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8.1.4 Grüneisen Simplified Model . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.2 The Automated Algorithm: Some Computational Parameters . . . . . . . . . . 213
8.2.1 Optional Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

8.3 QHA: A Guided Tour of the Output . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3.1 The Equation-of-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
8.3.2 Phonon Modes Continuity on Volume . . . . . . . . . . . . . . . . . . . 217
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13.19 Mössbauer Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
13.20 Topological analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

14 Running CRYSTAL in parallel 319
14.1 Running Pcrystal and Pproperties . . . . . . . . . . . . . . . . . . . . . . . . . 319
14.2 Running MPPcrystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

15 Input examples 322
15.1 Standard geometry input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

CRYSTAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
SLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
POLYMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
MOLECULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

15.2 Basis set input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
ECP - Valence only basis set input . . . . . . . . . . . . . . . . . . . . . . . . . 330

15.3 SCF options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
15.4 Geometry optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

16 Basis set 343
16.1 Molecular BSs performance in periodic systems . . . . . . . . . . . . . . . . . . 343
16.2 Core functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
16.3 Valence functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Molecular crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Covalent crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Ionic crystals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
From covalent to ionics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

16.4 Hints on crystalline basis set optimization . . . . . . . . . . . . . . . . . . . . . 346
16.5 Check on basis-set quasi-linear-dependence . . . . . . . . . . . . . . . . . . . . 347

17 Theoretical framework 349
17.1 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
17.2 Remarks on the evaluation of the integrals . . . . . . . . . . . . . . . . . . . . . 350
17.3 Treatment of the Coulomb series . . . . . . . . . . . . . . . . . . . . . . . . . . 351
17.4 The exchange series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
17.5 Bipolar expansion approximation of Coulomb and exchange integrals . . . . . . 353
17.6 Exploitation of symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Symmetry-adapted Crystalline Orbitals . . . . . . . . . . . . . . . . . . . . . . 354

6



17.7 Reciprocal space integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
17.8 Electron momentum density and related quantities . . . . . . . . . . . . . . . . 355
17.9 Elastic Moduli of Periodic Systems . . . . . . . . . . . . . . . . . . . . . . . . . 358

Examples of ε matrices for cubic systems . . . . . . . . . . . . . . . . . . . . . . 360
Bulk modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

17.10Spontaneous polarization through the Berry phase approach . . . . . . . . . . . 363
Spontaneous polarization through the localized crystalline orbitals approach . . 363

17.11Piezoelectricity through the Berry phase approach . . . . . . . . . . . . . . . . 364
Piezoelectricity through the localized crystalline orbitals approach . . . . . . . 364

17.12Eckart Conditions to the Hessian (Purifying Rotational and Translational De-
grees of Freedom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Eckart conditions to the Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

A Symmetry groups 367
A.1 Labels and symbols of the space groups . . . . . . . . . . . . . . . . . . . . . . 367
A.2 Labels of the layer groups (slabs) . . . . . . . . . . . . . . . . . . . . . . . . . . 370
A.3 Labels of the rod groups (polymers) . . . . . . . . . . . . . . . . . . . . . . . . 371
A.4 Labels of the point groups (molecules) . . . . . . . . . . . . . . . . . . . . . . . 374
A.5 From conventional to primitive cells: transforming matrices . . . . . . . . . . . 375

B Summary of input keywords 376

C Printing options 389

D External format 393

E Normalization coefficients 406

F CRYSTAL09 versus CRYSTAL06 415

G CRYSTAL14 versus CRYSTAL09 418

H CRYSTAL17 versus CRYSTAL14 422

I Acronyms 426

Bibliography 428

Subject index 445

7



Chapter 1

Introductory Remarks

1.1 Introduction

The CRYSTAL package performs ab initio calculations of the ground state energy, energy
gradient, electronic wave function and properties of periodic systems. Hartree-Fock or Kohn-
Sham Hamiltonians (that adopt an Exchange-Correlation potential following the postulates of
Density-Functional Theory) can be used. Systems periodic in 0 (molecules, 0D), 1 (polymers,
1D), 2 (slabs, 2D), and 3 dimensions (crystals, 3D) are treated on an equal footing. In each
case the fundamental approximation made is the expansion of the single particle wave functions
(’Crystalline Orbital’, CO) as a linear combination of Bloch functions (BF) defined in terms
of local functions (hereafter indicated as ’Atomic Orbitals’, AOs). See Chapter 17.

The local functions are, in turn, linear combinations of Gaussian type functions (GTF) whose
exponents and coefficients are defined by input (section 2.2). Functions of symmetry s, p, d
and f can be used (see page 25). Also available are sp shells (s and p shells, sharing the same
set of exponents). The use of sp shells can give rise to considerable savings in CPU time.

The program can automatically handle space symmetry: 230 space groups, 80 layer groups, 99
rod groups, 45 point groups are available (Appendix A). In the case of polymers it can treat
helical structures (translation followed by a rotation around the periodic axis).

Point symmetries compatible with translation symmetry are provided for molecules.

Input tools allow the generation of slabs (2D system), nano-rods (1D system) or clusters (0D
system) from a 3D crystalline structure, the elastic distortion of the lattice, the creation of a
super-cell with a defect and a large variety of structure editing. See Section 3.1

Specific input options allow generation of special 1D (nanotubes) and 0D (fullerenes) structures
from 2D ones.

Previous releases of the software in 1988 (CRYSTAL88, [60]), 1992 (CRYSTAL92, [63]), 1996
(CRYSTAL95, [64]), 1998 (CRYSTAL98, [194]), 2003 (CRYSTAL03, [195]), 2006 (CRYS-
TAL06, [65]), 2010 (CRYSTAL09, [58]), and 2013 (CRYSTAL14, [59]) have been used in a
wide variety of research applications. See “Applications” in

http://www.crystal.unito.it

The CRYSTAL package has been developed over a number of years. For basic theory and
algorithms see “Theory” in:

http://www.crystal.unito.it/theorframe.html

The required citation for this work is:

R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rérat,
S. Casassa, J. Baima, S. Salustro, B. Kirtman, WIREs Comput. Mol. Sci., e1360 (2018)
Quantum-Mechanical Condensed Matter Simulations with CRYSTAL
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CRYSTAL17 output will display the references relevant to the property computed, when cita-
tion is required.

Updated information on the CRYSTAL code as well as tutorials to learn basic and advanced
CRYSTAL usage are in:

http://www.crystal.unito.it/news.html
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1.2 CRYSTAL17 Program Features

New features with respect to CRYSTAL14 are in bold-italics.

Hamiltonian

• Hartree-Fock Theory

– Restricted (RHF)

– Unrestricted (UHF)

– Restricted-Open (ROHF)

• Density Functional Theory

– Semilocal functionals: local [L], gradient-corrected [G] and meta-GGA (tau-
dependent) [T]

– Hybrid HF-DFT functionals

∗ Global Hybrids: B3PW, B3LYP (using the VWN5 functional), PBE0,
PBESOL0, B1WC, WC1LYP, B97H

∗ Range-Separated Hybrids:

· Screened-Coulomb (SC): HSE06, HSEsol, SC-BLYP

· Middle-range Corrected (MC): HISS

· Long-range Corrected (LC): LC-ωPBE, LC-ωPBEsol, LC-ωBLYP, ωB97,
ωB97-X, RSHXLDA, LC-BLYP, CAM-B3LYP

∗ Self-consistent Global Hybrid functionals (sc-hyb)

– Minnesota semilocal and hybrid functionals (mGGA):

∗ M05 family: M05, M05-2X

∗ M06 family: M06, M06-2X, M06-HF, M06-L

– User-defined hybrid functionals

– London-type empirical correction for dispersive interactions (DFT-D2 scheme)

– DFT-D3 correction for dispersive interactions. Automated, parameter-
free implementation

• Grimme’s geometrical CounterPoise (gCP) empirical correction to remove
the BSSE

• Composite Methods for Molecular Crystals (HF3c, PBEh3c)

Analytical Energy Derivatives

• Analytical first derivatives with respect to the nuclear coordinates and cell
parameters

– Hartree-Fock and Density Functional methods

– All-electron Basis Sets and Effective Core Pseudo-potentials

• Analytical derivatives, up to fourth order, with respect to an applied electric
field (CPHF/CPKS)

– Dielectric tensor, polarizability (linear-optical properties)

– First Hyper-polarizability (non linear-optical property)

∗ Second-Harmonic Generation

∗ Pockels Effect

– Second Hyper-polarizability (non linear-optical property).
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– Extended to Open-Shell Systems and some range-separated hybrid func-
tionals

• Mixed analytical derivatives with respect to an applied electric field and either
a nuclear displacement or a cell distortion (CPHF/CPKS)

– Born-charge tensor

– Raman polarizability tensors

– Direct Piezoelectric tensor (electronic term)

Type of Calculation

• Single-point energy calculation

– Broyden Convergence Accelerator

– Anderson Convergence Accelerator

– Fock Matrix-mixing Scheme

– DIIS Convergence Accelerator (default)

– Tools to define an Initial Guess for Magnetic Systems

– Fractionally-charged Systems

– Use of Fractional Spin

– Spin Contamination Correction

• Geometry optimizations

– Uses a quasi-Newton algorithm

– Optimizes in symmetry-adapted Cartesian coordinates

– Optimizes in redundant coordinates

∗ New internal coordinates handling and algorithm for back-transformation

– Full geometry optimization (cell parameters and atom coordinates)

– Freezes atoms during optimization

– Constant volume or pressure constrained geometry optimizations (3D only)

– Transition state search

• Harmonic vibrational frequencies

– Harmonic vibrational frequencies at Gamma point

– Phonon dispersion using a direct approach (efficient supercell scheme)

– Phonon band structure

– Calculation of Atomic Displacement Parameters and Debye-Waller factors

– IR intensities through localized Wannier functions and Berry phase

– IR and Raman intensities through CPHF/CPKS analytical approach

– Simulated reflectance, IR and Raman spectra

– Vibrational contribution to dielectric tensor

– Vibrational contribution to first-hyper-polarizability

– Exploration of the energy and geometry along selected normal modes

– Total and Projected Vibrational Density-of-States (VDOS)

– Neutron-weighted VDOS for Inelastic Neutron Scattering

• Anharmonic frequencies for X-H bonds
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• Automated calculation of the elastic tensor of crystalline systems

– Generalized to 1D and 2D systems

– Calculation of directional elastic wave velocities

– Calculation of isotropic polycrystalline aggregates elastic properties via Voigt-Reuss-
Hill scheme

– Elastic Tensor under Pressure

– Complete Analysis of Elastic wave velocities through AWESOME Code

– Nuclear-relaxation Term through Internal-strain Tensor

• Automated E vs V calculation for Equation of State (EOS)

– Murnaghan, Birch-Murnaghan, Vinet, Poirer-Tarantola and polynomial

– Automated calculation of pressure dependence of volume and bulk modulus

• Automated Quasi-harmonic Approximation (QHA) for Thermal Properties

– Volume-dependent Thermodynamic properties

– Lattice Thermal Expansion (anisotropic)

– P-V-T Equation-of-State

– Constant-pressure thermodynamic properties

– Temperature dependence of Bulk modulus (isothermal and adiabatic)

– Grüneisen Parameters

• Automated calculation of piezoelectric and photoelastic tensors

– Direct and converse piezoelectricity (using the Berry phase approach)

– Elasto-optic tensor through the CPHF/CPKS scheme

– Electric field frequency dependence of photoelastic properties

– Nuclear-relaxation Term of Piezoelectric Tensor through Internal-strain
Tensor

– Piezo-optic fourth-rank Tensor

– Analytical Piezoelectric Tensor through CPHF/KS Scheme

• Improved tools to model solid solutions

– Automated Generation of Symmetry-independent Configurations

– Automated algorithm for computing the energy (with or without geometry opti-
mization) of selected configurations

Basis set

• Gaussian type functions basis sets

– s, p, d, and f GTFs

– Standard Pople Basis Sets

∗ STO-nG n=2-6 (H-Xe), 3-21G (H-Xe), 6-21G (H-Ar)

∗ polarization and diffuse function extensions

– Internal library of basis sets with simplified input

– User-defined External Library supported

– User-specified basis sets supported

• Pseudopotential Basis Sets

– Available sets are:

∗ Hay-Wadt large core

∗ Hay-Wadt small core

– User-defined pseudopotential basis sets supported
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Periodic systems

• Periodicity

– Consistent treatment of all periodic systems

– 3D - Crystalline solids (230 space groups)

– 2D - Films and surfaces (80 layer groups)

– 1D - Polymers

∗ space group derived symmetry (75 rod groups)

∗ helical symmetry (up to order 48)

– 1D - Nanotubes (with any number of symmetry operators)

– 0D - Molecules (32 point groups)

– 0D - Fullerenes

• Automated geometry editing

– 3D to 2D - slab parallel to a selected crystalline face (hkl)

– 3D to 0D - cluster from a perfect crystal (H saturated)

– 3D to 0D - extraction of molecules from a molecular crystal

– 3D to n3D - supercell creation

– 2D to 1D - building nanotubes from a single-layer slab model

– 2D to 0D - building fullerenes from a single-layer slab model

– 3D to 1D, 0D - building nanorods and nanoparticles from a perfect crystal

– 2D to 0D - construction of Wulff’s polyhedron from surface energies

– Several geometry manipulations (reduction of symmetry; insertion, displacement,
substitution, deletion of atoms)

Wave function analysis and properties

• Band structure

• Density of states

– Band projected DOSS

– AO projected DOSS

• All Electron Charge Density - Spin Density

– Density maps

– Mulliken population analysis

– Density analytical derivatives

– Hirshfeld-I Partitioning Scheme

• Electronic Transport Properties

• Atomic multipoles

• Electric field

• Electric field gradient

• Static structure factors and dynamic structure factors including Debye-Waller
factor
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– XRD Spectrum

• Electron Momentum Density and Compton profiles

– Electron momentum density maps

– Automated anisotropy maps

– Partitioning according to Wannier functions

• Electrostatic potential and its derivatives

– Quantum and classical electrostatic potential and its derivatives

– Electrostatic potential maps

• Fermi contact

• Localized Wannier Functions (Boys method)

• Mossbauer effect (isotropic effect and quadrupolar interaction)

• Topological analysis of the electron charge density via the TOPOND package,
fully integrated in the program

Software performance

• Memory management: dynamic allocation

• Full parallelization of the code

– parallel SCF and gradients for both HF and DFT methods

– Replicated data version (MPI)

– Massive parallel version (MPI) (distributed memory) (Improved version: lower
memory usage and better scaling)

– Parallel (replicated data) version of the “properties” module

– New parallelization strategy on IRREPs

• Enhanced exploitation of the point-group symmetry

14



Conventions

In the description of the input data which follows, the following notation is adopted:

- • new record

- ∗ free format record

- An alphanumeric datum (first n characters meaningful)

- atom label sequence number of a given atom in the primitive cell, as
printed in the output file after reading of the geometry input

- symmops symmetry operators

- , [ ] default values.

- italic optional input

- optional input records follow II

- additional input records follow II

Arrays are read in with a simplified implied DO loop instruction of Fortran 77:
(dslist, i=m1,m2)
where: dslist is an input list; i is the name of an integer variable, whose value ranges from m1
to m2.

Example (page 39): LB(L),L=1,NL
NL integer data are read in and stored in the first NL position of the array LB.

All the keywords are entered with an A format (case insensitive); the keywords must not end
with blanks.

conventional atomic number (usually called NAT) is used to associate a given basis set
with an atom. The real atomic number is the remainder of the division NAT/100. See page
24. The same conventional atomic number must be given in geometry input and in basis set
input.
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Chapter 2

Wave-function Calculation:
Basic Input Route

2.1 Geometry and symmetry information

The first record of the geometry definition must contain one of the keywords:

CRYSTAL 3D system page 18
SLAB 2D system page 18
POLYMER 1D system page 18
HELIX 1D system - roto translational symmetry page 19
MOLECULE 0D system page 18
EXTERNAL geometry from external file page 19
DLVINPUT geometry from DLV [202] Graphical User Interface. page 19

Four input schemes are used.

The first is for crystalline systems (3D), and is specified by the keyword CRYSTAL.

The second is for slabs (2D), polymers (1D) and molecules (0D) as specified by the keywords
SLAB, POLYMER or MOLECULE respectively.

The third scheme (keyword HELIX) defines a 1D system with roto-translational symmetry
(helix).

In the fourth scheme, with keyword EXTERNAL (page 19) or DLVINPUT, the unit cell,
atomic positions and symmetry operators may be provided directly from an external file (see
Appendix D, page 400). Such an input file can be prepared by the keyword EXTPRT (crystal
input block 1, page 46; properties).

Sample input decks for a number of structures are provided in section 15.1, page 322.
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Geometry input for crystalline compounds. Keyword: CRYSTAL

rec variable value meaning

• ∗ IFLAG convention for space group identification (Appendix A.1, page 367):
0 space group sequential number(1-230)
1 Hermann-Mauguin alphanumeric code

IFHR type of cell: for rhombohedral groups, subset of trigonal ones, only
(meaningless for non-rhombohedral crystals):

0 hexagonal cell. Lattice parameters a,c
1 rhombohedral cell. Lattice parameters a, α

IFSO setting for the origin of the crystal reference frame:
0 origin derived from the symbol of the space group: where there

are two settings, the second setting of the International Tables is
chosen.

1 standard shift of the origin: when two settings are allowed, the first
setting is chosen

>1 non-standard shift of the origin given as input (see test22)
• ∗ space group identification code (following IFLAG value):

IGR space group sequence number (IFLAG=0)
or

A AGR space group alphanumeric symbol (IFLAG=1)
if IFSO > 1 insert II

• ∗ IX,IY,IZ non-standard shift of the origin coordinates (x,y,z) in fractions of
the crystallographic cell lattice vectors times 24 (to obtain integer
values).

