsmann, A.P. Seitsonen, & F. Mauri},
- These are \textit{pseudopotential} implementations; there are good reasons which make \textit{all-electron} implementations desirable.
Outline

1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
Fig. 11–8. A complex crystal lattice can have a permanent intrinsic polarization \mathbf{P}.
Fig. 11–8. A complex crystal lattice can have a permanent intrinsic polarization P.
Fig. 11–8. A complex crystal lattice can have a permanent intrinsic polarization P.
TEXTBOOK DEFINITIONS ARE NONCOMPUTABLE!
MACROSCOPIC POLARIZATION \mathbf{P} HAS NOTHING TO DO WITH THE PERIODIC CHARGE DENSITY OF THE POLARIZED SOLID

By analogous reasonement:
ORBITAL MAGNETIZATION HAS NOTHING TO DO WITH THE PERIODIC CURRENT DISTRIBUTION OF THE MAGNETIZED SOLID
MACROSCOPIC POLARIZATION \mathbf{P} HAS NOTHING TO DO WITH THE PERIODIC CHARGE DENSITY OF THE POLARIZED SOLID

By analogous reasonement: ORBITAL MAGNETIZATION HAS NOTHING TO DO WITH THE PERIODIC CURRENT DISTRIBUTION OF THE MAGNETIZED SOLID
1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
Trivial definitions
(atomic units throughout)

\[m = \frac{1}{2c} \int dr \, \mathbf{r} \times \mathbf{j}(\mathbf{r}) + m_{\text{spin}} \]

\[d = -\int dr \, n(\mathbf{r}) + d_{\text{nuclear}} \]

- \(d \) is nonzero only in absence of inversion symmetry.
- \(m \) is nonzero only in absence of time-reversal symmetry.
Trivial definitions
(atomic units throughout)

\[m = \frac{1}{2c} \int dr \ r \times j(r) + m_{\text{spin}} \]
\[d = -\int dr \ n(r) + d_{\text{nuclear}} \]

- \(d \) is nonzero only in absence of inversion symmetry.
- \(m \) is nonzero only in absence of time-reversal symmetry.
Orbital and spin magnetization are well separated, either experimentally or in (nonrelativistic) QM.

We are going to neglect m_{spin} in the following (nonzero only in ferromagnets)

d_{nuclear} is trivial
(though charge neutrality is essential)
Trivial definitions (cont’d)

\[m = \frac{1}{2c} \int dr \, r \times j(r) + m_{\text{spin}} \]
\[d = -\int dr \, rn(r) + d_{\text{nuclear}} \]

- Orbital and spin magnetization are well separated, either experimentally or in (nonrelativistic) QM.
- We are going to neglect \(m_{\text{spin}} \) in the following (nonzero only in ferromagnets)
- \(d_{\text{nuclear}} \) is trivial (though charge neutrality is essential)
Trivial definitions (cont’d)

\[m = \frac{1}{2c} \int dr \mathbf{r} \times \mathbf{j(r)} + \mathbf{m_{spin}} \]

\[d = -\int dr \mathbf{r} n(r) + \mathbf{d_{nuclear}} \]

- Orbital and spin magnetization are well separated, either experimentally or in (nonrelativistic) QM.
- We are going to neglect \(\mathbf{m_{spin}} \) in the following (nonzero only in ferromagnets)
- \(\mathbf{d_{nuclear}} \) is trivial
 (though charge neutrality is essential)
Trivial definitions (cont’d)

\[\mathbf{m} = \frac{1}{2c} \int d\mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) + \mathbf{m}_{\text{spin}} \]
\[\mathbf{d} = -\int d\mathbf{r} \mathbf{r}n(\mathbf{r}) + \mathbf{d}_{\text{nuclear}} \]

- Orbital and spin magnetization are well separated, either experimentally or in (nonrelativistic) QM.
- We are going to neglect \(\mathbf{m}_{\text{spin}} \) in the following (nonzero only in ferromagnets)
- \(\mathbf{d}_{\text{nuclear}} \) is trivial (though charge neutrality is essential)
Trivial definitions (cont’d)

\[
\begin{align*}
\mathbf{m} & = \frac{1}{2c} \int d\mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) + \mathbf{m}_{\text{spin}} \\
\mathbf{d} & = -\int d\mathbf{r} \mathbf{r} \mathbf{n}(\mathbf{r}) + \mathbf{d}_{\text{nuclear}}
\end{align*}
\]

- Orbital and spin magnetization are well separated, either experimentally or in (nonrelativistic) QM.
- We are going to neglect \(\mathbf{m}_{\text{spin}} \) in the following (nonzero only in ferromagnets)
- \(\mathbf{d}_{\text{nuclear}} \) is trivial (though charge neutrality is essential)
Independent electrons
(either Hartree-Fock or Kohn-Sham, double occupancy)

\[
\begin{align*}
\mathbf{m} &= 2 \frac{1}{2c} \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} \times \mathbf{v} | \varphi_n \rangle \\
\mathbf{d} &= -2 \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} | \varphi_n \rangle + \sum_{i \in \text{nuclei}} Z_i \mathbf{R}_i
\end{align*}
\]

- Velocity \(\mathbf{v} = i[H, \mathbf{r}] \)
- Invariant by transformation to localized (e.g. Boys) orbitals.

\[
\begin{align*}
\mathbf{m} &= 2 \frac{1}{2c} \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} \times \mathbf{v} | w_n \rangle \\
\mathbf{d} &= -2 \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} | w_n \rangle + \sum_{i \in \text{nuclei}} Z_i \mathbf{R}_i
\end{align*}
\]
Independent electrons
(either Hartree-Fock or Kohn-Sham, double occupancy)

\[
\begin{align*}
\mathbf{m} &= 2 \frac{1}{2c} \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} \times \mathbf{v} | \varphi_n \rangle \\
\mathbf{d} &= -2 \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} | \varphi_n \rangle + \sum_{i \in \text{nuclei}} Z_i \mathbf{R}_i
\end{align*}
\]

- Velocity \(\mathbf{v} = i[H, \mathbf{r}] \)
- Invariant by transformation to localized (e.g. Boys) orbitals.
Independent electrons
(either Hartree-Fock or Kohn-Sham, double occupancy)

\[
\begin{align*}
\mathbf{m} &= 2 \frac{1}{2c} \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} \times \mathbf{v} | \varphi_n \rangle \\
\mathbf{d} &= -2 \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} | \varphi_n \rangle + \sum_{i \in \text{nuclei}} Z_i \mathbf{R}_i
\end{align*}
\]

- Velocity \(\mathbf{v} = i[H, \mathbf{r}] \)
- Invariant by transformation to localized (e.g. Boys) orbitals.

\[
\begin{align*}
\mathbf{m} &= 2 \frac{1}{2c} \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} \times \mathbf{v} | \varphi_n \rangle \\
\mathbf{d} &= -2 \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} | \varphi_n \rangle + \sum_{i \in \text{nuclei}} Z_i \mathbf{R}_i
\end{align*}
\]
Outline

1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
Macroscopic magnetization and polarization
(naive textbook view)

\[
M = \frac{m}{V} = \frac{1}{2cV} \int dr \, r \times j(r)
\]

\[
P = \frac{d}{V} = \frac{1}{V} \left(-\int dr \, r \, n(r) + \sum_{i \in \text{nuclei}} Z_i R_i \right)
\]
Macroscopic magnetization and polarization (naive textbook view)

\[M = \frac{m}{V} = \frac{1}{2cV} \int dr \, r \times j(r) \]

\[P = \frac{d}{V} = \frac{1}{V} \left(-\int dr \, r \, n(r) + \sum_{i \in \text{nuclei}} Z_i R_i \right) \]
Where is the problem?

\[M = \frac{m}{V} = \frac{1}{2cV} \int dr \, \mathbf{r} \times \mathbf{j}(r) \]

\[P_{\text{electronic}} = \frac{d}{V} = -\frac{1}{V} \int dr \, \mathbf{r} \, n(r) \]

- **Common drawback:**
 Surface terms contribute *extensively* to the dipole: so \(M \) and \(P \) are apparently surface properties: *not* bulk ones!

- This is due to the *unbound* nature of the operator \(\mathbf{r} \).
Where is the problem?

\[M = \frac{m}{V} = \frac{1}{2cV} \int d\mathbf{r} \mathbf{r} \times j(\mathbf{r}) \]

\[P_{\text{electronic}} = \frac{d}{V} = -\frac{1}{V} \int d\mathbf{r} \mathbf{r} n(\mathbf{r}) \]

- **Common drawback:**
 Surface terms contribute **extensively** to the dipole:
 so \(M \) and \(P \) are apparently surface properties:
 not bulk ones!

- This is due to the **unbound** nature of the operator \(\mathbf{r} \).
Where is the problem?

\[M = \frac{m}{V} = \frac{1}{2cV} \int d\mathbf{r} \mathbf{r} \times \mathbf{j}(\mathbf{r}) \]

\[P_{\text{electronic}} = \frac{d}{V} = -\frac{1}{V} \int d\mathbf{r} \mathbf{r} n(\mathbf{r}) \]

- **Common drawback:**
 Surface terms contribute *extensively* to the dipole: so \(M \) and \(P \) are apparently surface properties: not bulk ones!