• ∗ a,[b],[c], minimal set of crystallographic cell parameters:
[α],[β] translation vector[s] length [Ångstrom],
[γ] crystallographic angle[s] (degrees)

• ∗ NATR number of atoms in the asymmetric unit.
insert NATR records II

• ∗ NAT “conventional” atomic number. The conventional atomic number,
NAT, is used to associate a given basis set with an atom. The real
atomic number is the remainder of the division NAT100

X,Y,Z atom coordinates in fractional units of crystallographic lattice vec-
tors

optional keywords terminated by END/ENDGEOM or STOP II

Geometry input for molecules, polymers and slabs. Keywords:
SLAB, POLYMER, MOLECULE

When the geometrical structure of 2D, 1D and 0D systems has to be defined, attention should
be paid in the input of the atom coordinates, that are expressed in different units, fractional
(direction with translational symmetry) or Ångstrom (non periodic direction).

translational unit of measure of coordinates
symmetry X Y Z

3D fraction fraction fraction
2D fraction fraction Ångstrom
1D fraction Ångstrom Ångstrom
0D Ångstrom Ångstrom Ångstrom
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rec variable meaning

• ∗ IGR point, rod or layer group of the system:
0D - molecules (Appendix A.4, page 374)
1D - polymers (Appendix A.3, page 371)
2D - slabs (Appendix A.2, page 370)

if polymer or slab, insert II
• ∗ a,[b], minimal set of lattice vector(s)- length in Ångstrom

(b for rectangular lattices only)

[γ] ÂB angle (degrees) - triclinic lattices only

• ∗ NATR number of non-equivalent atoms in the asymmetric unit
insert NATR records II

• ∗ NAT conventional atomic number 3
X,Y,Z atoms coordinates. Unit of measure:

0D - molecules: x,y,z in Ångstrom
1D - polymers : y,z in Ångstrom, x in fractional units of crystallographic
cell translation vector
2D - slabs : z in Ångstrom, x, y in fractional units of crystallographic cell
translation vectors

optional keywords terminated by END or STOP II

Geometry input for polymers with roto translational symmetry.
Keyword: HELIX

rec variable meaning
• ∗ N1 order of rototranslational axis
∗ N2 to define the rototranslational vector

• ∗ a0 lattice parameter of 1D cell - length in Ångstrom
• ∗ NATR number of non-equivalent atoms in the asymmetric unit

insert NATR records II
• ∗ NAT conventional atomic number 3

X,Y,Z atoms coordinates. Unit of measure:
1D - polymers : y,z in Ångstrom, x in fractional units of crystallographic
cell translation vector

optional keywords terminated by END or STOP II

A helix structure is generated: each atom of the irreducible part is rotated by an angle β =
n · 360/N1 degrees and translated by a vector ~t = n · a0

N2
N1 with n = 1, ....(N1− 1).

As an example let’s consider the α-helix conformer of polyglycine whose structure is sketched
in Figure 2.1.

The helix structure is characterized by seven glycine residues per cell. The order of the roto-
translational axis is therefore seven, N1 = 7. In order to establish the value of N2, look for
instance at the atom labeled 7 in the Figure. The top view of the helix shows that upon rota-
tion by β = 360/7 degrees, atom 7 moves to atom 4; the side view clarifies that this movement
implies a translational vector ~t = a0

4
7 : therefore N2 = 4.

Geometry input from external geometry editor. Keywords:
EXTERNAL, DLVINPUT

The fourth input scheme works for molecules, polymers, slabs and crystals. The complete
geometry input data are read from file fort.34. The unit cell, atomic positions and symme-
try operators are provided directly according to the format described in Appendix D, page
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Figure 2.1: Side view (left) and top view (right) of an α-helix conformer of polyglycine

400. Coordinates in Ångstrom. Such an input file is written when OPTGEOM route for
geometry optimization is chosen, and can be prepared by the keyword EXTPRT (program
crystal, input block 1, page 46; program properties), or by the the visualization software
DLV (http://www.cse.scitech.ac.uk/cmg/DLV/).
The geometry defined by EXTERNAL can be modified by inserting any geometry editing
keyword (page 32) into the input stream after EXTERNAL.

Comments on geometry input

1. All coordinates in Ångstrom. In geometry editing, after the basic geometry definition, the
unit of measure of coordinates may be modified by entering the keywords FRACTION
(page 49) or BOHR (page 40).

2. The geometry of a system is defined by the crystal structure ([96], Chapter 1 of ref.
[171]). Reference is made to the International Tables for Crystallography [111] for all
definitions. The crystal structure is determined by the space group, by the shape and
size of the unit cell and by the relative positions of the atoms in the asymmetric unit.

3. The lattice parameters represent the length of the edges of the cell (a,b,c) and the angles

between the edges (α = b̂ c; β = â c; γ = â b). They determine the cell volume and
shape.

4. Minimal set of lattice parameters to be defined in input:

cubic a
hexagonal a,c
trigonal hexagonal cell a,c

rhombohedral cell a, α
tetragonal a,c
orthorhombic a,b,c
monoclinic a,b,c, β (b unique)

a,b,c, γ (c unique)
a,b,c, α (a unique - non standard)

triclinic a,b,c, α, β, γ

5. The asymmetric unit is the largest subset of atoms contained in the unit-cell, where
no atom pair related by a symmetry operator can be found. Usually several equivalent
subsets of this kind may be chosen so that the asymmetric unit needs not be unique.
The asymmetric unit of a space group is a part of space from which, by application of
all symmetry operations of the space group, the whole of space is filled exactly.
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6. The crystallographic, or conventional cell, is used as the standard option in input. It
may be non-primitive, which means it may not coincide with the cell of minimum volume
(primitive cell), which contains just one lattice point. The matrices which transform the
conventional (as given in input) to the primitive cell (used by CRYSTAL) are given in
Appendix A.5, page 375, and are taken from Table 5.1 of the International Tables for
Crystallography [111].

Examples. A cell belonging to the face-centred cubic Bravais lattice has a volume four
times larger than that of the corresponding primitive cell, and contains four lattice points
(see page 68, keyword SUPERCEL). A unit cell belonging to the hexagonal Bravais
lattice has a volume three times larger than that of the rhombohedral primitive cell (R
Bravais lattice), and contains three lattice points.

7. The use of the International Tables to identify the symmetry groups requires some prac-
tice. The examples given below may serve as a guide. The printout of geometry informa-
tion (equivalent atoms, fractional and Cartesian atomic coordinates etc.) allows a check
on the correctness of the group selected. To obtain a complete neighborhood analysis
for all the non-equivalent atoms, a complete input deck must be read in (blocks 1-3),
and the keyword TESTPDIM inserted in block 3, to stop execution after the symmetry
analysis.

8. Different settings of the origin may correspond to a different number of symmetry oper-
ators with translational components.

Example: bulk silicon - Space group 227 - 1 irreducible atom per cell.

setting of the origin Si coordinates symmops with multiplicity
translational component

2nd (default) 1/8 1/8 1/8 36 2
1st 0. 0. 0. 24 2

NB With different settings, the same position can have different multiplicity. For instance,
in space group 227 (diamond, silicon) the position (0., 0., 0.) has multiplicity 2 in 1st
setting, and multiplicity 4 in 2nd setting.

Second setting is the default choice in CRYSTAL.

The choice is important when generating a supercell, as the first step is the removal of the
symmops with translational component. The keyword ORIGIN (input block 1, page
59) translates the origin in order to minimize the number of symmops with translational
component.

9. When coordinates are obtained from experimental data or from geometry optimization
with semi-classical methods, atoms in special positions, or related by symmetry are not
correctly identified, as the number of significative digits is lower that the one used by
the program crystal to recognize equivalence or special positions. In that case the
coordinates must be edited by hand (see FAQ at www.crystal.unito.it).

10. The symbol of the space group for crystals (IFLAG=1) is given precisely as it appears
in the International Tables, with the first letter in column one and a blank separating
operators referring to different symmetry directions. The symbols to be used for the
groups 221-230 correspond to the convention adopted in editions of the International
Tables prior to 1983: the 3 axis is used instead of 3. See Appendix A.1, page 367.

Examples:

Group number input symbol
137 (tetragonal) P 42/N M C

10 (monoclinic) P 1 2/M 1 (unique axis b, standard setting)
P 1 1 2/M (unique axis c)
P 2/M 1 1 (unique axis a)

25 (orthorhombic) P M M 2 (standard setting)
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P 2 M M

P M 2 M

11. In the monoclinic and orthorhombic cases, if the group is identified by its number (3-74),
the conventional setting for the unique axis is adopted. The explicit symbol must be
used in order to define an alternative setting.

12. For the centred lattices (F, I, C, A, B and R) the input cell parameters refer to the
centred conventional cell; the fractional coordinates of the input list of atoms are in a
vector basis relative to the centred conventional cell.

13. Rhombohedral space groups are a subset of trigonal ones. The Hermann-Mauguin symbol
must begin by ’R’. For instance, space groups 156-159 are trigonal, but not rhombohedral
(their Hermann-Mauguin symbols begin by ”P”). Rhombohedral space groups (146-148-
155-160-161-166-167) may have an hexagonal cell (a=b; c; α, β = 900; γ = 1200: input
parameters a,c) or a rhombohedral cell (a=b=c; α = β = γ: input parameters = a, α).
See input datum IFHR.

14. It is sufficient to supply the coordinates of only one of a group of atoms equivalent under
centring translations (eg: for space group Fm3m only the parameters of the face-centred
cubic cell, and the coordinates of one of the four atoms at (0,0,0), (0, 1

2 , 1
2 ), ( 1

2 ,0, 1
2 ) and

( 1
2 , 1

2 ,0) are required).

The coordinates of only one atom among the set of atoms linked by centring translations
are printed. The vector basis is relative to the centred conventional cell. However when
Cartesian components of the direct lattice vectors are printed, they are those of the
primitive cell.

15. The conventional atomic number NAT is used to associate a given basis set with an
atom (see Basis Set input, Section 2.2, page 23). The real atomic number is given by the
remainder of the division of the conventional atomic number by 100 (Example: NAT=237,
Z=37; NAT=128, Z=28). Atoms with the same atomic number, but in non-equivalent
positions, can be associated with different basis sets, by using different conventional
atomic numbers: e.g. 6, 106, 1006 (all electron basis set for carbon atom); 206, 306 (core
pseudo-potential for carbon atom, Section 3.2, page 75).

If the remainder of the division is 0, a ”ghost” atom is identified, to which no nuclear
charge corresponds (it may have electronic charge). This option may be used for enriching
the basis set by adding bond basis function [10], or to allow build up of charge density on
a vacancy. A given atom may be transformed into a ghost after the basis set definition
(input block 2, keyword GHOSTS, page 74).

16. The keyword SLABCUT (Geometry editing input, page 64) allows the creation of a
slab (2D) of given thickness from the 3D perfect lattice. See for comparison test4-test24;
test5-test25; test6-test26; test7- test27.

17. For slabs (2D), when two settings of the origin are indicated in the International Tables
for Crystallography, setting number 2 is chosen. The setting can not be modified.

18. Conventional orientation of slabs and polymers: Polymers are oriented along the x axis.
Slabs are parallel to the xy plane.

19. The keywords MOLECULE (for molecular crystals only; page 53) and CLUSTER
(for any n-D structure; page 42) allow the creation of a non-periodic system (molecule(s)
or cluster) from a periodic one.
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2.2 Basis set

Two different methods are available to input basis set data:

• Standard route

• Basis set input by keywords

2.2.1 Standard route

rec variable value meaning
• ∗ NAT n conventional atomic 3 number

<200> 1000 all-electron basis set (Carbon, all electron BS: 6, 106, 1006)
>200 valence electron basis set (Carbon, ECP BS: 206, 306) . ECP

(Effective Core Pseudopotential) must be defined (page 75)
=99 end of basis set input section

NSHL n number of shells
0 end of basis set input (when NAT=99)

if NAT > 200 insert ECP input (page 75) II
NSHL sets of records - for each shell

• ∗ ITYB type of basis set to be used for the specified shell:
0 general BS, given as input
1 Pople standard STO-nG (Z=1-54)
2 Pople standard 3(6)-21G (Z=1-54(18)) Standard polarization

functions are included.
LAT shell type:

0 1 s AO (S shell)
1 1 s + 3 p AOs (SP shell)
2 3 p AOs (P shell)
3 5 d AOs (D shell)
4 7 f AOs (F shell)

NG Number of primitive Gaussian Type Functions (GTF) in the con-
traction for the basis functions (AO) in the shell

1≤NG≤10 for ITYB=0 and LAT ≤ 2
1≤NG≤6 for ITYB=0 and LAT = 3
2≤NG≤6 for ITYB=1
6 6-21G core shell
3 3-21G core shell
2 n-21G inner valence shell
1 n-21G outer valence shell

CHE formal electron charge attributed to the shell
SCAL scale factor (if ITYB=1 and SCAL=0., the standard Pople scale

factor is used for a STO-nG basis set.
if ITYB=0 (general basis set insert NG records II

• ∗ EXP exponent of the normalized primitive GTF
COE1 contraction coefficient of the normalized primitive GTF:

LAT=0,1 → s function coefficient
LAT=2 → p function coefficient
LAT=3 → d function coefficient
LAT=4 → f function coefficient

COE2 LAT=1 → p function coefficient
optional keywords terminated by END/ENDB or STOP II

The choice of basis set is the most critical step in performing ab initio calculations of periodic
systems, with Hartree-Fock or Kohn-Sham Hamiltonians. Optimization criteria are discussed
in Chapter 16. When an effective core pseudo-potential is used, the basis set must be optimized
with reference to that potential (Section 3.2, page 75).
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1. A basis set (BS) must be given for each atom with different conventional atomic number
defined in the crystal structure input. If atoms are removed (geometry input, keyword
ATOMREMO, page 39), the corresponding basis set input can remain in the input
stream. The keyword GHOSTS (page 74) removes the atom, leaving the associated
basis set.

2. The basis set for each atom has NSHL shells, whose constituent AO basis functions
are built from a linear combination (’contraction’) of individually normalized primitive
Gaussian-type functions (GTF) (Chapter 17, page 349).

3. A conventional atomic number NAT links the basis set with the atoms defined in the
crystal structure. The atomic number Z is given by the remainder of the division of the
conventional atomic number by 100 (Example: NAT=108, Z=8, all electron; NAT=228,
Z=28, ECP). See point 5 below.

4. A conventional atomic number 0 defines ghost atoms, that is points in space with an
associated basis set, but lacking a nuclear charge (vacancy). See test 28.

5. Atoms with equal conventional atomic number are associated with the same basis set.

NAT< 200>1000: all electron basis set. A maximum of two different basis sets may be
given for the same chemical species in different positions: NAT=Z,

NAT=Z+100, NAT=Z+1000.
NAT> 200: valence electron basis set. A maximum of two different BS may be

given for the same chemical species in positions not symmetry-related:
NAT=Z+200, NAT=Z+300. A core pseudo-potential must be defined.
See Section 3.2, page 75, for information on core pseudo-potentials.

Suppose we have four non-equivalent carbon atoms in the unit cell. Conventional atomic
numbers 6 106 1006 206 306 mean that carbon atoms (real atomic number 6) unrelated
by symmetry are to be associated with different basis sets: the first tree (6, 106, 1006)
all-electron, the second two (206, 306) valence only, with pseudo-potential.

6. The basis set input ends with the card:
99 0 conventional atomic number 99, 0 shell.
Optional keywords may follow.

In summary:

1. CRYSTAL can use the following all electrons basis sets:

a) general basis sets, including s, p, d, f functions (given in input);
b) standard Pople basis sets [118] (internally stored as in Gaussian 94 [90]).

STOnG, Z=1 to 54
6-21G, Z=1 to 18
3-21G, Z=1 to 54

The standard basis sets b) are stored as internal data in the CRYSTAL code. They are
all electron basis sets, and can not be combined with ECP.

2. Warning The standard scale factor is used for STO-nG basis set when the input datum
SCAL is 0.0 in basis set input. All the atoms of the same row are attributed the same
Pople STO-nG basis set when the input scale factor SCAL is 1.

3. Standard polarization functions can be added to 6(3)-21G basis sets of atoms up to Z=18,
by inserting a record describing the polarization shell (ITYB=2, LAT=2, p functions on
hydrogen, or LAT=3, d functions on 2-nd row atoms; see test 12).
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H Polarization functions exponents He

1.1 1.1

__________ ______________________________

Li Be B C N O F Ne

0.8 0.8 0.8 0.8 0.8 0.8 0.8 --

___________ ______________________________

Na Mg Al Si P S Cl Ar

0.175 0.175 0.325 0.45 0.55 0.65 0.75 0.85

_____________________________________________________________________

The formal electron charge attributed to a polarization function must be zero.

4. The shell types available are :

shell shell n. order of internal storage
code type AO
0 S 1 s
1 SP 4 s, x, y, z
2 P 3 x, y, z
3 D 5 2z2 − x2 − y2, xz, yz, x2 − y2, xy
4 F 7 (2z2 − 3x2 − 3y2)z, (4z2 − x2 − y2)x, (4z2 − x2 − y2)y,

(x2 − y2)z, xyz, (x2 − 3y2)x, (3x2 − y2)y

When symmetry adaptation of Bloch functions is active (default; NOSYMADA in block3
to remove it), if F functions are used, all lower order functions must be present (D, P ,
S).

The order of internal storage of the AO basis functions is an information necessary to
read certain quantities calculated by the program properties. See Chapter 13: Mul-
liken population analysis (PPAN, page 106), electrostatic multipoles (POLI, page 303),
projected density of states (DOSS,page 274) and to provide an input for some options
(EIGSHIFT, input block 3, page 88).

5. Spherical harmonics d-shells consisting of 5 AOs are used.

6. Spherical harmonics f-shells consisting of 7 AOs are used.

7. The formal shell charges CHE, the number of electrons attributed to each shell, are
assigned to the AO following the rules:

shell shell max rule to assign the shell charges
code type CHE
0 S 2. CHE for s functions
1 SP 8. if CHE>2, 2 for s and (CHE−2) for p functions,

if CHE≤2, CHE for s function
2 P 6. CHE for p functions
3 D 10. CHE for d functions
4 F 14. CHE for f functions - it may be 6= 0 in CRYSTAL09.