- This is due to the *unbound* nature of the operator \(\mathbf{r} \).
The system has no surface by construction.

Any quantity defined or computed within PBC is by definition “bulk”.

However... The position operator r is incompatible with Born-von Kármán PBCs.

The matrix elements of r over Bloch orbitals are ill defined.
The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

- The system has no surface by construction.
- Any quantity defined or computed within PBC is by definition “bulk”.
- However... The position operator r is incompatible with Born-von Kármán PBCs.
- The matrix elements of r over Bloch orbitals are ill defined.
The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

- The system has **no surface** by construction.
- Any quantity defined or computed within PBC is by definition “bulk”.
- However... The position operator r is **incompatible** with Born-von Kármán PBCs.
- The matrix elements of r over Bloch orbitals are **ill defined**.
The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

- The system has **no surface** by construction.
- Any quantity defined or computed within PBC is by definition “bulk”.
- However... The position operator \mathbf{r} is **incompatible** with Born-von Kármán PBCs.
- The matrix elements of \mathbf{r} over Bloch orbitals are **ill defined**.
The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

- The system has no surface by construction.
- Any quantity defined or computed within PBC is by definition “bulk”.
- However... The position operator r is incompatible with Born-von Kármán PBCs.
- The matrix elements of r over Bloch orbitals are ill defined.
The theoretical framework of CM physics: periodic (Born-von Kármán) boundary conditions (for both crystalline and disordered systems)

- The system has **no surface** by construction.
- Any quantity defined or computed within PBC is by definition “bulk”.
- However... The position operator \mathbf{r} is **incompatible** with Born-von Kármán PBCs.
- The matrix elements of \mathbf{r} over Bloch orbitals are **ill defined**.
Outline

1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
For a molecule, one can speak of the external fields E_{ext} and B_{ext}.

- By definition, they are the fields in the vacuum region far away from the molecule.
- They can also be regarded as a boundary condition for the integration of Poisson equation.
- If $E_{\text{ext}} = 0$, then d is the spontaneous (equilibrium) electrical dipole.
- If $B_{\text{ext}} = 0$, then m is the spontaneous (equilibrium) magnetic dipole.
- The linear responses to nonvanishing E_{ext} and B_{ext} are by definition the linear electric and magnetic polarizability.
For a molecule, one can speak of the external fields E_{ext} and B_{ext}.

- By definition, they are the fields in the vacuum region far away from the molecule.
- They can also be regarded as a boundary condition for the integration of Poisson equation.
- If $E_{\text{ext}} = 0$, then d is the spontaneous (equilibrium) electrical dipole.
- If $B_{\text{ext}} = 0$, then m is the spontaneous (equilibrium) magnetic dipole.
- The linear responses to nonvanishing E_{ext} and B_{ext} are by definition the linear electric and magnetic polarizability.
Molecules

For a molecule, one can speak of the external fields E_{ext} and B_{ext}.

- By definition, they are the fields in the vacuum region far away from the molecule.
- They can also be regarded as a boundary condition for the integration of Poisson equation.
- If $E_{\text{ext}} = 0$, then d is the spontaneous (equilibrium) electrical dipole.
- If $B_{\text{ext}} = 0$, then m is the spontaneous (equilibrium) magnetic dipole.
- The linear responses to nonvanishing E_{ext} and B_{ext} are by definition the linear electric and magnetic polarizability.
For a molecule, one can speak of the external fields E_{ext} and B_{ext}.

- By definition, they are the fields in the vacuum region far away from the molecule.
- They can also be regarded as a boundary condition for the integration of Poisson equation.
- If $E_{\text{ext}} = 0$, then d is the spontaneous (equilibrium) electrical dipole.
- If $B_{\text{ext}} = 0$, then m is the spontaneous (equilibrium) magnetic dipole.
- The linear responses to nonvanishing E_{ext} and B_{ext} are by definition the linear electric and magnetic polarizability.
For a molecule, one can speak of the external fields E_{ext} and B_{ext}.

- By definition, they are the fields in the vacuum region far away from the molecule.
- They can also be regarded as a boundary condition for the integration of Poisson equation.
- If $E_{\text{ext}} = 0$, then d is the spontaneous (equilibrium) electrical dipole.
- If $B_{\text{ext}} = 0$, then m is the spontaneous (equilibrium) magnetic dipole.
- The linear responses to nonvanishing E_{ext} and B_{ext} are by definition the linear electric and magnetic polarizability.
For an infinite periodic solid, one cannot speak of external fields E_{ext} and B_{ext}.

- The measurable microscopic fields inside the material are $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$.
- Average over a macroscopic scale \rightarrow E and B (average over a cell in crystalline materials).
- The value of the E and B is not a bulk property; instead, it is an arbitrary boundary condition.
- Electronic-structure codes require a lattice-periodical potential, hence they impose $E = 0$ and $B = 0$ (otherwise Bloch states would not exist!)
- The modern theories address P and M in zero fields only.
For an infinite periodic solid, one cannot speak of external fields E_{ext} and B_{ext}.

- The **measurable** microscopic fields inside the material are $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$

- Average over a macroscopic scale $\rightarrow E$ and B
 (average over a cell in crystalline materials).

- The value of the E and B is not a bulk property; instead, it is an **arbitrary** boundary condition.

- Electronic-structure codes require a lattice-periodical potential, hence they impose $E = 0$ and $B = 0$ (otherwise Bloch states would not exist!)

- The modern theories address P and M in **zero fields** only.
Solids

For an infinite periodic solid, one cannot speak of external fields E_{ext} and B_{ext}.

- The measurable microscopic fields inside the material are $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$

- Average over a macroscopic scale $\rightarrow E$ and B (average over a cell in crystalline materials).

- The value of the E and B is not a bulk property; instead, it is an arbitrary boundary condition.

- Electronic-structure codes require a lattice-periodical potential, hence they impose $E = 0$ and $B = 0$ (otherwise Bloch states would not exist!)

- The modern theories address P and M in zero fields only.
For an infinite periodic solid, one cannot speak of external fields E_{ext} and B_{ext}.

- The **measurable** microscopic fields inside the material are $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$
- Average over a macroscopic scale $\rightarrow E$ and B (average over a cell in crystalline materials).
- The value of the E and B is not a bulk property; instead, it is an **arbitrary** boundary condition.
- Electronic-structure codes require a lattice-periodical potential, hence they impose $E = 0$ and $B = 0$ (otherwise Bloch states would not exist!)
- The modern theories address P and M in **zero fields** only.
For an infinite periodic solid, one cannot speak of external fields E_{ext} and B_{ext}.

- The **measurable** microscopic fields inside the material are $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$

- Average over a macroscopic scale $\rightarrow E$ and B
 (average over a cell in crystalline materials).

- The value of the E and B is not a bulk property; instead, it is an **arbitrary** boundary condition.

- Electronic-structure codes require a lattice-periodical potential, hence they impose $E = 0$ and $B = 0$
 (otherwise Bloch states would not exist!)

- The modern theories address P and M in **zero fields** only.
A finite solid as very large cluster

One can again speak of the **external** fields E_{ext} and B_{ext} for a finite cluster cut from the bulk.

- The microscopic fields $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$ tend to E_{ext} and B_{ext} in the vacuum region far away from the cluster.
- Inside the material, the macroscopic averages of $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$ are **different** from E_{ext} and B_{ext} because of **screening**.
- The relationship between unscreened (a.k.a. external) and screened (a.k.a. internal) fields depends on **shape**.
- Hence, a given choice of the screened fields E and B closely corresponds to a choice of a sample shape.
A finite solid as very large cluster

One can again speak of the external fields E_{ext} and B_{ext} for a finite cluster cut from the bulk.

- The microscopic fields $E^{\text{(micro)}}(r)$ and $B^{\text{(micro)}}(r)$ tend to E_{ext} and B_{ext} in the vacuum region far away from the cluster.
- Inside the material, the macroscopic averages of $E^{\text{(micro)}}(r)$ and $B^{\text{(micro)}}(r)$ are different from E_{ext} and B_{ext} because of screening.
- The relationship between unscreened (a.k.a. external) and screened (a.k.a. internal) fields depends on shape.
- Hence, a given choice of the screened fields E and B closely corresponds to a choice of a sample shape.
A finite solid as very large cluster

One can again speak of the external fields E_{ext} and B_{ext} for a finite cluster cut from the bulk.

- The microscopic fields $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$ tend to E_{ext} and B_{ext} in the vacuum region far away from the cluster.

- Inside the material, the macroscopic averages of $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$ are different from E_{ext} and B_{ext} because of screening.

- The relationship between unscreened (a.k.a. external) and screened (a.k.a. internal) fields depends on shape.

- Hence, a given choice of the screened fields E and B closely corresponds to a choice of a sample shape.
A finite solid as very large cluster

One can again speak of the external fields E_{ext} and B_{ext} for a finite cluster cut from the bulk.