8. A maximum of one open shell for each of the s, p and or d atomic symmetries is allowed
in the electronic configuration defined in the input. The atomic energy expression is not
correct for all possible double open shell couplings of the form pmdn. Either m must
equal 3 or n must equal 5 for a correct energy expression in such cases. A warning
will be printed if this is the case. However, the resultant wave function (which is a
superposition of atomic densities) will usually provide a reasonable starting point for the
periodic density matrix.

9. When extended basis sets are used, all the functions corresponding to symmetries (an-
gular quantum numbers) occupied in the isolated atom are added to the atomic basis
set for atomic wave function calculations, even if the formal charge attributed to that
shell is zero. Polarization functions are not included in the atomic basis set; their input
occupation number should be zero.

25



10. The formal shell charges are used only to define the electronic configuration of the atoms
to compute the atomic wave function. The initial density matrix in the SCF step may
be a superposition of atomic (or ionic) density matrices (default option, GUESSPAT,
page 100). When a different guess is required ( GUESSP), the shell charges are not
used, but checked for electron neutrality when the basis set is entered.

11. F shells functions are not used to compute the “atomic” wave function, to build an atomic
density matrix SCF guess. If F shells are occupied by nf electrons, the “atomic” wave
function is computed for an ion (F electrons are removed), and the diagonal elements of
the atomic density matrix are then set to nf/7. The keyword FDOCCUP (input block
3, page 92 allows modification of f orbitals occupation.

12. Each atom in the cell may have an ionic configuration, when the sum of formal shell
charges (CHE) is different from the nuclear charge. When the number of electrons in
the cell, that is the sum of the shell charges CHE of all the atoms, is different from the
sum of nuclear charges, the reference cell is non-neutral. This is not allowed for periodic
systems, and in that case the program stops. In order to remove this constraint, it is
necessary to introduce a uniform charged background of opposite sign to neutralize the
system [57]. This is obtained by entering the keyword CHARGED (page 72) after the
standard basis set input. The value of total energy must be carefully checked.

13. It may be useful to allow atoms with the same basis set to have different electronic
configurations (e.g, for an oxygen vacancy in MgO one could use the same basis set for
all the oxygens, but begin with different electronic configuration for those around the
vacancy). The formal shell charges attributed in the basis set input may be modified for
selected atoms by inserting the keyword CHEMOD (input block 2, page 72).

14. The energies given by an atomic wave function calculation with a crystalline basis set
should not be used as a reference to calculate the formation energies of crystals. The
external shells should first be re-optimized in the isolated atom by adding a low-exponent
Gaussian function, in order to provide and adequate description of the tails of the isolated
atom charge density [42] (keyword ATOMHF, input block 3, page 83).

Optimized basis sets for periodic systems used in published papers are available in:

http://www.crystal.unito.it

2.2.2 Basis set input by keywords

A few predefined basis set data can be retrieved by simply typing a keyword. For the moment
being the set of available basis sets includes (available atomic numbers in parentheses):

• Pople’s STO-3G minimal basis set (1–53)

• Pople’s STO-6G minimal basis set (1–36)

• POB double-ζ valence + polarization basis set for solid state systems (1–35, 49, 74)

• POB double-ζ valence basis set + a double set of polarization functions for solid state
systems (1–35, 49, 83)

• POB triple-ζ valence + polarization basis set for solid state systems (1–35, 49, 83)

Features and performance of Peintinger-Oliveira-Bredow (POB) basis sets are illustrated in
Ref. [138].

In order to enable basis set input by keywords, the following keyword must replace the final
keyword, END, of the structure input (input block 1):

BASISSET
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This card must be followed by the selection of a basis set type. The following sets are presently
available as internal basis sets:

Basis set label Basis set type

CUSTOM Standard input basis set: insert cards as illustrated in section 2.2.1
STO-3G Pople’s standard minimal basis set (3 Gaussian function contractions) [118]
STO-6G Pople’s standard minimal basis set (6 Gaussian function contractions) [118]
POB-DZVP POB Double-ζ + polarization basis set [138]
POB-DZVPP POB Double-ζ + double set of polarization functions [138]
POB-TZVP POB Triple-ζ + polarization basis set [138]

Input example for rock-salt:

NaCl Fm-3m ICSD 240598

CRYSTAL

0 0 0

225

5.6401

2

11 0.0 0.0 0.0

17 0.5 0.5 0.5

BASISSET

POB-TZVP

DFT

EXCHANGE

PWGGA

CORRELAT

PWGGA

HYBRID

20

CHUNKS

200

END

TOLINTEG

7 7 7 7 14

SHRINK

8 8

END

Basis set input from external file

If the basis set specified after the BASISSET keyword is not found in the internal basis set
library (i.e. it is not one of those listed above), the program will search for the presence of a
file named BASISSETS.DAT in the temporary (scratch) working directory. If the file is found,
it will search for a basis with that label in the file.
The BASISSETS.DAT file is an external basis set database file that can contain as many
basis set and for as many elements as desired. The format of such file is a number of entries
#BASIS followed by a basis set name label and the basis set in the usual CRYSTAL format, as
it would appear in input. This means the block is closed by a “99 0” line, as in the Crystal input.

Warning: the BASISSETS.DAT file does not currently support pseudopotentials, only all-
electron basis sets can be used.

Here’s an example of one entry in the BASISSETS.DAT file, containing custom basis sets for
H and Li atoms
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#BASIS

mybasis

1 3

0 0 5 1.0 1.0

120.0 0.000267

40.0 0.002249

12.8 0.006389

4.0 0.032906

1.2 0.095512

0 0 1 0.0 1.0

0.5 1.0

0 0 1 0.0 1.0

0.13 1.0

3 3

0 0 6 2. 1.

700.0 0.001421

220.0 0.003973

70.0 0.01639

20.0 0.089954

5.0 0.315646

1.5 0.494595

0 0 1 1. 1.

0.5 1.0

0 2 1 0. 1.

0.6 1.0

99 0

An example .d12 input using this basis set would be:

lih bulk

CRYSTAL

0 0 0

225

4.0170

2

3 0. 0. 0.

1 0.5 0.5 0.5

BASISSET

mybasis

DFT

PBE0

END

SHRINK

8 8

END

In the output the reading from external basis file will be marked by the lines

WARNING **** MYBASIS **** SEARCHING FOR REQUESTED BASIS SET IN FILE BASISSETS.DAT

and

Loading basis set from BASISSETS.DAT: MYBASIS
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2.3 Computational parameters, hamiltonian,
SCF control

Default values are set for all computational parameters. Default choices may be modified
through keywords. Default choices:

default keyword to modify page

hamiltonian: RHF UHF (SPIN) 115
tolerances for coulomb and exchange sums : 6 6 6 6 12 TOLINTEG 114
Pole order for multipolar expansion: 4 POLEORDR 106
Max number of SCF cycles: 50 MAXCYCLE 103
Convergence on total energy: 10−6 TOLDEE 114

For periodic systems, 1D, 2D, 3D, the only mandatory input information is the shrinking
factor, IS, to generate a commensurate grid of k points in reciprocal space, according to Pack-
Monkhorst method [148]. The Hamiltonian matrix computed in direct space, Hg, is Fourier
transformed for each k value, and diagonalized, to obtain eigenvectors and eigenvalues:

Hk =
∑
g

Hge
igk

HkAk = SkAkEk

A second shrinking factor, ISP, defines the sampling of k points, ”Gilat net” [98, 97], used
for the calculation of the density matrix and the determination of Fermi energy in the case of
conductors (bands not fully occupied).
The two shrinking factors are entered after the keyword SHRINK (page 108).
In 3D crystals, the sampling points belong to a lattice (called the Pack-Monkhorst net), with
basis vectors:

b1/is1, b2/is2, b3/is3 is1=is2=is3=IS, unless otherwise stated

where b1, b2, b3 are the reciprocal lattice vectors, and is1, is2, is3 are integers ”shrinking
factors”.
In 2D crystals, IS3 is set equal to 1; in 1D crystals both IS2 and IS3 are set equal to 1.
Only points ki of the Pack-Monkhorst net belonging to the irreducible part of the Brillouin
Zone (IBZ) are considered, with associated a geometrical weight, wi. The choice of the recip-
rocal space integration parameters to compute the Fermi energy is a delicate step for metals.
See Section 17.7, page 355.
Two parameters control the accuracy of reciprocal space integration for Fermi energy calcula-
tion and density matrix reconstruction:

IS shrinking factor of reciprocal lattice vectors. The value of IS determines the number of
k points at which the Fock/KS matrix is diagonalized.

In high symmetry systems, it is convenient to assign IS magic values such that all low
multiplicity (high symmetry) points belong to the Monkhorst lattice. Although this
choice does not correspond to maximum efficiency, it gives a safer estimate of the integral.

The k-points net is automatically made anisotropic for 1D and 2D systems.
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The figure presents the reciprocal lattice cell of 2D graphite (rhombus), the first
Brillouin zone (hexagon), the irreducible part of Brillouin zone (in grey), and the

coordinates of the ki points according to a Pack-Monkhorst sampling, with shrinking
factor 3 and 6.

ISP shrinking factor of reciprocal lattice vectors in the Gilat net (see [175], Chapter II.6).
ISP is used in the calculation of the Fermi energy and density matrix. Its value can be
equal to IS for insulating systems and equal to 2*IS for conducting systems.

The value assigned to ISP is irrelevant for non-conductors. However, a non-conductor
may give rise to a conducting structure at the initial stages of the SCF cycle (very often
with DFT hamiltonians), owing, for instance, to a very unbalanced initial guess of the
density matrix. The ISP parameter must therefore be defined in all cases.
Note. The value used in the calculation is ISP=IS*NINT(MAX(ISP,IS)/IS)

In the following table the number of sampling points in the IBZ and in BZ is given for a
fcc lattice (space group 225, 48 symmetry operators) and hcp lattice (space group 194, 24
symmetry operators). The CRYSTAL code allows 413 k points in the Pack-Monkhorst net,
and 2920 in the Gilat net.

IS points in IBZ points in IBZ points BZ
fcc hcp

6 16 28 112
8 29 50 260
12 72 133 868
16 145 270 2052
18 195 370 2920
24 413 793 6916
32 897 1734 16388
36 1240 2413 23332
48 2769 5425 55300

1. When an anisotropic net is user defined (IS=0), the ISP input value is taken as ISP1
(shrinking factor of Gilat net along first reciprocal lattice) and ISP2 and ISP3 are set to:
ISP2=(ISP*IS2)/IS1,
ISP3=(ISP*IS3)/IS1.

2. User defined anisotropic net is not compatible with SABF (Symmetry Adapted Bloch
Functions). See NOSYMADA, page 106.

Some tools for accelerating convergence are given through the keywords LEVSHIFT (page
102 and tests 29, 30, 31, 32, 38), FMIXING (page 95), SMEAR (page 110), BROYDEN
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(page 85) and ANDERSON (page 83).

At each SCF cycle the total atomic charges, following a Mulliken population analysis scheme,
and the total energy are printed.

The default value of the parameters to control the exit from the SCF cycle (∆E < 10−6

hartree, maximum number of SCF cycles: 50) may be modified entering the keywords:

TOLDEE (tolerance on change in total energy) page 114;
TOLDEP (tolerance on SQM in density matrix elements) page ??;
MAXCYCLE (maximum number of cycles) page 103.

Spin-polarized system

By default the orbital occupancies are controlled according to the ’Aufbau’ principle.
To obtain a spin polarized solution an open shell Hamiltonian must be defined (block3, UHF
or DFT/SPIN). A spin-polarized solution may then be computed after definition of the (α-
β) electron occupancy. This can be performed by the keywords SPINLOCK (page 113) and
BETALOCK (page 84).
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Chapter 3

Wave-function Calculation -
Advanced Input Route

3.1 Geometry editing

The following keywords allow editing of the crystal structure, printing of extended informa-
tion, generation of input data for visualization programs. Processing of the input block 1 only
(geometry input) is allowed by the keyword TEST[GEOM].

Each keyword operates on the geometry active when the keyword is entered. For instance, when
a 2D structure is generated from a 3D one through the keyword SLABCUT, all subsequent
geometry editing operates on the 2D structure. When a dimer is extracted from a molecular
crystal through the keyword MOLECULE, all subsequent editing refers to a system without
translational symmetry.

The keywords can be entered in any order: particular attention should be paid to the action of
the keywords KEEPSYMM 3.1 and BREAKSYM 3.1, that allow maintaining or breaking
the symmetry while editing the structure.

These keywords behave as a switch, and require no further data. Under control of the
BREAKSYM keyword (the default), subsequent modifications of the geometry are allowed
to alter (reduce: the number of symmetry operators cannot be increased) the point-group sym-
metry. The new group is a subgroup of the original group and is automatically obtained by
CRYSTAL. However if a KEEPSYMM keyword is presented, the program will endeavor
to maintain the number of symmetry operators, by requiring that atoms which are symmetry
related remain so after a geometry editing (keywords: ATOMSUBS, ATOMINSE, ATOM-
DISP, ATOMREMO).

The space group of the system may be modified after editing. For 3D systems, the file FIND-
SYM.DAT may be written (keyword FINDSYM). This file is input to the program findsym
(http://physics.byu.edu/ stokesh/isotropy.html), that finds the space-group symmetry of a
crystal, given the coordinates of the atoms.

Geometry keywords

Symmetry information

ATOMSYMM printing of point symmetry at the atomic positions 40 –
MAKESAED printing of symmetry allowed elastic distortions (SAED) 51 –
PRSYMDIR printing of displacement directions allowed by symmetry. 62 –
SYMMDIR printing of symmetry allowed geom opt directions 70 –
SYMMOPS printing of point symmetry operators 70 –
TENSOR print tensor of physical properties up to order 4 70 I
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Symmetry information and control

BREAKELAS symmetry breaking according to a general distortion 41 I
BREAKSYM allow symmetry reduction following geometry modifications 41 –
KEEPSYMM maintain symmetry following geometry modifications 51 –
MODISYMM removal of selected symmetry operators 52 I
PURIFY cleans atomic positions so that they are fully consistent with the

group
62 –

SYMMREMO removal of all symmetry operators 70 –
TRASREMO removal of symmetry operators with translational components 71 –

Modifications without reduction of symmetry

ATOMORDE reordering of atoms in molecular crystals 38 –
NOSHIFT no shift of the origin to minimize the number of symmops with

translational components before generating supercell
59 –

ORIGIN shift of the origin to minimize the number of symmetry operators
with translational components

59 –

PRIMITIV crystallographic cell forced to be the primitive cell 61 –
ROTCRY rotation of the crystal with respect to the reference system cell 63 I

Atoms and cell manipulation - possible symmetry reduction (BREAKSYMM)

ATOMDISP displacement of atoms 38 I
ATOMINSE addition of atoms 38 I
ATOMREMO removal of atoms 39 I
ATOMROT rotation of groups of atoms 39 I
ATOMSUBS substitution of atoms 40 I
ELASTIC distortion of the lattice 44 I
POINTCHG point charges input 61 I
SCELCONF generation of supercell for configuration counting 66 I
SCELPHONO generation of supercell for phonon dispersion 66 I
SUPERCEL generation of supercell - input refers to primitive cell 67 I
SUPERCON generation of supercell - input refers to conventional cell 67 I
USESAED given symmetry allowed elastic distortions, reads δ 71 I

From crystals to slabs (3D→2D)

SLABINFO definition of a new cell, with xy ‖ to a given plane 65 I
SLABCUT generation of a slab parallel to a given plane (3D→2D) 64 I

From slabs to nanotubes (2D→1D)

NANOTUBE building a nanotube from a slab 56 I
SWCNT building a nanotube from an hexagonal slab 69 I

From periodic structures to clusters

CLUSTER cutting of a cluster from a periodic structure (3D→0D) 42 I
CLUSTSIZE maximum number of atoms in a cluster 43 I
FULLE building a fullerene from an hexagonal slab (2D→0D) 49 I
HYDROSUB border atoms substituted with hydrogens (0D→0D) 51 I

Molecular crystals
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MOLECULE extraction of a set of molecules from a molecular crystal
(3D→0D)

53 I

MOLEXP variation of lattice parameters at constant symmetry and molec-
ular geometry (3D→3D)

53 I

MOLSPLIT periodic structure of non interacting molecules (3D→3D) 54 –
RAYCOV modification of atomic covalent radii 62 I

BSSE correction

MOLEBSSE counterpoise method for molecules (molecular crystals only)
(3D→0D)

52 I

ATOMBSSE counterpoise method for atoms (3D→0D) 38 I

Systematic analysis of crystal planes

PLANES Prints the possible crystal planes 61 I

Gibbs-Wulff construction

WULFF Building the Gibbs-Wulff polihedron 71 I

From crystals to nanorods (3D→1D)

NANORODS Building a nanorod from a crystal 55 I

From crystals to nanocrystals (3D→0D)

NANOCRYSTAL building a nanocrystal from a crystal 54 I

Auxiliary and control keywords

ANGSTROM sets input units to Ångstrom 37 –
BOHR sets input units to bohr 40 –
BOHRANGS input bohr to Å conversion factor (0.5291772083 default value) 40 I
BOHRCR98 bohr to Å conversion factor is set to 0.529177 (CRY98 value) –
END/ENDG terminate processing of geometry input –
FRACTION sets input units to fractional 49 –
LATVEC maximum number of classified lattice vectors 51 I
MAXNEIGHB maximum number of equidistant neighbours from an atom 51 I
NEIGHBOR number of neighbours in geometry analysis 59 I
PRINTCHG printing of point charges coordinates in geometry output 61
PRINTOUT setting of printing options by keywords 62 –
SETINF setting of inf array options 64 I
SETPRINT setting of printing options 64 I
STOP execution stops immediately 65 –
TESTGEOM stop after checking the geometry input 71 –

Output of data on external units

COORPRT coordinates of all the atoms in the cell 44 –
EXTPRT write file in CRYSTAL geometry input format 46 –
FINDSYM write file in FINDSYM input format 49 –
STRUCPRT cell parameters and coordinates of all the atoms in the cell 65 –

External electric field - modified Hamiltonian

FIELD electric field applied along a periodic direction 46 I
FIELDCON electric field applied along a non periodic direction 48 I

Geometry optimization - see index for keywords full list
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OPTGEOM Geometry optimization input block - closed by END 156 I