- The microscopic fields $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$ tend to E_{ext} and B_{ext} in the vacuum region far away from the cluster.
- Inside the material, the macroscopic averages of $E^{(\text{micro})}(r)$ and $B^{(\text{micro})}(r)$ are different from E_{ext} and B_{ext} because of screening.
- The relationship between unscreened (a.k.a. external) and screened (a.k.a. internal) fields depends on shape.
- Hence, a given choice of the screened fields E and B closely corresponds to a choice of a sample shape.
Outline

1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
P in a crystalline solid

\[\mathbf{P} = \mathbf{P}_{\text{ionic}} + \mathbf{P}_{\text{electronic}} \]

\[\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}} u_{nk}(\mathbf{r}) \]

- The—by now famous—Berry-phase formula (King-Smith & Vanderbilt, 1993):

\[\mathbf{P}_{\text{electronic}} = \frac{-2ie}{(2\pi)^3} \sum_{n \in \text{occupied}} \int_{\text{BZ}} d\mathbf{k} \langle u_{nk} | \partial_k u_{nk} \rangle \]

- Equivalently, and perhaps more intuitively, in terms of Wannier functions:

\[\mathbf{P}_{\text{electronic}} = \frac{-2e}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} | w_n \rangle \]
P in a crystalline solid

\[\mathbf{P} = \mathbf{P}_{\text{ionic}} + \mathbf{P}_{\text{electronic}} \]

\[\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}} u_{nk}(\mathbf{r}) \]

- The—by now famous—Berry-phase formula (King-Smith & Vanderbilt, 1993):

\[\mathbf{P}_{\text{electronic}} = -\frac{2ie}{(2\pi)^3} \sum_{n \in \text{occupied}} \int_{\text{BZ}} d\mathbf{k} \langle u_{nk} | \partial_k u_{nk} \rangle \]

- Equivalently, and perhaps more intuitively, in terms of Wannier functions:

\[\mathbf{P}_{\text{electronic}} = -\frac{2e}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} | w_n \rangle \]
P in a crystalline solid

\[
P = P_{\text{ionic}} + P_{\text{electronic}}
\]

\[
\psi_{nk}(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}} u_{nk}(\mathbf{r})
\]

- The—by now famous—Berry-phase formula (King-Smith & Vanderbilt, 1993):

\[
P_{\text{electronic}} = - \frac{2ie}{(2\pi)^3} \sum_{n \in \text{occupied}} \int_{\text{BZ}} d\mathbf{k} \langle u_{nk} | \partial_k u_{nk} \rangle
\]

- Equivalently, and perhaps more intuitively, in terms of Wannier functions:

\[
P_{\text{electronic}} = - \frac{2e}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} | w_n \rangle
\]
P in a crystalline solid

\[P = P_{\text{ionic}} + P_{\text{electronic}} \]

\[\psi_{nk}(r) = e^{ik\cdot r} u_{nk}(r) \]

- The—by now famous—Berry-phase formula (King-Smith & Vanderbilt, 1993):

\[P_{\text{electronic}} = -\frac{2ie}{(2\pi)^3} \sum_{n \in \text{occupied}} \int_{\text{BZ}} dk \langle u_{nk} | \partial_k u_{nk} \rangle \]

- Equivalently, and perhaps more intuitively, in terms of Wannier functions:

\[P_{\text{electronic}} = -\frac{2e}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r | w_n \rangle \]
The theory is formulated in terms of either Bloch orbitals or Wannier functions.

This requires a lattice-periodical potential, i.e. $E = 0$.

The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).

It does not address permittivity (in its original formulation).

Polarization is nonzero only in absence of inversion symmetry.
Key points

- The theory is formulated in terms of either Bloch orbitals or Wannier functions.
- This requires a lattice-periodical potential, i.e. $E = 0$.
- The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).
- It does not address permittivity (in its original formulation).
- Polarization is nonzero only in absence of inversion symmetry.
Key points

- The theory is formulated in terms of either Bloch orbitals or Wannier functions.
- This requires a lattice-periodical potential, i.e. \(E = 0 \).
- The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).
- It does not address permittivity (in its original formulation).
- Polarization is nonzero only in absence of inversion symmetry.
Key points

- The theory is formulated in terms of either Bloch orbitals or Wannier functions.
- This requires a lattice-periodical potential, i.e. $E = 0$.
- The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).
- It does not address permittivity (in its original formulation).
- Polarization is nonzero only in absence of inversion symmetry.
The theory is formulated in terms of either Bloch orbitals or Wannier functions.

This requires a lattice-periodical potential, i.e. $E = 0$.

The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).

It does not address permittivity (in its original formulation).

Polarization is nonzero only in absence of inversion symmetry.
The theory is formulated in terms of either Bloch orbitals or Wannier functions.
This requires a lattice-periodical potential, i.e. $E = 0$.
The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).
It does not address permittivity (in its original formulation).
Polarization is nonzero only in absence of inversion symmetry.
Key points

- The theory is formulated in terms of either Bloch orbitals or Wannier functions.
- This requires a lattice-periodical potential, i.e. $E = 0$.
- The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).
- It does not address permittivity (in its original formulation).
- Polarization is nonzero only in absence of inversion symmetry.
Key points

- The theory is formulated in terms of either Bloch orbitals or Wannier functions.
- This requires a lattice-periodical potential, i.e. $E = 0$.
- The modern theory addresses the macroscopic polarization induced by something other than a macroscopic field: ferroelectricity, piezoelectricity, lattice dynamics in polar crystals (Born effective charges).
- It does not address permittivity (in its original formulation).
- Polarization is nonzero only in absence of inversion symmetry.
1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
Heuristically, by analogy with the electrical case

- For an insulator, in absence of inversion symmetry, in zero E field, we have

 \[P_{\text{electronic}} = -\frac{2}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r | w_n \rangle \]

- By analogy, in absence of time-reversal symmetry, in zero B field, it is tempting to write:

 \[M = -\frac{2}{2cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times v | w_n \rangle \]

Question: Is this the correct formula for the bulk magnetization?

Answer: No!
There is an additional term, having no electrical analogue.
Heuristically, by analogy with the electrical case

- For an insulator, in absence of inversion symmetry, in zero \(\mathbf{E} \) field, we have

\[
P_{\text{electronic}} = -\frac{2}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n| r | w_n \rangle
\]

- By analogy, in absence of time-reversal symmetry, in zero \(\mathbf{B} \) field, it is tempting to write:

\[
M = -\frac{2}{2cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n| r \times v | w_n \rangle
\]

Question: Is this the correct formula for the bulk magnetization?

Answer: No!
There is an additional term, having no electrical analogue.
Heuristically, by analogy with the electrical case

For an insulator, in absence of inversion symmetry, in zero \(\mathbf{E} \) field, we have

\[
P_{\text{electronic}} = -\frac{2}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r | w_n \rangle
\]

By analogy, in absence of time-reversal symmetry, in zero \(\mathbf{B} \) field, it is tempting to write:

\[
M = -\frac{2}{2cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times v | w_n \rangle
\]

Question: Is this the correct formula for the bulk magnetization?

Answer: No!

There is an additional term, having no electrical analogue.
Heuristically, by analogy with the electrical case

For an insulator, in absence of inversion symmetry, in zero \(\mathbf{E} \) field, we have

\[
P_{\text{electronic}} = -\frac{2}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r | w_n \rangle
\]

By analogy, in absence of time-reversal symmetry, in zero \(\mathbf{B} \) field, it is tempting to write:

\[
M = -\frac{2}{2cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times v | w_n \rangle
\]

Question: Is this the correct formula for the bulk magnetization?

Answer: No! There is an additional term, having no electrical analogue.
Heuristically, by analogy with the electrical case

- For an insulator, in absence of inversion symmetry, in zero \(E \) field, we have
 \[
 P_{\text{electronic}} = -\frac{2}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r | w_n \rangle
 \]

- By analogy, in absence of time-reversal symmetry, in zero \(B \) field, it is tempting to write:
 \[
 M = -\frac{2}{2cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times v | w_n \rangle
 \]

- **Question:** Is this the correct formula for the bulk magnetization?

- **Answer:** No!

There is an additional term, having no electrical analogue.
Heuristically, by analogy with the electrical case

For an insulator, in absence of inversion symmetry, in zero E field, we have

\[P_{\text{electronic}} = -\frac{2}{V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r | w_n \rangle \]

By analogy, in absence of time-reversal symmetry, in zero B field, it is tempting to write:

\[M = -\frac{2}{2cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times v | w_n \rangle \]

Question: Is this the correct formula for the bulk magnetization?

Answer: No!
There is an additional term, having no electrical analogue.
From Wannier back to Bloch

\[v = \frac{i}{\hbar} [H, r] ; \quad \psi_{nk}(r) = e^{i k \cdot r} u_{nk}(r) ; \quad H(k) = e^{-i k \cdot r} H e^{i k \cdot r} \]

\[
M = -\frac{1}{c V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times v | w_n \rangle \\
= -\frac{ie}{\hbar c V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | r \times Hr | w_n \rangle \\
= -\frac{ie}{\hbar c (2\pi)^3} \sum_{n \in \text{occupied}} \int_{BZ} dk \langle \partial_k u_{nk} | \times H(k) | \partial_k u_{nk} \rangle,
\]

Electrical analogy once more:

\[P_{\text{electronic}} = -\frac{2i}{(2\pi)^3} \sum_{n \in \text{occupied}} \int_{BZ} dk \langle u_{nk} | \partial_k u_{nk} \rangle \]
From Wannier back to Bloch

\[\mathbf{v} = \frac{i}{\hbar} [H, \mathbf{r}] ; \quad \psi_{nk}(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}} u_{nk}(\mathbf{r}) ; \quad H(\mathbf{k}) = e^{-i\mathbf{k} \cdot \mathbf{r}} H e^{i\mathbf{k} \cdot \mathbf{r}} \]

\[M = -\frac{1}{cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} \times \mathbf{v} | w_n \rangle \]

\[= -\frac{ie}{\hbar c V_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_n | \mathbf{r} \times H \mathbf{r} | w_n \rangle \]

\[= -\frac{ie}{\hbar c (2\pi)^3} \sum_{n \in \text{occupied}} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{nk} | \times H(\mathbf{k}) | \partial_{\mathbf{k}} u_{nk} \rangle, \]

Electrical analogy once more:

\[P_{\text{electronic}} = -\frac{2i}{(2\pi)^3} \sum_{n \in \text{occupied}} \int_{BZ} d\mathbf{k} \langle u_{nk} | \partial_{\mathbf{k}} u_{nk} \rangle \]
From Wannier back to Bloch

\[\mathbf{v} = \frac{i}{\hbar} [H, \mathbf{r}] ; \quad \psi_{nk}(\mathbf{r}) = e^{i \mathbf{k} \cdot \mathbf{r}} u_{nk}(\mathbf{r}) ; \quad H(\mathbf{k}) = e^{-i \mathbf{k} \cdot \mathbf{r}} He^{i \mathbf{k} \cdot \mathbf{r}} \]

\[\mathbf{M} = - \frac{1}{cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_{n} | \mathbf{r} \times \mathbf{v} | w_{n} \rangle \]

\[= - \frac{ie}{\hbar cV_{\text{cell}}} \sum_{n \in \text{occupied}} \langle w_{n} | \mathbf{r} \times H\mathbf{r} | w_{n} \rangle \]

\[= - \frac{ie}{\hbar c(2\pi)^{3}} \sum_{n \in \text{occupied}} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{nk} | \times H(\mathbf{k}) | \partial_{\mathbf{k}} u_{nk} \rangle, \]

Electrical analogy once more:

\[\mathbf{P}_{\text{electronic}} = - \frac{2i}{(2\pi)^{3}} \sum_{n \in \text{occupied}} \int_{BZ} d\mathbf{k} \langle u_{nk} | \partial_{\mathbf{k}} u_{nk} \rangle \]
Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.

It breaks time-reversal symmetry.

Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).

Zero flux through the unit cell:
The macroscopic B field is zero;
The Hamiltonian is lattice-periodical;
Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

- Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.
- It breaks time-reversal symmetry.
- Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).
- Zero flux through the unit cell:
 - The macroscopic B field is zero;
 - The Hamiltonian is lattice-periodical;
 - Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.

It breaks time-reversal symmetry.

Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).

Zero flux through the unit cell:
The macroscopic \mathbf{B} field is zero;
The Hamiltonian is lattice-periodical;
Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

- Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.
- It breaks time-reversal symmetry.
- Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).
- Zero flux through the unit cell:
 The macroscopic B field is zero;
 The Hamiltonian is lattice-periodical;
 Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

- Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: \(t_1 \) real, \(t_2 \) complex.
- It breaks time-reversal symmetry.
- Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).
- Zero flux through the unit cell:
 - The macroscopic \(B \) field is zero;
 - The Hamiltonian is lattice-periodical;
 - Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

- Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.
- It breaks time-reversal symmetry.
- Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).
- Zero flux through the unit cell:
 - The macroscopic \mathbf{B} field is zero;
 - The Hamiltonian is lattice-periodical;
 - Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

- Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.
- It breaks time-reversal symmetry.
- Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).
- Zero flux through the unit cell:
 - The macroscopic B field is zero;
 - The Hamiltonian is lattice-periodical;
 - Bloch & Wannier orbitals exist.
Model Hückel-like Hamiltonian in 2d
(Haldane, PRL 1988)

- Honeycomb lattice. Tight-binding with first- and second-neighbor hopping: t_1 real, t_2 complex.
- It breaks time-reversal symmetry.
- Two nonequivalent sites per cell. Insulator at half-filling (only the lowest band occupied).
- Zero flux through the unit cell:
 The macroscopic B field is zero;
 The Hamiltonian is lattice-periodical;
 Bloch & Wannier orbitals exist.
Formula assessed via computer experiments
(2d, single occupancy, single band, atomic units)

- **(A)** Periodic “bulk” system:
 \[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle \]

- **(B)** Finite system of area \(L^2\) cut from the bulk (so-called “open” boundary conditions)
 \[M = \frac{1}{2cL^2} \int dr \ r \times j(r) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \langle \varphi_n | r \times v | \varphi_n \rangle \]

- **(A)** numerically evaluated on a dense \(k\)-point mesh;
 (B) evaluated for large \(L\) values (up to 2048 sites).
Do they converge to the same limit?
Formula assessed via computer experiments
(2d, single occupancy, single band, atomic units)

- **(A)** Periodic “bulk” system:

\[
M = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle
\]

- **(B)** Finite system of area \(L^2\) cut from the bulk (so-called “open” boundary conditions)

\[
M = \frac{1}{2cL^2} \int dr \ r \times j(r) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \langle \varphi_n | r \times v | \varphi_n \rangle
\]

- **(A)** numerically evaluated on a dense \(k\)-point mesh;
- **(B)** evaluated for large \(L\) values (up to 2048 sites). Do they converge to the same limit?
Formula assessed via computer experiments
(2d, single occupancy, single band, atomic units)

- **(A)** Periodic “bulk” system:

\[
M = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle
\]

- **(B)** Finite system of area L^2 cut from the bulk
 (so-called “open” boundary conditions)

\[
M = \frac{1}{2cL^2} \int dr \ r \times j(r) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \langle \varphi_n | r \times v | \varphi_n \rangle
\]

- **(A)** numerically evaluated on a dense k-point mesh;
 (B) evaluated for large L values (up to 2048 sites).
Do they converge to the same limit?
Formula assessed via computer experiments
(2d, single occupancy, single band, atomic units)

(A) Periodic “bulk” system:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle \]

(B) Finite system of area \(L^2 \) cut from the bulk (so-called “open” boundary conditions)

\[M = \frac{1}{2cL^2} \int dr \ r \times j(r) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \langle \varphi_n | r \times v | \varphi_n \rangle \]

(A) numerically evaluated on a dense \(k \)-point mesh; (B) evaluated for large \(L \) values (up to 2048 sites).
Do they converge to the same limit?
Formula assessed via computer experiments

(2d, single occupancy, single band, atomic units)

- **(A)** Periodic “bulk” system:

\[
M = -\frac{i}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{\mathbf{k}} | \times H(\mathbf{k}) | \partial_{\mathbf{k}} u_{\mathbf{k}} \rangle
\]

- **(B)** Finite system of area \(L^2\) cut from the bulk
 (so-called “open” boundary conditions)

\[
M = \frac{1}{2cL^2} \int dr \mathbf{r} \times j(\mathbf{r}) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \langle \varphi_n | \mathbf{r} \times \mathbf{v} | \varphi_n \rangle
\]

- **(A)** numerically evaluated on a dense \(k\)-point mesh;
 (B) evaluated for large \(L\) values (up to 2048 sites).
Do they converge to the same limit?
Formula assessed via computer experiments (2d, single occupancy, single band, atomic units)

- (A) Periodic “bulk” system:

 \[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle \]

- (B) Finite system of area \(L^2 \) cut from the bulk (so-called “open” boundary conditions)

 \[M = \frac{1}{2cL^2} \int dr \ r \times j(r) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \langle \varphi_n | r \times v | \varphi_n \rangle \]

- (A) numerically evaluated on a dense \(k \)-point mesh;
- (B) evaluated for large \(L \) values (up to 2048 sites).

Do they converge to the same limit?
Formula assessed via computer experiments
(2d, single occupancy, single band, atomic units)

(A) Periodic “bulk” system:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \left\langle \partial_k u_k \right| \times H(k) \left| \partial_k u_k \right\rangle \]

(B) Finite system of area \(L^2 \) cut from the bulk (so-called “open” boundary conditions)

\[M = \frac{1}{2cL^2} \int dr \, r \times j(r) = \frac{1}{2cL^2} \sum_{n \in \text{occupied}} \left\langle \varphi_n \right| r \times v \left| \varphi_n \right\rangle \]

(A) numerically evaluated on a dense \(k \)-point mesh; (B) evaluated for large \(L \) values (up to 2048 sites). Do they converge to the same limit?
The Boys/Wannier localized orbitals at the sample edge carry a net current and contribute to \mathbf{M}.