Type of optimization (default: atom coordinates)

FULLOPTG full geometry optimization –
CELLONLY cell parameters optimization –
INTREDUN optimization in redundant internal coordinates 166 –
ITATOCEL iterative optimization (atom/cell) –
CVOLOPT full geometry optimization at constant volume 171 –

Initial Hessian
HESSIDEN initial guess for the Hessian - identity matrix –
HESSMOD1 initial guess for the Hessian - model 1 (default) –
HESSMOD2 initial guess for the Hessian - model 2 –
HESSNUM initial guess for the Hessian - numerical estimate –

Convergence criteria modification

TOLDEG RMS of the gradient [0.0003] I
TOLDEX RMS of the displacement [0.0012] I
TOLDEE energy difference between two steps [10−7] I
MAXCYCLE max number of optimization steps I

Optimization control

FRAGMENT partial geometry optimization 174 I
RESTART data from previous run –
FINALRUN Wf single point with optimized geometry I

Gradient calculation control
NUMGRATO numerical atoms first derivatives 165 –
NUMGRCEL numerical cell first derivatives 165 –
NUMGRALL numerical atoms and cell first derivatives 165 –

External stress
EXTPRESS apply external hydrostatic pressure 176 I

Printing options

PRINTFORCES atomic gradients –
PRINTHESS Hessian –
PRINTOPT optimization procedure –
PRINT verbose printing –

Vibrational Frequencies - see index for keywords full list

FREQCALC Harmonic Γ-frequencies calculation input - closed by END 181 I

Normal modes analysis

ANALYSIS 183 –
COMBMODE TO combination modes and overtones 184 I
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MODES printing eigenvectors [default] 186 –
SCANMODE scan geometry along selected modes 194 I

LO/TO splitting

DIELISO isotropic dielectric tensor 184 I
DIELTENS anisotropic dielectric tensor 184 I

Vibrational spectrum simulation

INTENS intensities calculation active 189 –
INTCPHF IR (and Raman) intensities via CPHF 191 I
INTLOC IR intensities through Wannier functions 190 –
INTPOL IR intensities through Berry phase [default] 189 –
INTRAMAN Raman intensities calculation 191 I
IRSPEC IR spectrum production 197 I
RAMSPEC Raman spectrum production 199 I

Calculation control
ECKART Hessian freed by translations and rotations [default] 184 I
FRAGMENT partial frequency calculation 185 I
ISOTOPES isotopic substitution 185 I
NORMBORN normalized Born tensor 186 –
NUMDERIV technique to compute numerical 2nd derivatives 187 I
PRINT verbose printing –
RESTART data from previous run –
STEPSIZE set size of cartesian displacements [0.003 Å] 187 I
TEST[FREQ] frequency test run –
USESYMM full-symmetry exploitation at each point [default] –

Phonon dispersion

DISPERSION frequencies calculated at ~k 6= Γ points 201 –

Thermodynamics

ADP anisotropic displacement parameters 187 I
PRESSURE set pressure range 187 I
TEMPERAT set temperature range I

ANHARM Anharmonic frequencies calculation input block - closed by END 206 I
ISOTOPES isotopic substitution 207 I
KEEPSYMM displace all symmetry equivalent atoms ?? –
NOGUESS 207 –
POINTS26 X-H distance varied 26 times around the equilibrium 207 –
PRINT verbose printing –
TEST[ANHA] test run –

Configurations counting and characterization

CONFCNT configurations counting and cluster expansion 232 I
CONFRAND symmetry-adapted uniform at random Monte Carlo 234 I
RUNCONFS single-point calculations and geometry optimizations 235 I

CPHF - Coupled Perturbed Hartree-Fock 225

ELASTCON - Second order elastic constants 243

EOS - Equation of state 237

36



Geometry input optional keywords

ANGLES

This option prints the angle the ÂXB, where X is one of the irreducible (that is, non symmetry
equivalent) atoms of the unit cell, and A and B belong to its m-th and n-th stars of neighbors.

rec variable meaning
• ∗ NATIR number of X atoms to be considered; they are the first NATIR in the list of

irreducible atoms (flag ”T” printed) generated by CRYSTAL

∗ NSHEL number of stars of neighbors of X to be considered; all the angles ÂXB,
where A and B belong to the first NSHEL neighbors of X, are printed out

Though the keyword ANGLES can be entered in geometry input, full input deck must be
supplied (block 1-2-3), in order to obtain information on bond angles, when neighbors analysis
is printed.
Example. Bulk Silicon. There is 1 irreducible atom, and the first star of neighbors contain 4
atoms: (from CRYSTAL output):

COORDINATES OF THE EQUIVALENT ATOMS (FRACTIONAL UNITS)

N ATOM ATOM Z X Y Z

IRR EQUIV

1 1 1 14 SI 1.250000E-01 1.250000E-01 1.250000E-01

2 1 2 14 SI -1.250000E-01 -1.250000E-01 - 1.250000E-01

- - - - - - - - - - - - - - - - - - - - - - -

N NUMBER OF NEIGHBORS AT DISTANCE R

STAR ATOM N R/ANG R/AU NEIGHBORS (ATOM LABELS AND CELL INDICES)

1 1 SI 4 2.3469 4.4351 2 SI 0 0 0 2 SI 1 0 0 2 SI 0 1 0

2 SI 0 0 1

The number of angles having the irreducible Silicon as vertex is: (4)*(4-1)/2 = 6

ANGLES (DEGREES) ARE INDICATED AS A-X-B(I),I=1,L

at A cell at X at B cell angle at B cell angle at B cell angle

AXB AXB AXB

2 SI( 0 0 0) 1 SI 2 SI( 1 0 0) 109.47 2 SI( 0 1 0) 109.47 2 SI( 0 0 1) 109.47

2 SI( 1 0 0) 1 SI 2 SI( 0 1 0) 109.47 2 SI( 0 0 1) 109.47

2 SI( 0 1 0) 1 SI 2 SI( 0 0 1) 109.47

If it is required to consider 6 stars of neighbors to compute all the angles having the irreducible
Silicon as vertex, the number of angles computed will be:
(4+12+12+6+12+24)*(4+12+12+6+12+24-1)/2 = 2415

ANGSTROM - unit of measure

The unit of length in geometry editing is set to Ångstrom, (default value).

ANHARM - Anharmonic calculation of frequencies of X-H (X-D) bond
stretching

See Chapter 7, page 206.
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ATOMBSSE - counterpoise for closed shell atoms and ions

rec variable meaning
• ∗ IAT label of the atom in the reference cell

NSTAR maximum number of stars of neighbors included in the calculation.
RMAX maximum distance explored searching the neighbors of the atom.

A cluster is defined including the selected atom and the basis functions belonging to the NSTAR
sets of neighbors, when their distance R from the central atom is smaller than RMAX. The
atomic wave function is not computed by the atomic package, but by the standard CRYSTAL
route for 0D, 1 atom system. UHF and SPINLOCK must be used to define a reasonable
orbital occupancy. It is suggested to compute the atomic wave function using a program
properly handling the electronic configuration of open shell atoms.
Use keyword CLUSTER (43) to extend the number of atoms in the cluster if requested.
Warning. The system is 0D. No reciprocal lattice information is required in the scf input
(Section 2.3, page 29).

ATOMDISP

rec variable meaning
• ∗ NDISP number of atoms to be displaced

insert NDISP records II
• ∗ LB label of the atom to be moved

DX,DY,DZ increments of the coordinates in the primitive cell [Å].

Selected atoms are displaced in the primitive cell. The point symmetry of the system may be
altered (default value BREAKSYM, page 41). To displace all the atoms symmetry related,
KEEPSYMM must be inserted before ATOMDISP.
Increments are in Ångstrom, unless otherwise requested (keyword BOHR, FRACTION,
page 37). See tests 17, 20, 37.

ATOMINSE

rec variable meaning
• ∗ NINS number of atoms to be added

insert NINS records II
• ∗ NA conventional atomic number

X,Y,Z coordinates [Å] of the inserted atom. Coordinates refer to the primitive cell.

New atoms are added to the primitive cell. Coordinates are in Ångstrom, unless otherwise
requested (keyword BOHR, FRACTION, page 37). Remember that the original symmetry
of the system is maintained, applying the symmetry operators to the added atoms if the
keyword KEEPSYMM (page 41) was previously entered. The default is BREAKSYM
(page 41). Attention should be paid to the neutrality of the cell (see CHARGED, page 72).
See tests 16, 35, 36.

ATOMORDE

After processing the standard geometry input, the symmetry equivalent atoms in the reference
cell are grouped. They may be reordered, following a chemical bond criterion. This simplifies
the interpretation of the output when the results of bulk molecular crystals are compared with
those of the isolated molecule. See option MOLECULE (page 53) and MOLSPLIT (page
54). No input data are required.
For molecular crystals only.
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ATOMREMO

rec variable meaning
• ∗ NL number of atoms to remove
• ∗ LB(L),L=1,NL label of the atoms to remove

Selected atoms, and related basis set, are removed from the primitive cell (see test 16). A
vacancy is created in the lattice. The symmetry can be maintained (KEEPSYMM), by
removing all the atoms symmetry-related to the selected one, or reduced (BREAKSYM,
default). Attention should be paid to the neutrality of the cell (see CHARGED, page 72).
NB. The keyword GHOSTS (basis set input, page 74) allows removal of selected atoms,
leaving the related basis set.

ATOMROT

rec variable value meaning
• ∗ NA 0 all the atoms of the cell are rotated and/or translated

>0 only NA selected atoms are rotated and/or translated.
<0 the atom with label |NA| belongs to the molecule to be rotated. The

program selects all the atoms of the molecule on the base of the sum of
their atomic radii (Table on page 63).

if NA > 0, insert NA data II
• ∗ LB(I),I=1,NA label of the atoms to be rotated and/or translated.
• ∗ ITR >0 translation performed. The selected NA atoms are translated by -r,

where r is the position of the ITR-th atom. ITR is at the origin after
the translation.

≤ 0 a general translation is performed. See below.
=999 no translation.

IRO > 0 a rotation around a given axis is performed. See below.
< 0 a general rotation is performed. See below.
=999 no rotation.

if ITR<0 insert II
• ∗ X,Y,Z Cartesian components of the translation vector [Å]

if ITR=0 insert II
• ∗ N1,N2 label of the atoms defining the axis.

DR translation along the axis defined by the atoms N1 and N2, in the di-
rection N1 → N2 [Å].

if IRO<0 insert II
• ∗ A,B,G Euler rotation angles (degree).

IPAR defines the origin of the Cartesian system for the rotation
0 the origin is the barycentre of the NAT atoms
>0 the origin is the atom of label IPAR

if IRO>0 insert II
• ∗ N1,N2 label of the atoms that define the axis for the rotation

ALPHA 6= 0. rotation angle around the N1–N2 axis (degrees)
0. the selected atoms are rotated anti-clockwise in order to orientate the

N1–N2 axis parallel to the z axis.

This option allows to rotate and/or translate the specified atoms. When the rotation of a
molecule is required (NA < 0), the value of the atomic radii must be checked, in order to
obtain a correct definition of the molecule. It is useful to study the conformation of a molecule
in a zeolite cavity, or the interaction of a molecule (methane) with a surface (MgO).
The translation of the selected group of atoms can be defined in three different ways:

1. Cartesian components of the translation vector (ITR < 0);

2. modulus of the translation vector along an axis defined by two atoms (ITR = 0);
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3. sequence number of the atom to be translated to the origin. All the selected atoms are
subjected to the same translation (ITR > 0).

The rotation can be performed in three different ways:

1. by defining the Euler rotation angles α, β, γ and the origin of the rotating system (IRO
< 0). The axes of the rotating system are parallel to the axes of the Cartesian reference
system. (The rotation is given by: RαzRβxRγz, where R are the rotation matrices).

2. by defining the rotation angle α around an axis defined by two atoms A and B. The
origin is at A, the positive direction A→B.

3. by defining a z’ axis (identified by two atoms A and B). The selected atoms are rotated,
in such a way that the A–B z’ axis becomes parallel to the z Cartesian axis. The origin
is at A and the positive rotation anti clockwise (IRO>0, α=0).

The selected atoms are rotated according to the defined rules, the cell orientation and the
cartesian reference frame are not modified. The symmetry of the system is checked after the
rotation, as the new geometry may have a different symmetry.
See tests 15, rotation of the NH3 molecule in a zeolite cavity, and 16, rotation of the H2O
molecule in the zeolite cavity.

ATOMSUBS

rec variable meaning
• ∗ NSOST number of atoms to be substituted

insert NSOST records II
• ∗ LB label of the atom to substitute

NA(LB) conventional atomic number of the new atom

Selected atoms are substituted in the primitive cell (see test 17, 34, 37). The symmetry can be
maintained (KEEPSYMM), by substituting all the atoms symmetry-related to the selected
one, or reduced (BREAKSYM, default). Attention should be paid to the neutrality of the
cell: a non-neutral cell will cause an error message, unless allowed by entering the keyword
CHARGED, page 72.

ATOMSYMM

The point group associated with each atomic position and the set of symmetry related atoms
are printed. No input data are required. This option is useful to find the internal coordinates
to be relaxed when the unit cell is deformed (see ELASTIC, page 44).

BOHR

The keyword BOHR sets the unit of distance to bohr. When the unit of measure is modified,
the new convention is active for all subsequent geometry editing.
The conversion factor Ångstrom/bohr is 0.5291772083 (CODATA 1998). This value can be
modified by entering the keyword BOHRANGS and the desired value in the record following.
The keyword BOHRCR98 sets the conversion factor to 0.529177, as in the program CRYS-
TAL98.
CRYSTAL88 default value was 0.529167).

BOHRANGS

rec variable meaning

• ∗ BOHR conversion factor Ångstrom/bohr

The conversion factor Ångstrom/bohr can be user-defined.
In CRYSTAL88 the default value was 0.529167.
In CRYSTAL98 the default value was 0.529177.
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BOHRCR98

The conversion factor Ångstrom/bohr is set to 0.529177, as in CRYSTAL98. No input data
required.

BREAKSYM

Under control of the BREAKSYM keyword (the default), subsequent modifications of the
geometry are allowed to alter (reduce: the number of symmetry operators cannot be increased)
the point-group symmetry. The new group is a subgroup of the original group and is automat-
ically obtained by CRYSTAL.
The symmetry may be broken by attributing different spin (ATOMSPIN, block34, page 83)
to atoms symmetry related by geometry.
Example: When a CO molecule is vertically adsorbed on a (001) 3-layer MgO slab, (D4h

symmetry), the symmetry is reduced to C4v, if the BREAKSYM keyword is active. The
symmetry operators related to the σh plane are removed. However, if KEEPSYMM is
active, then additional atoms will be added to the underside of the slab so as to maintain the
σh plane (see page 38, keyword ATOMINSE).

BREAKELAS (for 3D systems only)

This keyword breaks the symmetry of 3D sysems according to a general distortion (3x3 adi-
mensional matrix, not necessarily symmetric):

rec variable value meaning
• ∗ D11 D12 D13 first row of the matrix.
• ∗ D21 D22 D23 second row of the matrix.
• ∗ D31 D32 D33 third row of the matrix.

BREAKELAS can be used when the symmetry must be reduced to apply an external stress
not compatible with the present symmetry.

BREAKELAS reduces the symmetry according to the distortion defined in input, but does
not perform a distortion of the lattice.

Another possibility is when you compute elastic constants, and you want to fix a reference
geometry with FIXINDEX. If your reference geometry has a symmetry higher than the dis-
torted one, then you had to break the symmetry by applying e.g. a tiny elastic distortion
with ELASTIC. By using BREAKELAS you can reduce the symetry without distortion of the
lattice.

Example - Geometry optimization of MgO bulk, cubic, with an applied uniaxial stress modi-
fying the symmetry of the cell.

TEST11 - MGO BULK

CRYSTAL

0 0 0

225

4.21

2

12 0. 0. 0.

8 0.5 0.5 0.5

BREAKELAS the number of symmops is reduced, from 48 to 16

0.001 0. 0. the cell has a tetragonal symmetry now

0. 0. 0.

0. 0. 0.

OPTGEOM

FULLOPTG

0.001 0. 0.

0. 0. 0.
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0. 0. 0.

ENDOPT

CLUSTER - a cluster (0D) from a periodic system

The CLUSTER option allows one to cut a finite molecular cluster of atoms from a periodic
lattice. The size of the cluster (which is centred on a specified ’seed point’ A) can be controlled
either by including all atoms within a sphere of a given radius centred on A, or by specifying
a maximum number of symmetry-related stars of atoms to be included.
The cluster includes the atoms B (belonging to different cells of the direct lattice) satisfying
the following criteria:

1. those which belong to one of the first N (input data) stars of neighbours of the seed point
of the cluster.

and

2. those at a distance RAB from the seed point which is smaller then RMAX (input datum).

The resulting cluster may not reproduce exactly the desired arrangement of atoms, particularly
in crystals with complex structures such as zeolites, and so it is possible to specify border
modifications to be made after definition of the core cluster.
Specification of the core cluster:

rec variable value meaning

• ∗ X, Y, Z coordinates of the centre of the cluster [Å] (the seed point)
NST maximum number of stars of neighbours explored in defining the core

cluster
RMAX radius of a sphere centred at X,Y,Z containing the atoms of the core

cluster
• ∗ NNA 6= 0 print nearest neighbour analysis of cluster atoms (according to a radius

criterion)
NCN 0 testing of coordination number during hydrogen saturation carried out

only for Si (coordination number 4), Al (4) and O(2)
N N user-defined coordination numbers are to be defined

if NNA 6= 0 insert 1 record II
• ∗ RNNA radius of sphere in which to search for neighbours of a given atom in

order to print the nearest neighbour analysis
if NCN 6= 0 insert NCN records II

• ∗ L conventional atomic number of atom
MCONN(L) coordination number of the atom with conventional atomic number L.