However, even the additional edge contribution can be computed using Bloch states and PBCs, where the system has no edge.
The Boys/Wannier localized orbitals at the sample edge carry a \textbf{net} current and contribute to M.

However, even the additional edge contribution can be computed using Bloch states and PBCs, where the system has no edge.
The Boys/Wannier localized orbitals at the sample edge carry a net current and contribute to M.

However, even the additional edge contribution can be computed using Bloch states and PBCs, where the system has no edge.
The Boys/Wannier localized orbitals at the sample edge carry a net current and contribute to M.

However, even the additional edge contribution can be computed using Bloch states and PBCs, where the system has no edge.
Local circulation & itinerant circulation (2d)

- Magnetization that originates from the circulation of the Boys/Wannier orbitals (same formula as before):

\[M_{\text{LC}} = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle. \]

- Magnetization that originates from the net current carried by the Boys/Wannier orbitals (nonvanishing only for edge orbitals):

\[M_{\text{IC}} = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \varepsilon(k) \langle \partial_k u_k | \times | \partial_k u_k \rangle. \]

- The final magnetization formula:

\[M = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \langle \partial_k u_k | \times [H(k) + \varepsilon(k)] | \partial_k u_k \rangle. \]

- Proof: both numerical and analytical
Local circulation & itinerant circulation (2d)

- Magnetization that originates from the circulation of the Boys/Wannier orbitals (same formula as before):
 $$M_{\text{LC}} = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle.$$

- Magnetization that originates from the net current carried by the Boys/Wannier orbitals (nonvanishing only for edge orbitals):
 $$M_{\text{IC}} = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \varepsilon(k) \langle \partial_k u_k | \times | \partial_k u_k \rangle.$$

- The final magnetization formula:
 $$M = -\frac{i}{2c(2\pi)^2} \int_{\text{BZ}} dk \langle \partial_k u_k | \times [H(k) + \varepsilon(k)] | \partial_k u_k \rangle.$$

- Proof: both numerical and analytical
Local circulation & itinerant circulation (2d)

- Magnetization that originates from the circulation of the Boys/Wannier orbitals (same formula as before):

\[
M_{LC} = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle .
\]

- Magnetization that originates from the net current carried by the Boys/Wannier orbitals (nonvanishing only for edge orbitals):

\[
M_{IC} = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \epsilon(k) \langle \partial_k u_k | \times | \partial_k u_k \rangle .
\]

- The final magnetization formula:

\[
M = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times [H(k) + \epsilon(k)] | \partial_k u_k \rangle .
\]

- Proof: both numerical and analytical
Local circulation & itinerant circulation (2d)

- Magnetization that originates from the circulation of the Boys/Wannier orbitals (same formula as before):

\[
M_{LC} = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times H(k) | \partial_k u_k \rangle.
\]

- Magnetization that originates from the net current carried by the Boys/Wannier orbitals (nonvanishing only for edge orbitals):

\[
M_{IC} = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \ e(k) \langle \partial_k u_k | \times | \partial_k u_k \rangle.
\]

- The final magnetization formula:

\[
M = -\frac{i}{2c(2\pi)^2} \int_{BZ} dk \langle \partial_k u_k | \times [H(k) + e(k)] | \partial_k u_k \rangle.
\]

- Proof: both numerical and analytical
Magnetization that originates from the circulation of the Boys/Wannier orbitals (same formula as before):

\[M_{LC} = -\frac{i}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{\mathbf{k}} | \times H(\mathbf{k}) | \partial_{\mathbf{k}} u_{\mathbf{k}} \rangle. \]

Magnetization that originates from the net current carried by the Boys/Wannier orbitals (nonvanishing only for edge orbitals):

\[M_{IC} = -\frac{i}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \varepsilon(\mathbf{k}) \langle \partial_{\mathbf{k}} u_{\mathbf{k}} | \times | \partial_{\mathbf{k}} u_{\mathbf{k}} \rangle. \]

The final magnetization formula:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_{\mathbf{k}} u_{\mathbf{k}} | \times [H(\mathbf{k}) + \varepsilon(\mathbf{k})] | \partial_{\mathbf{k}} u_{\mathbf{k}} \rangle. \]

Proof: both numerical and analytical
An apparent drawback

The final magnetization formula:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_k u_k \rangle \times [H(\mathbf{k}) + \varepsilon(\mathbf{k})] |\partial_k u_k\rangle. \]

If we change the energy zero by \(\Delta \varepsilon \), the magnetization apparently changes by

\[\Delta M = -\frac{i2\Delta \varepsilon}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_k u_k \rangle \times |\partial_k u_k\rangle. \]

But

\[C_1 = \frac{i}{(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_k u_k \rangle \times |\partial_k u_k\rangle \]

is the **Chern number**, a topological integer.

\[C_1 = 0 \] for “normal” insulators. \(C_1 \neq 0 \) only in rather exotic cases (such as the quantum Hall regime).
An apparent drawback

The final magnetization formula:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ}dk \langle \partial_k u_k | \times [H(k) + \varepsilon(k)] | \partial_k u_k \rangle. \]

If we change the energy zero by \(\Delta \varepsilon \), the magnetization apparently changes by

\[\Delta M = -\frac{i2\Delta \varepsilon}{2c(2\pi)^2} \int_{BZ}dk \langle \partial_k u_k | \times | \partial_k u_k \rangle. \]

But

\[C_1 = \frac{i}{(2\pi)^2} \int_{BZ}dk \langle \partial_k u_k | \times | \partial_k u_k \rangle \]

is the **Chern number**, a topological integer.

\(C_1 = 0 \) for “normal” insulators. \(C_1 \neq 0 \) only in rather exotic cases (such as the quantum Hall regime).
An apparent drawback

The final magnetization formula:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} \, d\mathbf{k} \, \langle \partial_k u_k | \times [H(\mathbf{k}) + \varepsilon(\mathbf{k})] | \partial_k u_k \rangle. \]

If we change the energy zero by \(\Delta \varepsilon \), the magnetization apparently changes by

\[\Delta M = -\frac{i2\Delta \varepsilon}{2c(2\pi)^2} \int_{BZ} \, d\mathbf{k} \, \langle \partial_k u_k | \times | \partial_k u_k \rangle. \]

But

\[C_1 = \frac{i}{(2\pi)^2} \int_{BZ} \, d\mathbf{k} \, \langle \partial_k u_k | \times | \partial_k u_k \rangle \]

is the **Chern number**, a topological integer.

\(C_1 = 0 \) for “normal” insulators. \(C_1 \neq 0 \) only in rather exotic cases (such as the quantum Hall regime).
An apparent drawback

The final magnetization formula:

\[M = -\frac{i}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_k u_k | \times [H(\mathbf{k}) + \varepsilon(\mathbf{k})] | \partial_k u_k \rangle. \]

If we change the energy zero by \(\Delta \varepsilon \), the magnetization apparently changes by

\[\Delta M = -\frac{i2\Delta \varepsilon}{2c(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_k u_k | \times | \partial_k u_k \rangle. \]

But

\[C_1 = \frac{i}{(2\pi)^2} \int_{BZ} d\mathbf{k} \langle \partial_k u_k | \times | \partial_k u_k \rangle \]

is the Chern number, a topological integer.

\(C_1 = 0 \) for “normal” insulators. \(C_1 \neq 0 \) only in rather exotic cases (such as the quantum Hall regime).
Magnetization in a “normal” insulator:

\[
M = -\frac{ie}{\hbar c (2\pi)^3} \sum_{n \in \text{occupied}} \int_{BZ} dk \langle \partial_k u_{nk} | \times [H(k) + \varepsilon(k)] | \partial_k u_{nk} \rangle
\]

Magnetization in a metal:

\[
M = -\frac{ie}{\hbar c (2\pi)^3} \sum_n \int \limits_{\varepsilon_n(k) < \mu} dk \langle \partial_k u_{nk} | \times [H(k) + \varepsilon(k) - 2\mu] | \partial_k u_{nk} \rangle
\]

The same formula holds in insulators with \(C_1 \neq 0 \).
Magnetization in a “normal” insulator:

\[
\mathbf{M} = -\frac{ie}{\hbar c(2\pi)^3} \sum_{n \in \text{occupied}} \int_{\text{BZ}} dk \langle \partial_k u_{nk} | \times [H(k)+\varepsilon(k)] | \partial_k u_{nk} \rangle
\]

Magnetization in a metal:

\[
\mathbf{M} = -\frac{ie}{\hbar c(2\pi)^3} \sum_n \int_{\varepsilon_n(k)<\mu} dk \langle \partial_k u_{nk} | \times [H(k)+\varepsilon(k)-2\mu] | \partial_k u_{nk} \rangle
\]

The same formula holds in insulators with \(C_1 \neq 0 \).
Magnetization in a “normal” insulator:

\[
M = -\frac{ie}{\hbar c (2\pi)^3} \sum_{n \in \text{occupied}} \int_{\text{BZ}} dk \left\langle \partial_k u_{nk} | \times [H(k) + \varepsilon(k)] \right| \partial_k u_{nk} \right\rangle
\]

Magnetization in a metal:

\[
M = -\frac{ie}{\hbar c (2\pi)^3} \sum_n \int_{\varepsilon_n(k) < \mu} dk \left\langle \partial_k u_{nk} | \times [H(k) + \varepsilon(k) - 2\mu] \right| \partial_k u_{nk} \right\rangle
\]

The same formula holds in insulators with \(C_1 \neq 0 \).
Discretization of the BZ integral

- The BZ integral is discretized on a regular grid in k-space.

- A smooth phase choice is **irrelevant** for evaluating $|\partial_k u_{nk}\rangle$. Band crossings are similarly irrelevant. (Same as in discretizing the Berry-phase polarization).

- We also have the single k-point formula for noncrystalline systems in a supercell framework (e.g. for Car-Parrinello simulations).
Discretization of the BZ integral

- The BZ integral is discretized on a regular grid in \mathbf{k}-space.

- A smooth phase choice is irrelevant for evaluating $|\partial_\mathbf{k} u_{n\mathbf{k}}\rangle$. Band crossings are similarly irrelevant. (Same as in discretizing the Berry-phase polarization).

- We also have the single \mathbf{k}-point formula for noncrystalline systems in a supercell framework (e.g. for Car-Parrinello simulations).
The BZ integral is discretized on a regular grid in k-space.

A smooth phase choice is irrelevant for evaluating $|\partial_k u_{nk}\rangle$. Band crossings are similarly irrelevant. (Same as in discretizing the Berry-phase polarization).

We also have the single k-point formula for noncrystalline systems in a supercell framework (e.g. for Car-Parrinello simulations).
Discretization of the BZ integral

- The BZ integral is discretized on a regular grid in \(k \)-space.

- A smooth phase choice is **irrelevant** for evaluating \(|\partial_k u_{nk}\rangle \). Band crossings are similarly irrelevant. (Same as in discretizing the Berry-phase polarization).

- We also have the single \(k \)-point formula for noncrystalline systems in a supercell framework (e.g. for Car-Parrinello simulations).
Outline

1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
An external magnetic field B^{ext} is applied to a finite sample. The field induces an orbital current: the total (shielded) field inside the sample is $B(r) = B^{\text{ext}} + B^{\text{ind}}(r)$. Notice: $B(r)$ depends on sample shape.

At nuclear site $r = r_s$ (to linear order):

$$B^{\text{ind}}_s = -\sigma_s \cdot B^{\text{ext}}, \quad B_s = (1 - \sigma_s) \cdot B^{\text{ext}}$$

$$1 - \sigma_s = \frac{\partial B_s}{\partial B^{\text{ext}}}$$

The tensor σ_s is the quantity actually measured.
An external magnetic field \mathbf{B}^{ext} is applied to a finite sample.

The field induces an orbital current: the total (shielded) field inside the sample is $\mathbf{B}(\mathbf{r}) = \mathbf{B}^{\text{ext}} + \mathbf{B}^{\text{ind}}(\mathbf{r})$.

Notice: $\mathbf{B}(\mathbf{r})$ depends on sample shape.

At nuclear site $\mathbf{r} = \mathbf{r}_s$ (to linear order):

$$
\mathbf{B}^{\text{ind}}_s = -\overleftrightarrow{\sigma}_s \cdot \mathbf{B}^{\text{ext}},
\mathbf{B}_s = (1 - \overleftrightarrow{\sigma}_s) \cdot \mathbf{B}^{\text{ext}}
$$

$$
1 - \overleftrightarrow{\sigma}_s = \frac{\partial \mathbf{B}_s}{\partial \mathbf{B}^{\text{ext}}}
$$

The tensor $\overleftrightarrow{\sigma}_s$ is the quantity actually measured.
An external magnetic field B^ext is applied to a finite sample.

The field induces an orbital current: the total (shielded) field inside the sample is $B(r) = B^\text{ext} + B^\text{ind}(r)$.

Notice: $B(r)$ depends on sample shape.

At nuclear site $r = r_s$ (to linear order):

$$B^\text{ind}_s = -\sigma^s \cdot B^\text{ext}, \quad B_s = (1 - \sigma^s) \cdot B^\text{ext}$$

$$1 - \sigma^s = \frac{\partial B_s}{\partial B^\text{ext}}$$

The tensor σ^s is the quantity actually measured.
The NMR shielding tensor

An external magnetic field B^{ext} is applied to a finite sample.

The field induces an orbital current: the total (shielded) field inside the sample is $B(r) = B^{\text{ext}} + B^{\text{ind}}(r)$.

Notice: $B(r)$ depends on sample shape.

At nuclear site $r = r_s$ (to linear order):

$$B_{s}^{\text{ind}} = -\vec{\sigma}_s \cdot B^{\text{ext}}, \quad B_s = (1 - \vec{\sigma}_s) \cdot B^{\text{ext}}$$

$$1 - \vec{\sigma}_s = \frac{\partial B_s}{\partial B^{\text{ext}}}$$

The tensor $\vec{\sigma}_s$ is the quantity actually measured.
Definition: The NMR shielding tensor

- An external magnetic field B^{ext} is applied to a finite sample.
- The field induces an orbital current: the total (shielded) field inside the sample is $B(r) = B^{\text{ext}} + B^{\text{ind}}(r)$. **Notice:** $B(r)$ depends on sample shape.
- At nuclear site $r = r_s$ (to linear order):

$$B^{\text{ind}}_s = -\sigma_s \cdot B^{\text{ext}}, \quad B_s = (1 - \sigma_s) \cdot B^{\text{ext}}$$

$$1 - \sigma_s = \frac{\partial B_s}{\partial B^{\text{ext}}}$$

- The tensor σ_s is the quantity actually measured.
An external magnetic field B^{ext} is applied to a finite sample.

The field induces an orbital current: the total (shielded) field inside the sample is $B(r) = B^{\text{ext}} + B^{\text{ind}}(r)$. Notice: $B(r)$ depends on sample shape.

At nuclear site $r = r_s$ (to linear order):

$$B^{\text{ind}}_s = -\sigma^s \cdot B^{\text{ext}}, \quad B_s = (1 - \sigma^s) \cdot B^{\text{ext}}$$

$$1 - \sigma^s = \frac{\partial B_s}{\partial B^{\text{ext}}}$$

The tensor σ^s is the quantity actually measured.
Definition: The NMR shielding tensor

- An external magnetic field B^{ext} is applied to a finite sample.
- The field induces an orbital current: the total (shielded) field inside the sample is $B(r) = B^{\text{ext}} + B^{\text{ind}}(r)$. **Notice:** $B(r)$ depends on sample shape.
- At nuclear site $r = r_s$ (to linear order):
 \[B^{\text{ind}}_s = -\vec{\sigma}_s \cdot B^{\text{ext}}, \quad B_s = (1 - \vec{\sigma}_s) \cdot B^{\text{ext}} \]
 \[1 - \vec{\sigma}_s = \frac{\partial B_s}{\partial B^{\text{ext}}} \]
- The tensor $\vec{\sigma}_s$ is the quantity actually measured.
Suppose we neglect the \textit{macroscopic} induced field, thus identifying the macroscopic total B field inside the material with the external one B^{ext}. Then

$$1 - \overrightarrow{\sigma}_s = \frac{\partial B_s}{\partial B^{\text{ext}}}$$

This is \textit{exact} for a sample in the form of a slab, and B^{ext} normal to the slab.

For other sample shapes, there is a (small) correction.

For a spherical sample \(\overrightarrow{\sigma}_s^\text{sphere} \approx \overrightarrow{\sigma}_s - \frac{8\pi}{3} \chi \).
Suppose we neglect the \textit{macroscopic} induced field, thus identifying the macroscopic total \mathbf{B} field inside the material with the external one \mathbf{B}^{ext}. Then

$$1 - \overleftrightarrow{\sigma}_s = \frac{\partial \mathbf{B}_s}{\partial \mathbf{B}^{\text{ext}}}$$

This is \textit{exact} for a sample in the form of a slab, and \mathbf{B}^{ext} normal to the slab.

For other sample shapes, there is a (small) correction.

For a spherical sample $\overleftrightarrow{\sigma}^{\text{sphere}}_s \simeq \overleftrightarrow{\sigma}_s - \left(\frac{8\pi}{3}\right) \chi$.
Shape dependence

Suppose we neglect the macroscopic induced field, thus identifying the macroscopic total B field inside the material with the external one B^{ext}. Then

$$1 - \left\langle \sigma \right\rangle_s = \frac{\partial B_s}{\partial B^{\text{ext}}}$$

This is exact for a sample in the form of a slab, and B^{ext} normal to the slab.

For other sample shapes, there is a (small) correction.

For a spherical sample $\left\langle \sigma \right\rangle_{s, \text{sphere}} \simeq \left\langle \sigma \right\rangle_s - (8\pi / 3) \chi$.
Shape dependence

$$1 - \mathbf{\sigma}_s = \frac{\partial \mathbf{B}_s}{\partial \mathbf{B}^\text{ext}}$$

- Suppose we neglect the **macroscopic** induced field, thus identifying the macroscopic total \(\mathbf{B} \) field inside the material with the external one \(\mathbf{B}^\text{ext} \). Then

$$1 - \mathbf{\sigma}_s = \frac{\partial \mathbf{B}_s}{\partial \mathbf{B}}$$

- This is **exact** for a sample in the form of a slab, and \(\mathbf{B}^\text{ext} \) normal to the slab.