MCONN=0, coordination not tested

Border modification:
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rec variable value meaning
• ∗ NMO number of border atoms to be modified

if NMO > 0 insert NMO records II
• ∗ IPAD label of the atom to be modified (cluster sequence)

NVIC number of stars of neighbours of atom IPAD to be added to the cluster
IPAR = 0 no hydrogen saturation

6= 0 cluster border saturated with hydrogen atoms
BOND bond length Hydrogen-IPAD atom (direction unchanged).

if NMO < 0 insert II
• ∗ IMIN label of the first atom to be saturated (cluster sequence)

IMAX label of the last atom to be saturated (cluster sequence)
NVIC number of stars of neighbours of each atom to be added to the cluster
IPAR = 0 no hydrogen saturation

6= 0 cluster border saturated with hydrogen atoms
BOND H-cluster atom bond length (direction unchanged).

The two kinds of possible modification of the core cluster are (a) addition of further stars of
neighbours to specified border atoms, and (b) saturation of the border atoms with hydrogen.
This latter option can be essential in minimizing border electric field effects in calculations for
covalently-bonded systems.
(Substitution of atoms with hydrogen is obtained by HYDROSUB).
The hydrogen saturation procedure is carried out in the following way. First, a coordination
number for each atom is assumed (by default 4 for Si, 4 for Al and 2 for O, but these may
be modified in the input deck for any atomic number). The actual number of neighbours of
each specified border atom is then determined (according to a covalent radius criterion) and
compared with the assumed connectivity. If these two numbers differ, additional neighbours are
added. If these atoms are not neighbours of any other existing cluster atoms, they are converted
to hydrogen, otherwise further atoms are added until the connectivity allows complete hydrogen
saturation whilst maintaining correct coordination numbers.
The label of the IPAD atoms refers to the generated cluster, not to the original unit cell. The
preparation of the input thus requires two runs:

1. run using the CLUSTER option with NMO=0, in order to generate the sequence number
of the atoms in the core cluster. The keyword TESTGEOM should be inserted in the
geometry input block. Setting NNA 6= 0 in the input will print a coordination analysis of
all core cluster atoms, including all neighbours within a distance RNNA (which should
be set slightly greater than the maximum nearest neighbour bond length). This can be
useful in deciding what border modifications are necessary.

2. run using the CLUSTER option with NMO 6= 0, to perform desired border modifica-
tions.

Note that the standard CRYSTAL geometry editing options may also be used to modify the
cluster (for example by adding or deleting atoms) placing these keywords after the specification
of the CLUSTER input.
Use keyword CLUSTER (43) to extend the number of atoms in the cluster if requested.
Warning. The system is 0D. No reciprocal lattice information is required in the scf input
(Section 2.3, page 29). See test 16.

CLUSTSIZE - maximum size of a cluster

rec variable meaning
• ∗ NATOCLU maximum number of atoms allowed in creating a cluster

This keyword sets a new limit to the maximum number of atoms allowed in a cluster created
by keywords CLUSTER, ATOMBSSE and MOLEBSSE. Default value is equal to the
number of atoms in the unit cell.

43



CONFCNT - Mapping of CRYSTAL calculations to model Hamilto-
nians

See Chapter 10.1, page 232.

CIFPRT

This keyword, to be inserted in the geometry input block, generates a file GEOMETRY.CIF
where the structure of a 3D system is written in .cif format. Symmetry is not taken into
account.

CIFPRTSYM

This keyword, to be inserted in the geometry input block, generates a file GEOMETRY.CIF
where the structure of a 3D system is written in .cif format. Symmetry is taken into account.

COORPRT

Geometry information is printed: cell parameters, fractional coordinates of all atoms in the
reference cell, symmetry operators.
A formatted file, ”fort.33” , is written. See Appendix D, page 398. No input data are re-
quired. The file ”fort.33” has the right format for the program MOLDEN [199] which can be
downloaded from:
www.cmbi.ru.nl/molden/molden.html

CPHF - performs the Coupled Perturbed HF/KS calculation up to
the second order

See Chapter 9.2, page 225.

ELASTCON - Calculation of elastic constants

See Chapter 12, page 243.

ELASTIC

An elastic deformation of the lattice may be defined in terms of the Z or ε strain tensors defined
in section 17.9, page 358.

rec variable value meaning
• ∗ IDEF ±1 deformation through equation 17.49, Z matrix.

±2 deformation through equation 17.48: ε matrix.
> 0 volume conserving deformation (equation 17.50).
< 0 not volume conserving (equation 17.49 or 17.48).

• ∗ D11 D12 D13 first row of the matrix.
• ∗ D21 D22 D23 second row of the matrix.
• ∗ D31 D32 D33 third row of the matrix.

The elastic constant is V −1 ∂2E
∂ε2i
|εi=0, where V is the volume of the primitive unit cell.

The symmetry of the system is defined by the symmetry operators in the new crystallographic
cell. The keyword MAKESAED gives information on symmetry allowed elastic distortions.
The calculation of the elastic constants with CRYSTAL requires the following sequence of
steps:

1. select the εij matrix elements to be changed ( for example, ε4 ≡ ε23 + ε32), and set the
others εj to zero;
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2. perform calculations with different values of the selected matrix element(s) εi: 0.02, 0.01,
0.001, -0.001, -0.01, -0.02, for example, and for each value compute the total energy E;

3. perform a polynomial fit of E as a function of εi.

ε is adimensional, Z in Å(default) or in bohr (page 37). The suggested value for IDEF is
-2 (deformation through equation 17.48, not volume conserving). The examples refer to this
setting.

Example
Geometry input deck to compute one of the energy points used for the evaluation of the C44

(page 361) elastic constants of Li2O [62].

CRYSTAL
0 0 0 3D code
225 3D space group number
4.5733 lattice parameter (Å)
2 2 non equivalent atoms in the primitive cell
8 0.0 0.0 0.0 Z=8, Oxygen; x, y, z
3 .25 .25 .25 Z=3, Lithium; x, y, z
ATOMSYMM printing of the point group at the atomic positions
ELASTIC
-2 deformation not volume conserving through equation 17.48
0. 0.03 0.03 ε matrix input by rows
0.03 0. 0.03
0.03 0.03 0.
ATOMSYMM printing of the point group at the atomic positions after the defor-

mation
. . . . . . .

A rhombohedral deformation is obtained, through the ε matrix. The printout gives information

on the crystallographic and the primitive cell, before and after the deformation:

LATTICE PARAMETERS (ANGSTROMS AND DEGREES) OF

(1) ORIGINAL PRIMITIVE CELL

(2) ORIGINAL CRYSTALLOGRAPHIC CELL

(3) DEFORMED PRIMITIVE CELL

(4) DEFORMED CRYSTALLOGRAPHIC CELL

A B C ALPHA BETA GAMMA VOLUME

(1) 3.233811 3.233811 3.233811 60.000000 60.000000 60.000000 23.912726

(2) 4.573300 4.573300 4.573300 90.000000 90.000000 90.000000 95.650903

(3) 3.333650 3.333650 3.333650 56.130247 56.130247 56.130247 23.849453

(4) 4.577414 4.577414 4.577414 86.514808 86.514808 86.514808 95.397811

After the deformation of the lattice, the point symmetry of the Li atoms is C3v, where the C3

axis is along the (x,x,x) direction. The Li atoms can be shifted along the principal diagonal,

direction (x,x,x) of the primitive cell without altering the point symmetry, as shown by the

printing of the point group symmetry obtained by the keyword ATOMSYMM (page 40).

See test20 for complete input deck, including shift of the Li atoms.

See test38 (KCoF3).

END

Terminate processing of block 1, geometry definition, input. Execution continues. Subsequent

input records are processed, if required.

Processing of geometry input block stops when the first three characters of the string are

”END”. Any character can follow: ENDGEOM, ENDGINP, etc etc.
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EXTPRT

A formatted input deck with explicit structural/symmetry information is written in file

”fort.34”. If the keyword is entered many times, the data are overwritten. The last geom-

etry is recorded. The file may be used as crystal geometry input to CRYSTAL through the

EXTERNAL keyword.

For instance, to enter the final optimized geometry, or a geometry obtained by editing opera-

tions who modified the original space group or periodicity.

When geometry optimization is performed, the name of the file is ”optc(a)xxx”, being xxx the

number of the cycle, and it is automatically written at each cycle.

Please refer to the standard script for running CRYSTAL09 to handle input/output file names.

See Appendix D, page 393.

No input data are required.

FIELD - Electric field along a periodic direction

rec variable value meaning
• ∗ E0MAX electric field intensity E0 (in atomic units)
• ∗ DIRE(I),I=1,3 crystallographic (Miller) indices of the plane perpendicular to the elec-

tric field
• ∗ SMFACT supercell expansion factor
∗ IORTO 0 non-orthogonal supercell

1 orthogonal supercell
• ∗ MUL number of term in Fourier expansion for triangular electric potential
∗ ISYM +1 triangular potential is symmetric with respect to the z = 0 plane

−1 triangular potential is anti-symmetric with respect to the z = 0 plane

This option can be used with polymers, slabs and crystals and permits to apply an electric

field along a periodic direction of the system.

The effect of a periodic electric field ( ~E) is taken into account according to a perturbation

scheme. The Hamiltonian (Fock or Kohn-Sham) can be written as::

Ĥ = Ĥ0 + Ĥ1( ~E) (3.1)

where Ĥ0 is the unperturbed Hamiltonian and Ĥ1( ~E) the electric potential term.

During the SCF procedure crystalline orbitals are relaxed under the effect of the field, leading

to a perturbed wave function and charge density.

The applied electric field has a square-wave form, that corresponds to a triangular (”sawtooth”)

electric potential.

Due to the form of the potential, a single unit cell must contain both positive and negative

part of the square wave electric field. Then, in order to maintain translational invariance of the

system a new, expanded, unit cell is automatically created by adopting a supercell approach

(see keywords SUPERCEL/SUPERCON, page 67).

This procedure consists in two automatic steps: the re-orientation of the c lattice parameter

along the chosen field direction and the multiplication of this lattice vector according to the

supercell expansion factor (~C=SMFACT·~c, see fig. 3.1). By varying this parameter is possible

to control the period of the electric potential and therefore the length of the constant region

of the electric field.

Then, for computational reasons, an automatic rotation of the crystal in the cartesian reference
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Figure 3.1: Triangular electric potential (”sawtooth”) in a supercell with SMFACT = 4.

system is performed by aligning ~C (and therefore ~E) along the z cartesian direction (see

keyword ROTCRY, page 63). After these transformations the field is along the z direction,

and the perturbation Ĥ1( ~E) takes the form:

Ĥ±1 (Ez) = V (z) = −qE0 · f±(z) (3.2)

where the f+ (f−) function is expanded as a Fourier series and is chosen according to the

symmetry of the supercell in the direction of the applied field as follows:

f+(z) =
2C

π2

+∞∑
k=0

1

(2k + 1)2
cos

(
2π(2k + 1)z

C

)
(3.3)

f−(z) =
2C

π2

+∞∑
k=0

(−1)k

(2k + 1)2
sin

(
2π(2k + 1)z

C

)
(3.4)

1. In order to evaluate the dielectric constant of a material in the direction of the applied

field it is necessary to run a PROPERTIES calculation with the keyword DIEL (see page

272). In this way the perturbed wave function is used for the calculation of ε, following

a macroscopic average scheme, as described in references [91], [50].

2. The field is along the z axis for 3D-crystal calculations; it is along the x for 1D-polymer

and 2D-slab calculations.

3. In calculations of the dielectric constant, more accurate results can be achieved by in-

creasing the SMFACT value. This will lead to systems characterized by a high number

of atoms with large computational costs. The option IORTO = 0 allows to consider

non-orthogonal supercells, characterized by the same dielectric properties of orthogonal

cells, but with a lower number of atoms.

4. In 3D-crystals, the electric potential takes a triangular form to maintain translational

symmetry and electric neutrality of cell. The symmetry of triangular potential has two

options:

a) ISYM=+1, triangular potential is symmetric with respect to the center of the su-

percell, along the z axis. Use this option if there is a symmetry plane orthogonal to

the z axis.

b) ISYM=−1, triangular potential is anti-symmetric. This option can be used when

the supercell does not have a symmetry plane orthogonal to z axis.

5. MUL, the number of terms in the Fourier expansion, can take values between 1 and 60.

MUL=40 is sufficient to adequately reproduce the triangular shape of the potential.
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Figure 3.2: Left: symmetric triangular electric potential (ISIM = 1). Right anti-symmetric
triangular electric potential (ISYM=-1).

6. High E0MAX values are inconsistent with perturbation method, the choice of E0MAX

depends on the dielectric susceptibility of the system and on the gap width. For small gap

cases, use of eigenvalue level shifting technique is recommended (keyword LEVSHIFT,

page 102).

7. When an external field is applied, the system can become conducting during the SCF

procedure. In order to avoid convergence problems, it is advisable to set the shrinking

factor of the Gilat net ISP equal to 2× IS, where IS is the Monkhorst net shrinking factor

(see SCF input, page 108).

Conversion factors for electric field:

1 AU = 1.71527E+07 ESU·CM−2 = 5.72152E+01 C ·M−2 = 5.14226E+11 V·M−1

FIELDCON - Electric field along non-periodic direction

rec variable meaning
• ∗ E(I),I=N,3 field components along x,y,z directions

For a brief theoretical introduction see keyword FIELD.

This option can be used with molecules, polymers, slabs and permits to apply an electric field

along a non-periodic direction of the system.

1. For molecules (N=1) three components of the field must be supplied, as the field can be

directed along any direction.

2. For polymers (N=2) two components (y,z) of the field must be defined; the x component

of the field must be zero because the default orientation of polymers is along the x axis.

3. For slabs (N=3) just one component (z) of the field have to be defined; the x,y components

must be zero because the default orientation of slabs in is in x-y plan.

Conversion factors for electric field:

1 AU = 1.71527E+07 ESU·CM−2 = 5.72152E+01 C ·M−2 = 5.14226E+11 V·M−1

This option can evaluate the dielectric response of the molecule, polymer or slab in a direction

of non periodicity (see option FIELD for a field along a periodicity direction).

Consider the following expansion of the total energy of the system as a function of the applied

field:

E(F0) = E0 − µF0 −
1

2!
αF 2

0 −
1

3!
βF 3

0 −
1

4!
γF 4

0 − · · · (3.5)
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By fitting the E vs F0 data the µ, α, β and γ values can be derived. See

http://www.crystal.unito.it → tutorials → Static dielectric constants..

FINDSYM

Geometry information is written in file FINDSYM.DAT, according to the input format of the

program FINDSYM.

http://stokes.byu.edu/findsym.html

FINDSYM: Identify the space group of a crystal, given the positions of the atoms in a unit

cell. When geometry editing modifies the basic input space group, the symmetry of the system

is identified by the symmetry operators only. The program FINDSYM allows identification of

the space group.

FRACTION

The keyword FRACTION means input coordinates given as fraction of the lattice parameter

in subsequent input, along the direction of translational symmetry:

x,y,z crystals (3D)

x,y slabs (2D; z in Ångstrom or bohr)

x polymers (1D; y,z in Ångstrom or bohr)

no action for 0D. When the unit of measure is modified, the new convention is active for all

subsequent geometry editing.

FREQCALC - Harmonic frequencies at Γ

See Chapter 7, page 181.

FULLE - Building a fullerene from a slab

Fullerenes are molecular cage-like structures. An effective way of constructing them exploiting

all the possible symmetry is by starting from a 2D periodic flat structure.

In this flat lattice, the vector R=n1 ~a1+n2 ~a2 (where ~a1 and ~a2 are the slab cell vectors) permits

to define the side of a triangular face of the fullerene. Then, the indices (n1, n2) completely

define the faces of the fullerene, and are used in the literature to characterise this type of

systems. The case of a (2,2) carbon fullerene is given in figure 3.3 as an example.

Once the face is defined, the second key information is the type of polyhedron to be con-

structed, and the corresponding point symmetry. CRYSTAL cuurently permits the automatic

construction of the following combinations:

• Icosahedron: I, Ih;

• Octahedron: T , Td, Th, O, Oh;

• Tetrahedron: T , Td.

The FULLE keyword can only be used starting from hexagonal 2D lattices.

For further details and explanatory animations, please refer to the tutorial page:

http://www.crystal.unito.it → tutorials → Fullerene systems

Users of the fullerene construction options are kindly requested to cite the follow-

ing paper[151]:
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Figure 3.3: Building the (2,2) fullerene from graphene.

Y. Noël, M. De La Pierre, C.M. Zicovich-Wilson, R. Orlando and R. Dovesi, Phys. Chem.

Chem. Phys., 16, 13390 (2014). Structural, electronic and energetic properties of giant icosa-

hedral fullerenes up to C6000: insights from an ab initio hybrid DFT study.

rec variable value meaning
• ∗ n1, n2 components of the R vector in terms of the basis vectors ~a1 and ~a2

of the hexagonal unit cell
• ∗ PG T point group for the fullerene

TD

TH

O

OH

I

IH

• ∗ POLY TETRA type of polyhedron
OCTA

ICOSA

FULLEJMOL - Graphical visualisation of fullerenes with Jmol

A file named FULLEJMOL.DAT containing the fullerene structure is generated. This file can

be directly used by the 3D structure viewer Jmol (www.jmol.org). This keyword must appear

in the geometry block before all the keywords related to fullerene construction.

FULLESPHE - Spherical fullerenes

rec variable meaning

• ∗ RSPHE distance from the origin [Å]

All the atoms of the fullerene are moved to the same radius RSPHE; this is the distance from

the origin of the cartesian framework. RSPHE is in Ångstrom, unless otherwise requested

(keyword BOHR, page 37). The symmetry of the fullerene is preserved. This option permits

to construct spherical fullerenes.
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This keyword can be used when building fullerenes from a slab (FULLE keyword, page 49),

when generating a fullerene from molecular point groups with MOLECULE, page 18 (addi-

tional RADFULLE keyword required, page 62), or when recovering a fullerene geometry from

an external file with EXTERNAL, page 19 (additional RADFULLE keyword required).

FULLESPHE must always be inserted after the FULLE or RADFULLE keywords.

HYDROSUB - substitution with hydrogen atoms

rec variable meaning
• ∗ NSOST number of atoms to be substituted with hydrogen

insert NSOST records II
• ∗ LA label of the atom to substitute

LB label of the atom linked to LA
BH bond length B-Hydrogen

Selected atoms are substituted with hydrogens, and the bond length is modified. To be used

after CLUSTER.