- For other sample shapes, there is a (small) correction.

- For a spherical sample

$$\mathbf{\sigma}_s^\text{sphere} \simeq \mathbf{\sigma}_s - \frac{8\pi}{3} \chi.$$
Shape dependence

\[1 - \frac{\sigma_s}{\sigma_s} = \frac{\partial B_s}{\partial B^{\text{ext}}} \]

- Suppose we neglect the \textit{macroscopic} induced field, thus identifying the macroscopic total \(B \) field inside the material with the external one \(B^{\text{ext}} \). Then

\[1 - \frac{\sigma_s}{\sigma_s} = \frac{\partial B_s}{\partial B} \]

- This is \textbf{exact} for a sample in the form of a slab, and \(B^{\text{ext}} \) normal to the slab.
- For other sample shapes, there is a (small) correction.
- For a spherical sample \(\sigma_s^{\text{sphere}} \approx \sigma_s - (8\pi/3) \chi \).
Suppose we neglect the **macroscopic** induced field, thus identifying the macroscopic total \mathbf{B} field inside the material with the external one \mathbf{B}^ext. Then

$$1 - \sigma_s \equiv \frac{\partial \mathbf{B}_s}{\partial \mathbf{B}^\text{ext}}$$

This is **exact** for a sample in the form of a slab, and \mathbf{B}^ext normal to the slab.

For other sample shapes, there is a (small) correction.

For a spherical sample $\sigma_s^\text{sphere} \approx \sigma_s - (8\pi/3) \chi$.
The only viable approach so far for crystalline systems.

$$1 - \sigma_s = \frac{\partial B_s}{\partial B}$$

Evaluated via linear-response theory.

Finite-difference approach impossible: the crystalline eigenfunctions in presence of a finite \mathbf{B} field cannot be evaluated.
The only viable approach so far for crystalline systems. The "direct" approach
(F. Mauri & coworkers)

\[1 - \sigma_s = \frac{\partial B_s}{\partial B} \]

Evaluated via linear-response theory.

Finite-difference approach impossible: the crystalline eigenfunctions in presence of a finite B field cannot be evaluated.
Computations: (1) The “direct” approach
(F. Mauri & coworkers)

- The only viable approach so far for crystalline systems.

\[1 - \overrightarrow{\sigma}_s = \frac{\partial B_s}{\partial B} \]

- Evaluated via linear-response theory.

- Finite-difference approach impossible: the crystalline eigenfunctions in presence of a finite B field cannot be evaluated.
Computations: (1) The “direct” approach (F. Mauri & coworkers)

- The only viable approach so far for crystalline systems.

\[1 - \text{σ}_s = \frac{\partial B_s}{\partial B} \]

- Evaluated via linear-response theory.

- Finite-difference approach impossible: the crystalline eigenfunctions in presence of a finite \(B \) field cannot be evaluated.
Computations: (2) Our “converse” approach
(Thonhauser, Mostofi, Marzari, Resta, & Vanderbilt, arXiv.org)

- Exploits the modern theory of orbital magnetization.

- It has an exact electrical analogue, routinely used to compute Born effective charges (for lattice dynamics) by exploiting the modern theory of polarization (Berry phase).
Computations: (2) Our “converse” approach
(Thonhauser, Mostofi, Marzari, Resta, & Vanderbilt, arXiv.org)

- Exploits the modern theory of orbital magnetization.

- It has an exact electrical analogue, routinely used to compute Born effective charges (for lattice dynamics) by exploiting the modern theory of polarization (Berry phase).
The “converse” approach: main concept

\[1 - \sigma_s = \frac{\partial B_s}{\partial B} \]

- \(B_s \) can be ideally measured via the torque acting on a classical magnetic (point) dipole at site \(r_s \):

\[B_s = -\frac{\partial \mathcal{E}}{\partial m_s} \]

- \(\mathcal{E} \) is the energy per cell of a periodic lattice of such dipoles (one per cell) in a macroscopic field \(B \).

\[1 - \sigma_s = -\frac{\partial}{\partial B} \frac{\partial \mathcal{E}}{\partial m_s} = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} \]
The “converse” approach: main concept

\[1 - \sigma_s = \frac{\partial B_s}{\partial B} \]

- \(B_s \) can be ideally measured via the torque acting on a classical magnetic (point) dipole at site \(r_s \):

\[B_s = -\frac{\partial \mathcal{E}}{\partial m_s} \]

- \(\mathcal{E} \) is the energy per cell of a periodic lattice of such dipoles (one per cell) in a macroscopic field \(B \).

\[1 - \sigma_s = - \frac{\partial}{\partial B} \frac{\partial \mathcal{E}}{\partial m_s} = - \frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} \]
The “converse” approach: main concept

\[1 - \langle \mathbf{\sigma} \rangle_s = \frac{\partial B_s}{\partial B} \]

- \(B_s \) can be ideally measured via the torque acting on a classical magnetic (point) dipole at site \(r_s \):

\[B_s = -\frac{\partial \mathcal{E}}{\partial m_s} \]

- \(\mathcal{E} \) is the energy per cell of a periodic lattice of such dipoles (one per cell) in a macroscopic field \(B \).

\[1 - \langle \mathbf{\sigma} \rangle_s = -\frac{\partial}{\partial B} \frac{\partial \mathcal{E}}{\partial m_s} = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} \]
The “converse” approach: main concept

\[1 - \sigma_s = \frac{\partial B_s}{\partial B} \]

- \(B_s \) can be ideally measured via the torque acting on a classical magnetic (point) dipole at site \(r_s \):

\[B_s = -\frac{\partial \mathcal{E}}{\partial m_s} \]

- \(\mathcal{E} \) is the energy per cell of a periodic lattice of such dipoles (one per cell) in a macroscopic field \(B \).

\[1 - \sigma_s = -\frac{\partial}{\partial B} \frac{\partial \mathcal{E}}{\partial m_s} = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} \]
The “converse” approach: main concept

\[
1 - \leftrightarrow \sigma_s = \frac{\partial B_s}{\partial B}
\]

- \(B_s\) can be ideally measured via the torque acting on a classical magnetic (point) dipole at site \(r_s\):

\[
B_s = -\frac{\partial \mathcal{E}}{\partial m_s}
\]

- \(\mathcal{E}\) is the energy per cell of a periodic lattice of such dipoles (one per cell) in a macroscopic field \(B\).

\[
1 - \leftrightarrow \sigma_s = -\frac{\partial}{\partial B} \frac{\partial \mathcal{E}}{\partial m_s} = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B}
\]
The “converse” approach: main concept

\[1 - \sigma_s = \frac{\partial B_s}{\partial B} \]

- \(B_s \) can be ideally measured via the torque acting on a classical magnetic (point) dipole at site \(r_s \):

\[B_s = -\frac{\partial \mathcal{E}}{\partial m_s} \]

- \(\mathcal{E} \) is the energy per cell of a periodic lattice of such dipoles (one per cell) in a macroscopic field \(B \).

\[1 - \sigma_s = -\frac{\partial}{\partial B} \frac{\partial \mathcal{E}}{\partial m_s} = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} \]
The “converse” approach, cont’d

\[\mathbf{M} = -\frac{1}{V_{\text{cell}}} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} \]

\[1 - \left\langle \sigma \right\rangle_s = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} = V_{\text{cell}} \frac{\partial \mathbf{M}}{\partial m_s}. \]

- **In words:**
 1. \(1 - \left\langle \sigma \right\rangle_s \) is the macroscopic orbital magnetization linearly induced by a classical point dipole at \(r_s \) and its periodic replicas.
 2. Computations by finite differences, switching on the \(m_s \) perturbation and evaluating the induced macroscopic magnetization \(\mathbf{M} \).
 3. If we “switch off” the electronic response, then \(\frac{\partial \mathbf{M}}{\partial m_s} = 1/V_{\text{cell}} \), as it must be.
The “converse” approach, cont’d

\[\mathbf{M} = -\frac{1}{V_{\text{cell}}} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} \]

\[1 - \left\langle \sigma_s \right\rangle = -\frac{\partial}{\partial \mathbf{m}_s} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} = V_{\text{cell}} \frac{\partial \mathbf{M}}{\partial \mathbf{m}_s}. \]

- **In words:**
 1. \(1 - \left\langle \sigma_s \right\rangle \) is the macroscopic orbital magnetization linearly induced by a classical point dipole at \(\mathbf{r}_s \) and its periodic replicas.
 2. Computations by finite differences, switching on the \(\mathbf{m}_s \) perturbation and evaluating the induced macroscopic magnetization \(\mathbf{M} \).
 3. If we “switch off” the electronic response, then \(\frac{\partial \mathbf{M}}{\partial \mathbf{m}_s} = 1/V_{\text{cell}} \), as it must be.
The “converse” approach, cont’d

\[
M = - \frac{1}{V_{\text{cell}}} \frac{\partial \mathcal{E}}{\partial B}
\]

\[
1 - \langle \sigma \rangle_s = - \frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} = V_{\text{cell}} \frac{\partial m}{\partial m_s}.
\]

- **In words:**
 1. \(1 - \langle \sigma \rangle_s\) is the macroscopic orbital magnetization linearly induced by a classical point dipole at \(r_s\) and its periodic replicas.
 2. Computations by finite differences, switching on the \(m_s\) perturbation and evaluating the induced macroscopic magnetization \(M\).
 3. If we “switch off” the electronic response, then \(\partial M / \partial m_s = 1 / V_{\text{cell}}\), as it must be.
The “converse” approach, cont’d

\[
\mathbf{M} = -\frac{1}{V_{\text{cell}}} \frac{\partial \mathcal{E}}{\partial \mathbf{B}}
\]

\[
1 - \langle \mathbf{s} \rangle_s = - \frac{\partial}{\partial \mathbf{m}_S} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} = V_{\text{cell}} \frac{\partial \mathbf{M}}{\partial \mathbf{m}_S}.
\]

- **In words:**
 1. \(1 - \langle \mathbf{s} \rangle_s\) is the macroscopic orbital magnetization linearly induced by a classical point dipole at \(r_s\) and its periodic replicas.
 2. Computations by finite differences, switching on the \(m_s\) perturbation and evaluating the induced macroscopic magnetization \(\mathbf{M}\).
 3. If we “switch off” the electronic response, then \(\partial \mathbf{M}/\partial m_s = 1/V_{\text{cell}}\), as it must be.
The “converse” approach, cont’d

\[\mathbf{M} = -\frac{1}{V_{\text{cell}}} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} \]

\[1 - \langle \overrightarrow{\sigma} \rangle_s = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial \mathbf{B}} = V_{\text{cell}} \frac{\partial \mathbf{M}}{\partial m_s}. \]

■ In words:
1 – \langle \overrightarrow{\sigma} \rangle_s is the macroscopic orbital magnetization linearly induced by a classical point dipole at \(r_s \) and its periodic replicas.

■ Computations by finite differences, switching on the \(m_s \) perturbation and evaluating the induced macroscopic magnetization \(\mathbf{M} \).

■ If we “switch off” the electronic response, then \(\partial \mathbf{M}/\partial m_s = 1/V_{\text{cell}} \), as it must be.
The “converse” approach, cont’d

\[M = -\frac{1}{V_{\text{cell}}} \frac{\partial \mathcal{E}}{\partial B} \]

\[1 - \overleftarrow{\sigma}_s = -\frac{\partial}{\partial m_s} \frac{\partial \mathcal{E}}{\partial B} = V_{\text{cell}} \frac{\partial M}{\partial m_s}. \]

- **In words:**
 1. \(1 - \overleftarrow{\sigma}_s \) is the macroscopic orbital magnetization linearly induced by a classical point dipole at \(r_s \) and its periodic replicas.

- Computations by finite differences, switching on the \(m_s \) perturbation and evaluating the induced macroscopic magnetization \(M \).

- If we “switch off” the electronic response, then \(\partial M/\partial m_s = 1/V_{\text{cell}} \), as it must be.
Outline

1. Why do we need a kind of “exotic” theory?
 - The dipole of a finite molecule
 - The “dipole” of a solid

2. Role of macroscopic fields

3. Modern theory of polarization: main features

4. Modern theory of orbital magnetization

5. Application: NMR shielding tensor

6. Results
NMR shielding tensor for H in selected molecules

<table>
<thead>
<tr>
<th></th>
<th>experiment</th>
<th>direct</th>
<th>converse</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>26.26</td>
<td>26.2</td>
<td>26.2</td>
</tr>
<tr>
<td>HF</td>
<td>28.51</td>
<td>28.4</td>
<td>28.5</td>
</tr>
<tr>
<td>CH₄</td>
<td>30.61</td>
<td>30.8</td>
<td>31.0</td>
</tr>
<tr>
<td>C₂H₂</td>
<td>29.26</td>
<td>28.8</td>
<td>28.9</td>
</tr>
<tr>
<td>C₂H₄</td>
<td>25.43</td>
<td>24.7</td>
<td>24.8</td>
</tr>
<tr>
<td>C₂H₆</td>
<td>29.86</td>
<td>30.2</td>
<td>30.4</td>
</tr>
</tbody>
</table>

Hydrogen NMR chemical shielding σ, in ppm, for several different molecules.

Pseudopotential PW calculations in a large supercell.

Core contribution added according to the theory of Pickard & Mauri (2003).
NMR shielding tensor for H in selected molecules

<table>
<thead>
<tr>
<th></th>
<th>experiment</th>
<th>direct</th>
<th>converse</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$</td>
<td>26.26</td>
<td>26.2</td>
<td>26.2</td>
</tr>
<tr>
<td>HF</td>
<td>28.51</td>
<td>28.4</td>
<td>28.5</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>30.61</td>
<td>30.8</td>
<td>31.0</td>
</tr>
<tr>
<td>C$_2$H$_2$</td>
<td>29.26</td>
<td>28.8</td>
<td>28.9</td>
</tr>
<tr>
<td>C$_2$H$_4$</td>
<td>25.43</td>
<td>24.7</td>
<td>24.8</td>
</tr>
<tr>
<td>C$_2$H$_6$</td>
<td>29.86</td>
<td>30.2</td>
<td>30.4</td>
</tr>
</tbody>
</table>

Hydrogen NMR chemical shielding σ, in ppm, for several different molecules.

Pseudopotential PW calculations in a large supercell.

Core contribution added according to the theory of Pickard & Mauri (2003).
NMR shielding tensor for H in liquid water

Five snapshots, 64 molecule-supercell: average over 640 H atoms.

Average and spread very similar to what previously found with the direct method (and smaller supercells).
NMR shielding tensor for H in liquid water

Five snapshots, 64 molecule-supercell: average over 640 H atoms.

Average and spread very similar to what previously found with the direct method (and smaller supercells).
Last but not least:

Orbital Magnetization in Ferromagnetic Metals
D. Ceresoli, U. Gertsmann, A.P. Seitsonen, & F. Mauri

<table>
<thead>
<tr>
<th>Metal</th>
<th>e</th>
<th>Expt.</th>
<th>FLAPW LDA</th>
<th>FLAPW PBE</th>
<th>This method LDA</th>
<th>This method PBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>bcc-Fe</td>
<td>[001]</td>
<td>0.081</td>
<td>0.053</td>
<td>0.051</td>
<td>0.0640</td>
<td>0.0658</td>
</tr>
<tr>
<td>bcc-Fe</td>
<td>[111]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0633</td>
<td>0.0660</td>
</tr>
<tr>
<td>hcp-Co</td>
<td>[001]</td>
<td>0.133</td>
<td>0.069</td>
<td>0.073</td>
<td>0.0924</td>
<td>0.0957</td>
</tr>
<tr>
<td>hcp-Co</td>
<td>[100]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0837</td>
<td>0.0867</td>
</tr>
<tr>
<td>fcc-Ni</td>
<td>[111]</td>
<td>0.053</td>
<td>0.038</td>
<td>0.037</td>
<td>0.0315</td>
<td>0.0519</td>
</tr>
<tr>
<td>fcc-Ni</td>
<td>[001]</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0.0308</td>
<td>0.0556</td>
</tr>
</tbody>
</table>

TABLE III: Orbital magnetization $M(e)$ in μ_B per atom of ferromagnetic metals parallel to the spin, for different spin orientations e. The easy axis for Fe, Co and Ni are, respectively, [001], [001] and [111]. Experimental results from Ref. 24; FLAPW results from Ref. 5.
Conclusions

- We have a formula for the macroscopic magnetization M in a crystalline solid (either insulating or metallic).
- It is the magnetic analogue of the well established Berry-phase formula for the electric polarization P (in insulators).
- Both formulæ apply to the case where the macroscopic field (E or B) is zero.
- The very first ab-initio implementations are appearing these days.
- I’m not satisfied with the existing analytical proof for the metallic case (but computer simulations on model Hamiltonians are a robust numerical proof).
Conclusions

- We have a formula for the macroscopic magnetization M in a crystalline solid (either insulating or metallic).
- It is the magnetic analogue of the well established Berry-phase formula for the electric polarization P (in insulators).
- Both formulæ apply to the case where the macroscopic field (E or B) is zero.
- The very first ab-initio implementations are appearing these days.
- I’m not satisfied with the existing analytical proof for the metallic case (but computer simulations on model Hamiltonians are a robust numerical proof).
Conclusions

- We have a formula for the macroscopic magnetization M in a crystalline solid (either insulating or metallic).
- It is the magnetic analogue of the well established Berry-phase formula for the electric polarization P (in insulators).
- Both formulæ apply to the case where the macroscopic field (E or B) is zero.
- The very first ab-initio implementations are appearing these days.
- I’m not satisfied with the existing analytical proof for the metallic case (but computer simulations on model Hamiltonians are a robust numerical proof).