KEEPSYMM

In any subsequent editing of the geometry, the program will endeavour to maintain the number

of symmetry operators, by requiring that atoms which are symmetry related remain so after

geometry editing (keywords: ATOMSUBS, ATOMINSE, ATOMDISP, ATOMREMO)

or the basis set (keywords CHEMOD, GHOSTS).

Example: When a CO molecule is vertically adsorbed on a (001) 3-layer MgO slab, (D4h

symmetry) (see page 38, keyword ATOMINSE), the symmetry is reduced to C4v, if the

BREAKSYM keyword is active. The symmetry operators related to the σh plane are re-

moved. However, if KEEPSYMM is active, then additional atoms will be added to the

underside of the slab so as to maintain the σh plane.

LATVEC - maximum size of the cluster of classified lattice vectors

rec variable meaning
• ∗ MAXGSIZE maximum number of lattice vectors to be classified

A very accurate CRYSTAL calculation may require the evaluation of interactions between

atoms in very distant cells (when using very severe computational conditions). If the list of

lattice vectors which were classified by default is incomplete with respect to the requirement,

an error message appears. In this case it is necessary to extend MAXGSIZE beyond its default

value (3500).

MAKESAED

Symmetry allowed elastic distortions are printed. No input data required.

MAXNEIGHB - maximum number of equidistant neighbours of an
atom

rec variable meaning
• ∗ MAXNEIG maximum number of atoms allowed in creating a cluster
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When printing of atom neighbouring relationship is requested (NEIGHBOR, page 59) for

several orders of vicinity the number of equidistant atoms from a given atom in the unit cell

can be large. If such a number exceeds 48 (default value), the program stops with an error

message. Use of this keyword allows increasing the value of MAXNEIG.

MODISYMM

rec variable meaning
• ∗ N number of atoms to be attached a flag
• ∗ LA,LF(LA),L=1,N atom labels and flags (n couples of integers in 1 record).

The point symmetry of the lattice is lowered by attributing a different ”flag” to atoms related

by geometrical symmetry. The symmetry operators linking the two atoms are removed and the

new symmetry of the system is analyzed. For instance, when studying spin-polarized systems, it

may be necessary to apply different spins to atoms which are related by geometrical symmetry.

MOLDRAW

The last version of the program MOLDRAW reads crystal standard output, and can generate

a movie from an optimization run. See:

http://www.moldraw.unito.it .

MOLEBSSE - counterpoise for molecular crystals

rec variable meaning
• ∗ NMOL number of molecules to be isolated
II insert NMOL records II
• ∗ ISEED label of one atom in the n-th molecule

J,K,L integer coordinates (direct lattice) of the primitive cell containing the ISEED

atom
• ∗ NSTAR maximum number of stars of neighbours included in the calculation

RMAX maximum distance explored searching the neighbours of the atoms belonging
to the molecule(s)

The counterpoise method [29] is applied to correct the Basis Set Superposition Error in molecu-

lar crystals. A molecular calculation is performed, with a basis set including the basis functions

of the selected molecules and the neighbouring atoms. The program automatically finds all

the atoms of the molecule(s) containing atom(s) ISEED (keyword MOLECULE, page 53).

The molecule is reconstructed on the basis of the covalent radii reported in Table on page 63.

They can be modified by running the option RAYCOV, if the reconstruction of the molecule

fails. The radius of the hydrogen atom is very critical when intermolecular hydrogen bonds

are present.

All the functions of the neighbouring atoms in the crystal are added to the basis set of the

selected molecule(s) such that both the following criteria are obeyed:

1. the atom is within a distance R lower than RMAX from at least one atom in the molecule

and

2. the atom is within the NSTAR-th nearest neighbours of at least one atom in the molecule.

For molecular crystals only.

Use keyword CLUSTER (43) to extend the number of atoms in the cluster if requested.
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Warning Do not use with ECP

Warning. The system obtained is 0D. No reciprocal lattice information is required in the scf

input (Section 2.3, page 29). See test 19.

MOLECULE - Extraction of n molecules from a molecular crystal

rec variable meaning
• ∗ NMOL number of molecules to be isolated
II insert NMOL records II
• ∗ ISEED label of one atom in the nth molecule

J,K,L integer coordinates (direct lattice) of the primitive cell containing the
ISEED atom

The option MOLECULE isolates one (or more) molecules from a molecular crystal on the

basis of chemical connectivity, defined by the sum of the covalent radii (Table on page 63).

The covalent radii can be modified by running the option RAYCOV, if the reconstruction of

the molecule fails. The covalent radius of the hydrogen atom is very critical when intermolecular

hydrogen bonds are present.

The input order of the atoms (atoms symmetry related are grouped) is modified, according

to the chemical connectivity. The same order of the atoms in the bulk crystal is obtained by

entering the keyword ATOMORDE (see Section 3.1, page 38). The total number of electrons

attributed to the molecule is the sum of the shell charges attributed in the basis set input (input

block 2, Section 2.2, page 23) to the atoms selected for the molecule.

The keyword GAUSS98, entered in input block 2 (basis set input), writes an input deck to

run Gaussian 98 (see page 74)

For molecular crystals only.

Warning. The system is 0D. No reciprocal lattice information is required in the scf input

(Section 2.3, page 29).

Test 18 - Oxalic acid. In the 3D unit cell there are four water and two oxalic acid molecules.

The input of test 18 refers to a cluster containing a central oxalic acid molecule surrounded by

four water molecules.

MOLEXP - Variation of lattice parameters at constant symmetry
and molecular geometry

rec variable meaning
• ∗ δa,[δb],[δc], increments of the minimal set of crystallographic cell parameters:

[δα],[δβ] translation vectors length [Ångstrom],
[δγ] crystallographic angles (degrees)

The cell parameters (the minimum set, see page 20) are modified, according to the increments

given in input. The volume of the cell is then modified. The symmetry of the lattice and the

geometry (bond lengths and bond angles) of the molecules within the cell is kept. The fractional

coordinates of the barycentre of the molecules are kept constant, the cartesian coordinates

redefined according to the modification of the lattice parameters. Optimization of the geometry

with reference to the compactness of the lattice is allowed, keeping constant the geometry of

the molecules. When there are very short hydrogen bonds linking the molecules in the lattice,

it may be necessary a modification of the atomic radii to allow proper identification of the

molecules (see option RAYCOV, page 62)
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MOLSPLIT - Periodic lattice of non-interacting molecules

In order to compare bulk and molecular properties, it can be useful to build a density ma-

trix as a superposition of the density matrices of the isolated molecules, arranged in the same

geometry as in the crystal. The keyword MOLSPLIT (no additional input required) per-

forms an expansion of the lattice, in such a way that the molecules of the crystal are at an

”infinite” distance from each other. The crystal coordinates are scaled so that the distances

inside the molecule are fixed, and the distances among the molecules are expanded by a factor

100, to avoid molecule-molecule interactions. The 3D translational symmetry is not changed.

Reciprocal lattice information is required in the scf input (Section 2.3, page 29).

A standard wave function calculation of the expanded crystal is performed. The density

matrix refers to the non-interacting subsystems. Before running properties, the lattice

is automatically contracted to the bulk situation given in input. If a charge density or

electrostatic potential map is computed (ECHG, POTM options), it corresponds to the

superposition of the charge densities of the isolated molecules in the bulk geometry.

This option must be used only for molecular crystals only (no charged fragments).

Warning: the DFT grid is not designed for the expanded lattice yet. Large memory allocation

may be necessary.

See test 21.

NANOCRYSTAL (NANO)

rec variable meaning
• ∗ h1, k1, l1 crystallographic (Miller) indices of the first plane parallel to the first nanocrys-

tal face
• ∗ h2, k2, l2 crystallographic (Miller) indices of the second plane parallel to the second

nanocrystal face
• ∗ h3, k3, l3 crystallographic (Miller) indices of the third plane parallel to the third

nanocrystal face
• ∗ ISUP1 label of the surface layer of the first nanocrystal face

NL1 number of atomic layers parallel to the first nanocrystal face
• ∗ ISUP2 label of the surface layer of the second nanocrystal face

NL2 number of atomic layers parallel to the second nanocrystal face
• ∗ ISUP3 label of the surface layer of the third nanocrystal face

NL3 number of atomic layers parallel to the third nanocrystal face
• ∗ NCUT number of further cutting operations

The NANOCRYSTAL option is used to create a nanocrystal of given dimension, where three

faces are parallel to given planes of the crystal. The other three faces are parallel to the first

set.

Before the editing operated by NCUT directives, the nanocrystal is just a supercell of the 3D

structure, with faces lying on the three crystallographic planes.

A new 3D crystal unit cell is defined, with three faces parallel to the given planes. The new

3D cell is generally not primitive: the program calculates and prints the multiplicity. Then

the atoms of the new 3D cell are classified according their geometric distance from of the three

faces parallel to the two given planes.

The thickness of the nanocrystal, the 0D system, is defined by the number of layers parallel

to the faces. No reference is made to the chemical units in the nanocrystal. The neutrality is

checked by the program.
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1. The crystallographic (Miller) indices of the plane refer to the crystallographic cell .

2. A point group is derived from the 3D symmetry group of the original crystal structure:

the origin may be shifted to maximize the order of the layer group (keyword ORIGIN,

page 59).

NANOJMOL - Graphical visualisation of nanotubes with Jmol

Obsolete keyword: Jmol now reads correctly the output of a nanotube calculation.

A file named NANOJMOL.DAT containing the nanotube structure is generated. This file can

be directly used by the 3D structure viewer Jmol (www.jmol.org). This keyword must appear

in the geometry block before all the keywords related to nanotube construction.

NANORE

Nanotube rebuild: to be used for tubes built with NANOTUBE (page 56). See the NAN-

OTUBE keyword for a discussion of nanotube rebuild.

rec variable meaning
• ∗ nold1, nold2 Nanotube rebuild: indices of the starting nanotube.
∗ n1, n2 New indices of the rolling vector.

Consider, for example, the (8,8) and the (10,10) carbon nanotubes (built with NANOTUBE,

indices refer to the 120◦ unit cell choice). We have optimised the structure of the former, and

we want to build the latter starting from its geometry. With NANORE the (8,8) nanotube is

unrolled and re-rolled as (10,10). In order to do this, the information on geometry of both the

starting slab (graphene) and the (8,8) nanotube is required. The first one is given in input (or

read with EXTERNAL from file fort.34), the second one is read with an EXTERNAL strategy

from file fort.35. The input syntax is then:

SLAB

77

2.47

1

6 0.333333 0.666667 0.000000

NANORE

8 8

10 10

For nanotubes built with SWCNT (page 69) see SWCNTRE (page 70).

NANOROD (ROD)

rec variable meaning
• ∗ h1, k1, l1 crystallographic (Miller) indices of the first plane parallel to the first nanorod

face
• ∗ h2, k2, l2 crystallographic (Miller) indices of the second plane parallel to the second

nanorod face
• ∗ ISUP1 label of the surface layer of the first nanorod face

NL1 number of atomic layers parallel to the first nanorod face
• ∗ ISUP2 label of the surface layer of the second nanorod face

NL2 number of atomic layers parallel to the second nanorod face
• ∗ NCUT number of further cutting operations

The NANOROD option is used to create a nanorod of given thickness, where two faces are
parallel to given planes of the crystal. The other two faces are parallel to the first pair.
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A new 3D crystal unit cell is defined, with two faces parallel to the given planes. The new 3D
cell is in general not primitive: the program calculates and prints the multiplicity. Then the
atoms of the new 3D cell are classified according to their geometric distance from the two faces
parallel to the two given planes.
The thickness of the nanorod, the 1D system, is defined by the number of layers parallel to
the two faces. No reference is made to the chemical units in the nanorod. The neutrality is
checked by the program.

1. The crystallographic (Miller) indices of the plane refer to the crystallographic cell .

2. A rod group is derived from the 3D symmetry group of the original crystal structure:
the origin may be shifted to maximize the order of the layer group (keyword ORIGIN,
page 59).

NANOTUBE - Building a nanotube from a slab

Nanotubes are cylindrical structures, periodic along one direction. They are therefore charac-
terised by a single lattice vector. However, in order to study their symmetry and orientation,
it is easier to start from a 2D lattice where the additional periodicity becomes the cylinder
period. This 2D periodic flat structure will be referred in the following, as the nanotube flat
lattice.
In this flat lattice, 3 vectors are important for the structure description: the rolling vector, ~R,
the longitudinal vector, ~L and the helical vector, ~H.

• The rolling vector, ~R = n1 ~a1+n2 ~a2 (where ~a1 and ~a2 are the slab cell vectors), is sufficient
to completely define a nanotube. It is used in the literature to characterise the systems
(for example the (4,3) nanotube is a nanotube with a rolling vector ~R = 4 ~a1+3 ~a2). In the

flat nanotube lattice, ~R is a nanotube unit cell vector. Once the nanotube wrapped, the
rolling vector becomes a circle normal to the cylinder axis; its norm corresponds to the
cylinder perimeter. If ~R passes N times through the lattice nodes, a N -order rotational
axis will exist along the corresponding nanotube axis.

• The longitudinal vector, ~L = l1 ~a1 + l2 ~a2, is the shortest lattice vector normal to ~R. In
the nanotube, it becomes the 1D lattice parameter and gives the 1D periodicity along
the tube axis.

• The helical vector, ~H = h1 ~a1+h2 ~a2, is a lattice vector defining with ~R an area which is N
times the area of the unit cell of the flat slab. It satisfies, then, the following relationship

S(~R, ~H)

S( ~a1, ~a2)
= |n1h2 − n2h1| = N (3.6)

where S(~vi, ~vj) is the surface defined by the ~vi and ~vj vectors. The helical vector defines a
correspondence between a translation in the flat slab and a roto-translation in the curved
surface; ~H has a rotational component along the circumference vector and a translational
component along the lattice parameter.

The direct product between the rotational and roto-translational operations generates the full
symmetry of the nanotube.
The three vectors listed previously are represented in figure 3.4 for graphene; the example
refers to the construction of a (4,2) single-walled carbon nanotube (SWCNT).
Further information about the implemented method, the computational costs and the symme-
try features of nanotubes are found in Ref. [49] and [226, 12].
For further details and explanatory animations, please refer to the tutorial page:

http://www.crystal.unito.it → tutorials → Nanotube systems

Users of the nanotube construction options are kindly requested to cite the fol-
lowing paper[150]:
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Figure 3.4: Building the (4,2) SWCNT from graphene.

Y. Noël, Ph. D’Arco, R. Demichelis, C.M. Zicovich-Wilson and R. Dovesi, J. Comput. Chem.,
31, 855 (2010). On the Use of Symmetry in the Ab Initio Quantum Mechanical Simulation of
Nanotubes and Related Materials.

rec variable meaning
• ∗ n1, n2 components of the roll-up-vector of the nanotube in the slab unit

cell basis. The roll-up-vector, whose length corresponds to the tube
circumference, is expressed as a linear combination of the unit cell
vectors of the slab before rolling up, n1 and n2 being integer coeffi-
cients.

The convention adopted in CRYSTAL is n1 ≥ n2. In cases when n2 is required to be larger
than n1, it is sufficient to exchange the x and y coordinates of the reference 2D slab.
NANOTUBE can be used with the following 2D systems:

• square and hexagonal lattices: any (n1, n2) combination

• rectangular lattices: any n1, n2 = 0

• rhombohedral lattices: n2 = ±n1

In the other cases, the existence of a lattice vector perpendicular to ~R (so the 1D periodicity
along the tube axis) is not guaranteed.

The orthogonality condition between ~R and ~L provides the following equation:

~L · ~R = (l1 ~a1 + l2 ~a2) · (n1 ~a1 + n2 ~a2) = n1l1| ~a1|2 + n2l2| ~a2|2 + (n1l2 + n2l1)| ~a1|| ~a2|cos(γ) = 0(3.7)

γ being the angle between ~a1 and ~a2. From Equation 3.7 one obtains:

l1
l2

= −n2|a2|2 + n1|a1||a2|cos(γ)

n1|a1|2 + n2|a1||a2|cos(γ)
(3.8)

If the right term is divided and multiplied by |a2|2, one obtains

l1
l2

= − n2 + n1aqcos(γ)

aq(n1aq + n2cos(γ))
(3.9)

with aq = |a1|
|a2| .
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The above equation cannot be satisfied for any ( ~a1, ~a2,cos(γ)) combination. This observation
is based on the fact that, as l1 and l2 are integers, l1l2 is a rational number, whereas, in general,
cos(γ) and aq are real numbers. In the following the five 2D Bravais lattices are considered
separately, in order to show which conditions satisfy the periodicity along the tube axis and
which do not.

• Hexagonal lattice: ~a1 = ~a2, cos(γ) = ±1/2. Equation 3.9 becomes:

l1
l2

= −n2 + n1/2

n1 + n2/2
= −2n2 + n1

2n1 + n2
(3.10)

Any roll-up vector is possible.

• Square lattice: ~a1 = ~a2, cos(γ) = 0.

l1
l2

= −n2

n1
(3.11)

Any roll-up vector is possible.

• Rectangular lattice: ~a1 6= ~a2, cos(γ) = 0.

l1
l2

= −n2|a2|2

n1|a1|2
(3.12)

In this case the right term corresponds to a rational number either if |a1| = n|a2|, with
n being a rational number, or if n2=0. More generally, for rectangular lattices, the
periodicity along the tube axis is always satisfied for (n, 0) and (0, n) roll-up vectors.

• Rhombohedral (centred rectangular) lattice: ~a1 = ~a2, any cos(γ).

l1
l2

= −n2 + n1cos(γ)

n1 + n2cos(γ)
(3.13)

The right term provides a rational number only when n1 = n2 or n1 = −n2, so that
Equation 3.13 becomes:

l1
l2

= −n1[1 + cos(γ)]

n1[1 + cos(γ)]
= −1

l1
l2

=
n1[1− cos(γ)]

n1[1− cos(γ)]
= 1 (3.14)

• Oblique lattice: ~a1 6= ~a2, any cos(γ). Equation 3.9 remains as such, and the right term
is always an irrational number.

When the above conditions are not satisfied, however, it is possible to manipulate the geometry
of the starting slab and force it to assume a suitable form, by building supercells or with minor
modifications to the cell parameters.

Note that, in cases of hexagonal lattices, the standard convention adopted in CRYSTAL con-
siders the reference flat lattice cell vectors forming a 120◦ angle. In the carbon nanotube
literature, however, the rolling indices refer to a 60◦ angle. For this reason, the same input
can be obtained with the following choices, where the (6,3) indices in the 60◦ unit cell become
(9,3) in the 120◦ option:

Example I: (6,3) SWCNT from graphene, 60 degrees

SLAB

1

2.47 2.47 60.000

2

6 0.33333333333 0.33333333333 0.000

6 -0.33333333333 -0.33333333333 0.000

NANOTUBE

6 3
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Example II: (6,3) SWCNT from graphene, default choice

SLAB

77

2.47

1

6 0.333333 0.666667 0.000000

NANOTUBE

9 3

In order to avoid ambiguity in the choice of the carbon nanotubes indices, use the SWCNT
(page 69) keyword.

Nanotube rebuild: build a nanotube starting from the structure of
another one, with same directions but a different radius.

Two restart keywords, NANORE (page 55) and SWCNTRE(page 70), allow to build a (n1, n2)
nanotube by starting from the structure of another one (a previously (nold1, nold2) optimised
one, read from file fort.35). The ”old” nanotube is unrolled and re-rolled according to a ”new”
~R vector, with minor modifications to the structure. The rolling direction of the two tubes
must be the same.

It is particularly helpful for the geometry optimisation of inorganic nanotubes (thick slabs,
large systems, the geometry of the tubes is very different from the one of the slab), as the
number of optimisation steps is reduced (see Ref. [52] for documentation of computational
gain).

NEIGHBOR/NEIGHPRT

rec variable meaning
• ∗ INEIGH number of neighbours of each non-equivalent atom to be printed

The option is active when analyzing the crystal structure (bond lengths and bond angles) and
when printing the bond populations following Mulliken analysis. Full input deck must be given
(block 1-2-3),in order to obtain neighbors analysis of all the non-equivalent atoms
For each non-equivalent atom information on the first INEIGH neighbours is printed: number,
type, distance, position (indices of the direct lattice cell).
Warning: the neighbors analysis is performed after the symmetry analysis and the screening
of the integrals. If very soft tolerances for the integrals screening are given in input, it may
happen that the information is not given for all the neighbors requested, as their are not taken
into account when truncation criteria are applied.

NOSHIFT

It may be used before SUPERCEL keyword. It avoids shift of the origin in order to minimize
the number of symmetry operators with finite translation component. No input data are
required.

OPTGEOM - Full geometry optimization

See Chapter 6, page 156.

ORIGIN

The origin is moved to minimize the number of symmetry operators with finite translation
components. Suggested before cutting a slab from a 3D structure (option SLABCUT, page
64). No input data are required.
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PBAND - Phonon Bands -

This keyword, to be inserted in the geometry input block, is specific for phonon dispersion
calculations (the use of the DISPERSI keyword is then mandatory in the subsequent FRE-
QCALC block, similarly to the SCELPHONO keyword, see page 66). It can be used for
phonon band calculations, and allows for the specification of the path in reciprocal space along
which the Hessian matrix is obtained.

rec variable meaning
• ∗ ISS shrinking factor in terms of which the coordinates of the extremes of

the segment are expressed. If ISS=0, input by label (see below).
NK total number of k-points along the line.
FLAG1 if > 1, activates interpolation (see keyword INTERPHESS at page

201)
FLAG2 coordinates given in terms of primitive (FLAG2=0) or conventional

(FLAG2=1) lattice
if ISS > 0 then

• ∗ I1,I2,I3 integers that define the starting point of the line (I1/ISS b1+I2/ISS
b2+I3/ISS b3), with b1,b2,b3 reciprocal lattice vectors.

J1,J2,J3 integers that define the final point of the line (J1/ISS b1+J2/ISS
b2+J3/ISS b3) with b1,b2,b3 reciprocal lattice vectors.

if ISS = 0 then
• ∗ LABELA label of the the starting point of the line (see tables 13.1 and 13.2 for

a legend).
LABELB label of the the final point of the line (see tables 13.1 and 13.2 for a

legend).

Given two points that define a line in reciprocal space, and the number of sampling points
required along this line, a supercell is constructed to allow for the exact calculation of the
Hessian matrix at these points. The formal relationship between the direct space supercell
and the reciprocal space sampling can be found in the phonon dispersion section (page 201).
Multiple runs on supercells constructed in this way allow for the complete calculation and
plotting of phonon band structures.

FLAG1 is normally set to 1. If FLAG1> 1 then NK×FLAG1 k-points are obtained without
building a bigger supercell. The assumptions are the same as those used for the keyword
INTERPHESS (see page 201). FLAG2 is 1 if the input coordinates refer to the conventional
cell, 0 if they refer to the primitive cell.

The computed frequencies at all the requested points are written in output and stored in units
fort.25 and PBANDS.DAT (in x-y format) for plotting, in the same formats used for electronic
band structures.

An input example is:

MGO BULK

CRYSTAL

0 0 0

225

4.16563249

2

12 0. 0. 0.

8 0.5 0.5 0.5

PBAND

0 10 1 0

G

X

FREQCALC

DISPERSI

END
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END

which, in this particular case, will result in the supercell:

EXPANSION MATRIX OF PRIMITIVE CELL

E1 1.000 0.000 -1.000

E2 0.000 1.000 0.000

E3 0.000 0.000 18.000

PLANES

rec variable meaning
• ∗ f minimum of the interplane distance dhkl for the plane families to be printed

and indexed, expressed as the fraction f

Crystallographic planes are indexed and printed, grouped in families of symmetry-related
planes. All the hkl planes are analyzed that have the interplane distance belonging to the
interval [f dmaxhkl , d

max
hkl ], where dmaxhkl is the maximum interplane distance for a given family hkl

and f a number between 0 and 1. If the crystal structure has a primitive cell different from
the crystallographic one, the plane indices are printed relatively to both frames.

POINTCHG

rec variable meaning
• ∗ NCH number of point charges to be added

insert NCH records II
• ∗ X,Y,Z,QC cartesian coordinates [Å], charge(au). Coordinates refer to the primitive cell.

Dummy atoms with formal atomic number 93, mass zero, nuclear charge as given in input (file
POINTCHG.INP), are added to the primitive cell. Data are read in free format.

record type of data content

1 1 integer N, number of point charges

2..2+N-1 4 real x y z charge

Coordinates are in Ångstrom, unless otherwise requested (keyword BOHR, page 37). Charges
are net charges (1 electron = -1). The symmetry of the system must be removed by the keyword
SYMMREMO.
As point charges are formally considered as ”atoms”, they must be the last addition of centres
to the system.
No electron charge should be attributed to those atoms in basis set input (no atomic wave
function calculation is possible). The default basis set defined by the program is a single s
gaussian, with exponent 100000.
Attention should be paid to the neutrality of the cell. If the absolute value of the sum of the
charges is less than 10−3, the value of the charges is ”normalized” to obtain 0.
The data given in input are printed. To obtain printing of coordinates and neighbour analysis
of the dummy atoms in geometry output, insert the keyword PRINTCHG.

Not compatible with: OPTGEOM, FREQCALC, ANHARM, ELASTCON, EOS,
FIELD, FIELDCON, NOBIPOLA.

PRIMITIV

Some properties (XFAC, EMDL, EMDP, PROF) input the oblique coordinates of the k
points in the reciprocal lattice with reference to the conventional cell, though the computation
refers to the primitive one. This option allows entering directly the data with reference to the
primitive cell. The transformation matrix from primitive to crystallographic (Appendix A.5,
page 375) is set to the identity. No effect on the CPU time: CRYSTAL always refers to the
primitive cell. No input data are required.
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PRINTCHG

Coordinates of the dummy atoms inserted after the keyword POINTCHG are printed in
geometry output, basis set output, neighbor analysis. No input data required.

PRINTOUT - Setting of printing environment

Extended printout can be obtained by entering selected keywords in a printing environment
beginning with the keyword PRINTOUT and ending with the keyword END. The possible
keywords are found in the fifth column of the table on page 391.
Extended printing request can be entered in any input block. Printing requests are not trans-
ferred from wave function to properties calculation.
See Appendix C, page 389.

PRSYMDIR

Printing of the so-called symmetry allowed directions adopted in the geometry optimization.
The printing is done after the neighbor analysis, before computing the wave function. Full
input must be supplied (3 blocks). Test run allowed with the keyword TESTPDIM.
No input data required.

PURIFY

This cleans up the atomic positions so that they are fully consistent with the group (to within
machine rounding error). Atomic position are automatically redefined after basic geometry
input. No input data are required.

RADFULLE

When printing atomic coordinates of the molecule, an additional column is added that contains
the radial distances of the atoms from the origin. The FULLE (page 49) keyword constructs
fullerenes and automatically displays the radius column. The present option is useful when
running a fullerene calculation without using the FULLE keyword, i.e. by means of the
MOLECULE (page 18) and EXTERNAL (page 19) keywords.

RADNANO

When printing atomic coordinates of a 1-D system, an additional column is added that con-
tains the radial distances of the atoms from the x axis. The NANOTUBE (page 56) and
SWCNT (page 69) keywords construct nanotubes and automatically display the radius col-
umn. The present option is useful when running a nanotube calculation without using the
NANOTUBE/SWCNT keywords, i.e. by means of the MOLECULE (page 18) and EX-
TERNAL (page 19) keywords.

RAYCOV - covalent radii modification

rec variable meaning
• ∗ NCOV number of atoms for which the covalent radius is redefined

insert NCOV records II
• ∗ NAT atomic number (0 ≤NAT ≤ 92)

RAY covalent radius of the atom with atomic number NAT ([Å], default,
or bohr, if the keyword BOHR precedes in the deck)

The option RAYCOV allows modification of the covalent radius default value for a given
atom.
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Table of covalent radii (Angstrom)

H He

0.68 1.47

--------- -----------------------------

Li Be B C N O F Ne

1.65 1.18 0.93 0.81 0.78 0.78 0.76 1.68

--------- -----------------------------

Na Mg Al Si P S Cl Ar

2.01 1.57 1.50 1.23 1.15 1.09 1.05 1.97

-----------------------------------------------------------------------------------------

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

2.31 2.07 1.68 1.47 1.41 1.47 1.47 1.47 1.41 1.41 1.41 1.41 1.36 1.31 1.21 1.21 1.21 2.10

-----------------------------------------------------------------------------------------

Rb Sr Y Zr Ni Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

2.31 2.10 1.94 1.60 1.52 1.52 1.42 1.36 1.42 1.47 1.68 1.62 1.62 1.52 1.52 1.47 1.47 2.66

-----------------------------------------------------------------------------------------

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

2.73 2.10 1.94 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.99 1.89 1.68 1.42 1.42 1.62

-----------------------------------------------------------------------------------------

The choice of the covalent radius of hydrogen may be very critical when extracting a molecule

from a hydrogen bonded molecular crystal. See test 15.

ROTCRY - Rotation of the crystal with respect to the reference
system - developers only

This option allows to rotate the crystal with respect to the original orthonormal Cartesian

reference system. The SCF procedure, both for HF and DFT calculations, is performed in the

rotated geometry.

The rotation can be performed in three different ways:

1. By defining the Euler rotation angles α, β, γ and the origin of the rotating system. (The

rotation is given by: Rα
zRβ

xRγ
z , where Rθ

t are the rotation matrices about t by angle θ).

2. By explicitly defining the rotation matrix.

3. An automatic procedure that reorient the crystal aligning ~c along z Cartesian axis.

ANGROT Rotation defined by Euler angles α, β, γ
rec variable meaning
• ∗ ALPHA,BETA,GAMMA α, β, γ rotation Euler angles (dgrees)

or

MATROT Rotation matrix by input
rec variable meaning
• ∗ R11 R12 R13 first row of the matrix.
• ∗ R21 R22 R23 second row of the matrix.
• ∗ R31 R32 R33 third row of the matrix.

or

AUTO Automatically align c along z

The rotation involves: direct and reciprocal lattice parameters, coordinates of atoms and

symmetry operators. When a DFT calculation is performed also the points of the numerical

integration grid are rotated in order to preserve numerical accuracy.

Note that this keyword is different from ATOMROT (see page 39) that rotates a group of

atoms without affecting the reference system.
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SETINF - Setting of INF values

rec variable meaning
• ∗ NUM number of INF vector positions to set
• ∗ J,INF(J),I=1,NUM position in the vector and corresponding value

The keyword SETINF allows setting of a value in the INF array. It can be entered in any

input section.

SETPRINT - Setting of printing options

rec variable meaning
• ∗ NPR number of LPRINT vector positions to set
• ∗ J,LPRINT(J),I=1,NPR prtrec; position in the vector and corresponding value

The keyword SETPRINT allows setting of a value in the LPRINT array, according to the

information given in Appendix C, page 391. It can be entered in any input section.

SLABCUT (SLAB)

rec variable meaning
• ∗ h, k, l crystallographic (Miller) indices of the plane parallel to the surface
• ∗ ISUP label of the surface layer

NL number of atomic layers in the slab

The SLABCUT option is used to create a slab of given thickness, parallel to the given plane

of the 3D lattice.

A new Cartesian frame, with the z axis orthogonal to the (hkl) plane, is defined. A layer is

defined by a set of atoms with same z coordinate, with reference to the new Cartesian frame.

The thickness of the slab, the 2D system, is defined by the number of layers. No reference is

made to the chemical units in the slab. The neutrality of the slab is checked by the program.

1. The crystallographic (Miller) indices of the plane refer to the conventional cell (cubic and

hexagonal systems).

2. A two-sided layer group is derived from the 3D symmetry group of the original crystal

structure: the origin may be shifted to maximize the order of the layer group (keyword

ORIGIN, page 59).

3. The unit cell is selected with upper and lower surface parallel to the (hkl) plane.

4. The 2D translation vectors a1 and a2 are chosen according to the following criteria:

(a) minimal cell area;

(b) shortest translation vectors;

(c) minimum |cos(γ)|, where γ is the angle between a1 and a2.

5. The surface layer ISUP may be found from an analysis of the information printed by the

SLABINFO (page 65) option. This information can be obtained by a test run, inserting

in the geometry input block the keyword TESTGEOM (page 71). Only the geometry

input block is processed, then the program stops.

Two separate runs are required in order to get the information to prepare the input for a full

SLABCUT option run:
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1. keyword SLABINFO: Rotation of the 3D cell, to have the z axis perpendicular to the

(hkl) place, with numbering of the atomic layers in the rotated reference cell, according

to the z coordinate of the atoms (insert STOP after SLABINFO to avoid further

processing).

2. keyword SLAB: Definition of the 2D system, a slab of given thickness (NL, number of

atomic layers) parallel to the (hkl) crystallographic plane, with the ISUP-th atom on the

surface layer

The SLABCUT option, combined with ATOMINSE (page 38), ATOMDISP (page 38),

etc. can be used to create a slab of given thickness, with an atom (or group of atoms) adsorbed

at given position. This is achieved by adding new atoms to the 2D structure, obtained after

executing the SLAB option.

Test cases 5-6-7 refer to a 2D system; test cases 25-26-27 refer to the same system, but generated

from the related 3D one. See also tests 35, 36, 37.

SLABINFO - 3D cell with z axis orthogonal to a given plane

rec variable meaning
• ∗ h,k,l Crystallographic (Miller) indices of the basal layer of the new 3D unit cell

1. A new unit cell is defined, with two lattice vectors perpendicular to the [hkl] direction.

The indices refer to the Bravais lattice of the crystal; the hexagonal lattice is used for

the rhombohedral systems, the cubic lattice for cubic systems (non primitive).

2. A new Cartesian reference system is defined, with the xy plane parallel to the (hkl) plane.

3. The atoms in the reference cell are re-ordered according to their z coordinate, in order

to recognize the layered structure, parallel to the (hkl) plane.

4. The layers of atoms are numbered. This information is necessary for generating the input

data for the SLABCUT option.

5. After neighboring analysis, the program stops. If the keyword ROTATE was entered,

execution continues. The shape of the new cell may be very different, computational

parameters must be carefully checked.

6. the keyword ORIGIN can be used to shift the origin after the rotation of the cell, and

minimize the number of symmetry operators with translational component. Useful to

maximize the point group of the 2D system that can be generated from 3D using the

keyword SLABCUT (page 64).

STOP

Execution stops immediately. Subsequent input records are not processed.

STRUCPRT

A formatted deck with cell parameters and atoms coordinates (bohr) in cartesian reference is

written in the file STRUC.INCOOR . See appendix D, page 399.

65



SCELCONF

rec variable meaning
• ∗ E expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals

(2D); 1 real (1D)

This keyword is specific for configuration counting calculations for disordered systems or solid

solutions. Always use SCELCONF instead of SUPERCELL/SUPERCON in calculations

with CONFCOUNT and CONFRAND.

A supercell is constructed, as in the case of keyword SUPERCELL (see page 67), as linear

combination of the primitive cell unit vectors.

The number of symmetry operators of the resulting supercell is higher compared to the SU-

PERCELL case. The product group is constructed between the space group of the original

system and the group of translation operators associated with the chosen supercell.

SCELPHONO

rec variable meaning
• ∗ E expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals

(2D); 1 real (1D)

This keyword is specific for phonon dispersion calculations.

A supercell is constructed, as in the case of keyword SUPERCELL (see page 67), as linear

combination of the primitive cell unit vectors.

The atomic ordering of the resulting supercell is different with respect to the SUPERCELL

case. The first atoms in the list are the ones of the primitive cell, as required for phonon

dispersion calculations. Example:

TEST11 - MGO BULK

CRYSTAL

0 0 0

225

4.21

2

12 0. 0. 0.

8 0.5 0.5 0.5

SCELPHONO

2 0 0

0 2 0

0 0 2

TESTGEOM

END

======================= output - atoms in the small cell first ================

PRIMITIVE CELL - CENTRING CODE 1/0 VOLUME= 149.236922 - DENSITY 3.559 g/cm^3

A B C ALPHA BETA GAMMA

5.95383910 5.95383910 5.95383910 60.000000 60.000000 60.000000

*******************************************************************************

ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: 16

ATOM X/A Y/B Z/C

*******************************************************************************

1 T 12 MG 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00

2 T 8 O 2.500000000000E-01 2.500000000000E-01 2.500000000000E-01

3 T 12 MG 0.000000000000E+00 -5.000000000000E-01 0.000000000000E+00

4 F 12 MG 0.000000000000E+00 -5.000000000000E-01 -5.000000000000E-01

5 F 12 MG -5.000000000000E-01 0.000000000000E+00 0.000000000000E+00

6 F 12 MG -5.000000000000E-01 0.000000000000E+00 -5.000000000000E-01

7 F 12 MG -5.000000000000E-01 -5.000000000000E-01 0.000000000000E+00
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8 T 12 MG -5.000000000000E-01 -5.000000000000E-01 -5.000000000000E-01

9 F 12 MG 0.000000000000E+00 0.000000000000E+00 -5.000000000000E-01

10 T 8 O 2.500000000000E-01 2.500000000000E-01 -2.500000000000E-01

11 F 8 O 2.500000000000E-01 -2.500000000000E-01 2.500000000000E-01

12 F 8 O 2.500000000000E-01 -2.500000000000E-01 -2.500000000000E-01

13 F 8 O -2.500000000000E-01 2.500000000000E-01 2.500000000000E-01

14 F 8 O -2.500000000000E-01 2.500000000000E-01 -2.500000000000E-01

15 F 8 O -2.500000000000E-01 -2.500000000000E-01 2.500000000000E-01

16 F 8 O -2.500000000000E-01 -2.500000000000E-01 -2.500000000000E-01

TEST11 - MGO BULK

CRYSTAL

0 0 0

225

4.21

2

12 0. 0. 0.

8 0.5 0.5 0.5

SUPERCEL

2 0 0

0 2 0

0 0 2

TESTGEOM

======================= output - atoms of same type first ================

PRIMITIVE CELL - CENTRING CODE 1/0 VOLUME= 149.236922 - DENSITY 3.559 g/cm^3

A B C ALPHA BETA GAMMA

5.95383910 5.95383910 5.95383910 60.000000 60.000000 60.000000

*******************************************************************************

ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: 16

ATOM X/A Y/B Z/C

*******************************************************************************

1 T 12 MG 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00

2 T 12 MG 0.000000000000E+00 0.000000000000E+00 -5.000000000000E-01

3 F 12 MG 0.000000000000E+00 -5.000000000000E-01 0.000000000000E+00

4 F 12 MG 0.000000000000E+00 -5.000000000000E-01 -5.000000000000E-01

5 F 12 MG -5.000000000000E-01 0.000000000000E+00 0.000000000000E+00

6 F 12 MG -5.000000000000E-01 0.000000000000E+00 -5.000000000000E-01

7 F 12 MG -5.000000000000E-01 -5.000000000000E-01 0.000000000000E+00

8 T 12 MG -5.000000000000E-01 -5.000000000000E-01 -5.000000000000E-01

9 T 8 O -2.500000000000E-01 -2.500000000000E-01 2.500000000000E-01

10 T 8 O -2.500000000000E-01 -2.500000000000E-01 -2.500000000000E-01

11 F 8 O -2.500000000000E-01 2.500000000000E-01 2.500000000000E-01

12 F 8 O -2.500000000000E-01 2.500000000000E-01 -2.500000000000E-01

13 F 8 O 2.500000000000E-01 -2.500000000000E-01 2.500000000000E-01

14 F 8 O 2.500000000000E-01 -2.500000000000E-01 -2.500000000000E-01

15 F 8 O 2.500000000000E-01 2.500000000000E-01 2.500000000000E-01

16 F 8 O 2.500000000000E-01 2.500000000000E-01 -2.500000000000E-01

It can be used to generate a supercell for a phonon dispersion calculation only (keyword
DISPERSI, page 201).

SUPERCEL

rec variable meaning
• ∗ E expansion matrix E (IDIMxIDIM elements, input by rows: 9 reals (3D); 4 reals

(2D); 1 real (1D)

A supercell is obtained by defining the new unit cell vectors as linear combinations of the
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primitive cell unit vectors (See SUPERCON for crystallographic cell vectors reference). The
point symmetry is defined by the number of symmetry operators in the new cell. It may be
reduced, not increased.
The new translation vectors b′1,b

′
2,b
′
3 are defined in terms of the old vectors b1,b2,b3 and of

the matrix E, read in input by rows, as follows:

b′1 = e11 · b1 + e12 · b2 + e13 · b3

b′2 = e21 · b1 + e22 · b2 + e23 · b3

b′3 = e31 · b1 + e32 · b2 + e33 · b3

The symmetry is automatically reduced to the point symmetry operators without translational
components and a further reduction of the symmetry is also possible.
Before building the supercell, the origin is shifted in order to minimize the number of sym-
metry operators with translational components (see page 21). To avoid this operation, insert
NOSHIFT before SUPERCEL
Atoms that are related by translational symmetry in the unit cell are considered nonequivalent
in a supercell.
The supercell option is a useful starting point for the study of defective systems, of chemisorp-
tion and anti ferromagnetism, by combining the SUPERCELoption with the options de-
scribed in this chapter: ATOMREMO (page 39), ATOMSUBS (page 40), ATOMINSE
(page 38), ATOMDISP (page 38), SLAB (page 64).
To study anti ferromagnetic (AFM) states, it may be necessary to generate a supercell, and
then attribute different spin to atoms related by translational symmetry (ATOMSPIN, input
block 3, page 83). See tests 17, 30, 31, 34, 37, 43, 47.

Example. Construction of supercells of face-centred cubic 3D system (a = 5.42 Å).
The crystallographic cell is non-primitive, the expansion matrix refers to primitive

cell vectors. The E matrix has 9 elements:

PRIMITIVE CELL
DIRECT LATTICE VECTORS COMPONENTS

X Y Z
B1 .000 2.710 2.710
B2 2.710 .000 2.710
B3 2.710 2.710 .000

2 UNITS SUPERCELL (a)
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 .000 1.000 1.000 B1 5.420 2.710 2.710
E2 1.000 .000 1.000 B2 2.710 5.420 2.710
E3 1.000 1.000 .000 B3 2.710 2.710 5.420

2 UNITS SUPERCELL (b)
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 1.000 1.000 -1.000 B1 .000 .000 5.420
E2 .000 .000 1.000 B2 2.710 2.710 .000
E3 1.000 -1.000 .000 B3 -2.710 2.710 .000

4 UNITS SUPERCELL (c) crystallographic cell
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 -1.000 1.000 1.000 B1 5.420 .000 .000
E2 1.000 -1.000 1.000 B2 .000 5.420 .000
E3 1.000 1.000 -1.000 B3 .000 .000 5.420

8 UNITS SUPERCELL
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 2.000 .000 .000 B1 .000 5.420 5.420
E2 .000 2.000 .000 B2 5.420 .000 5.420
E3 .000 .000 2.000 B3 5.420 5.420 .000

16 UNITS SUPERCELL
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 3.000 -1.000 -1.000 B1 -5.420 5.420 5.420
E2 -1.000 3.000 -1.000 B2 5.420 -5.420 5.420
E3 -1.000 -1.000 3.000 B3 5.420 5.420 -5.420

27 UNITS SUPERCELL
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 3.000 .000 .000 B1 .000 8.130 8.130
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E2 .000 3.000 .000 B2 8.130 .000 8.130
E3 .000 .000 3.000 B3 8.130 8.130 .000

32 UNITS SUPERCELL
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 -2.000 2.000 2.000 B1 10.840 .000 .000
E2 2.000 -2.000 2.000 B2 .000 10.840 .000
E3 2.000 2.000 -2.000 B3 .000 .000 10.840

a), b) Different double cells

c) quadruple cell. It corresponds to the crystallographic, non-primitive cell, whose parameters

are given in input (page 21).

Example. Construction of supercells of hexagonal R3̄ (corundum lattice) cubic 3D system.

The crystallographic cell is non-primitive: CRYSTAL refer to the primitive cell, with volume

1/3 of the conventional one. The E matrix has 9 elements:

GEOMETRY INPUT DATA:
LATTICE PARAMETERS (ANGSTROMS AND DEGREES) - CONVENTIONAL CELL

A B C ALPHA BETA GAMMA
4.76020 4.76020 12.99330 90.00000 90.00000 120.00000

TRANSFORMATION WITHIN CRYSTAL CODE FROM CONVENTIONAL TO PRIMITIVE CELL:

LATTICE PARAMETERS (ANGSTROMS AND DEGREES) - PRIMITIVE CELL
A B C ALPHA BETA GAMMA VOLUME

5.12948 5.12948 5.12948 55.29155 55.29155 55.29155 84.99223

3 UNITS SUPERCELL crystallographic cell
EXPANSION MATRIX DIRECT LATTICE VECTORS

E1 1.000 -1.000 .000 B1 4.122 -2.380 .000
E2 .000 1.000 -1.000 B2 .000 4.760 .000
E3 1.000 1.000 1.000 B3 .000 .000 12.993

LATTICE PARAMETERS (ANGSTROM AND DEGREES)
A B C ALPHA BETA GAMMA VOLUME

4.76020 4.76020 12.99330 90.000 90.000 120.000 254.97670

SUPERCON

The first step in geometry definition in CRYSTAL is the transformation of the cell from crystal-

lographic to primitive, according to the transformation matrices given in appendix A.5, when

the crystallographic cell is non-primitive.

From the point of view of CRYSTAL, the crystallographic cell is a supercell, in that case.

Using the keyword SUPERCON, the crystallographic cell is built from the primitive one,

before applying the expansion matrix.

See SUPERCEL, page 67 for expansion matrix input instructions.

Note - The easiest way to work on crystallographic cell is the following input:

SUPERCON

1. 0. 0.

0. 1. 0.

0. 0. 1.

The expansion matrix is the identity, leaving the crystallographic cell unmodified.

SWCNT - Building a nanotube from an hexagonal slab (60◦ unit cell
choice)

rec variable meaning
• ∗ n1, n2 Only for hexagonal cells. Same as NANOTUBE keyword but the

components of the rolling vector refer to a 60◦ hexagonal cell.
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vspace0.3cm

Example: (6,3) SWCNT from graphene

SLAB

77

2.47

1

6 0.333333 0.666667 0.000000

SWCNT

6 3

See NANOTUBE (page 56) for further details.

Nanotube rebuild: build a nanotube starting from the structure of
another one, with same directions but a different radius.

Two restart keywords, NANORE and SWCNTRE, allow to build a (n1, n2) nanotube by start-
ing from the structure of another one (a previously (nold1, nold2) optimised one, read from file

fort.35). The ”old” nanotube is unrolled and re-rolled according to a ”new” ~R vector, with
minor modifications to the structure. The rolling direction of the two tubes must be the same.

It is particularly helpful for the geometry optimisation of inorganic nanotubes (thick slabs,
large systems, the geometry of the tubes is very different from the one of the slab), as the
number of optimisation steps is reduced (see Ref. [52] for documentation of computational
gain).

SWCNTRE

It is the same as NANORE (page 55), with the same input syntax, but for hexagonal lattices
with 60◦ unit cell reference (see SWCNT, page 69).

rec variable meaning
• ∗ nold1, nold2 Nanotube rebuild: indices of the starting nanotube.
∗ n1, n2 New indices of the rolling vector.

SYMMDIR

The symmetry allowed directions, corresponding to internal degrees of freedom are printed.
No input data are required.

SYMMOPS

Point symmetry operator matrices are printed in the Cartesian representation. No input data
are required.

SYMMREMO

All the point group symmetry operators are removed. Only the identity operator is left. The
wave function can be computed. No input data are required.
Warning: the CPU time may increase by a factor MVF (order of point-group), both in the
integral calculation and in the scf step. The size of the bielectronic integral file may increase
by a factor MVF2.

TENSOR

rec variable meaning
• ∗ IORD order of the tensor (≤ 4)

This option evaluates and prints the non zero elements of the tensor of physical properties up
to order 4.
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TESTGEOM

Execution stops after reading the geometry input block and printing the coordinates of the
atoms in the conventional cell. Neighbours analysis, as requested by the keyword NEIGH-
BOR, is not executed. The geometry input block must end with the keyword END or ENDG.
No other input blocks (basis set etc) are required.

TRASREMO

Point symmetry operators with fractional translation components are removed. It is suggested
to previously add the keyword ORIGIN (page 59), in order to minimize the number of sym-
metry operators with finite translation component. No input data are required.

USESAED

rec variable meaning
• ∗ δ(i),i=1,nsaed δ for each distortion

Given the symmetry allowed elastic distortion (SAED), (printed by the keyword MAKE-
SAED, page 51) δ for the allowed distortion are given in input.

WULFF

rec variable meaning
• ∗ IPLN number of crystal planes

insert IPLN records II
• ∗ h, k, l Miller indices of the plane
• ∗ ESRF surface energy in J/m2

The WULFF option is used to determine the equilibrium shape of real (finite) crystals by
ensueing the minimization of the total surface free energy according to the Gibbs-Wulff theo-
rem [230].
The execution stops after the Wulff construction is completed. It generates a three di-
mensional model, wulff.pms, that may be displayed with the free application Mesh Viewer
(http://mview.sourceforge.net).
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3.2 Basis set input

Symmetry control

ATOMSYMM printing of point symmetry at the atomic positions 40 –

Basis set modification

CHEMOD modification of the electronic configuration 72 I
GHOSTS eliminates nuclei and electrons, leaving BS 74 I

Auxiliary and control keywords

CHARGED allows non-neutral cell 72 –
NOPRINT printing of basis set removed 74 –
PRINTOUT setting of printing options 62 I
SETINF setting of inf array options 64 I
SETPRINT setting of printing options 64 I
STOP execution stops immediately 65 –
SYMMOPS printing of point symmetry operators 70 –
END/ENDB terminate processing of basis set definition keywords –

Output of data on external units

GAUSS98 printing of an input file for the GAUSS94/98 package 74 –

Basis set input optional keywords

ATOMSYMM

See input block 1, page 40

CHARGED - charged reference cell

The unit cell of a periodic system must be neutral. This option forces the overall system to
be neutral even when the number of electrons in the reference cell is different from the sum
of nuclear charges, by adding a uniform background charge density to neutralize the charge in
the reference cell.

Warning - Do not use for total energy comparison.

CHEMOD - modification of electronic configuration

rec variable meaning
• ∗ NC number of configurations to modify
• ∗ LA label of the atom with new configuration
∗ CH(L),L=1,NS shell charges of the LA-th atom. The number NS of shells must coincide

with that defined in the basis set input.

The CHEMOD keyword allows modifications of the shell charges given in the basis set input,
which are used in the atomic wave function routines. The original geometric symmetry is
checked, taking the new electronic configuration of the atoms into account. If the number of
symmetry operators should be reduced, information on the new symmetry is printed, and the
program stops. No automatic reduction of the symmetry is allowed. Using the information
printed, the symmetry must be reduced by the keyword MODISYMM (input block 1, page
52).
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See test 37. MgO supercell, with a Li defect. The electronic configuration of the oxygen nearest
to Li corresponds to O−, while the electronic configuration of those in bulk MgO is O2−. The
basis set of oxygen is unique, while the contribution of the two types of oxygen to the initial
density matrix is different.

END

Terminate processing of block 2, basis set, input. Execution continues. Subsequent input
records are processed, if required.

GAUSS98 - Printing of input file for GAUSS98 package

The keyword GAUSS98 writes in file GAUSSIAN.DAT an input deck to run Gaussian (Gaus-
sian 98 or Gaussian03) [89, 88]. The deck can be prepared without the calculation of the wave
function by entering the keyword TESTPDIM in input block 3 (page 113). For periodic
systems, coordinates and basis set for all the atoms in the reference cell only are written (no
information on translational symmetry).
If the keyword is entered many times, the data are overwritten. The file GAUSSIAN.DAT
contains the data corresponding to the last call.
The utility program gautocry reads basis set input in Gaussian format (as prepared by
http://www.emsl.pnl.gov/forms/basisform.html) and writes it in CRYSTAL format. No
input data required.

1. The route card specifies:

method HF
basis set GEN 5D 7F
type of job SP
geometry UNITS=AU GEOM=COORD

2. The title card is the same as in CRYSTAL input.

3. The molecule specification defines the molecular charge as the net charge in the reference
cell. If the system is not closed shell, the spin multiplicity is indicated with a string ”??”,
and must be defined by the user.

4. Input for effective core pseudopotentials is not written. In the route card PSEUDO =

CARDS is specified; the pseudopotential parameters used for the crystal calculation are
printed in the crystal output.

5. The scale factors of the exponents are all set to 1., as the exponents are already scaled.

6. the input must be edited when different basis sets are used for atoms with the same
atomic number (e.g., CO on MgO, when the Oxygen basis set is different in CO and in
MgO)

Warning: Only for 0D systems! The programs does not stop when the keyword GAUSS98
is entered for 1-2-3D systems. Coordinates and basis set of all the atoms in the primitive cell
are written, formatted, in file GAUSSIAN.DAT, following Gaussian scheme.

Warning If you run Gaussian 98 using the input generated by CRYSTAL with the keyword
GAUSS98, you do not obtain the same energy. There are 3 main differences between a standard
CRYSTAL run and a GAUSSIAN run.

1. CRYSTAL adopts by default bipolar expansion to compute coulomb integrals when the
two distributions do not overlap. To compute all 2 electron integrals exactly, insert
keyword NOBIPOLA in input block 3;

2. CRYSTAL adopts truncation criteria for Coulomb and exchange sums: to remove them,
in input block 3 insert:
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TOLINTEG

20 20 20 20 20

3. CRYSTAL adopts the NIST conversion factor bohr/Angstrom CODATA98:
1 Å= 0.5291772083 bohr
To modify the value, in input block 1 insert:

BOHRANGS

value_of_new_conversion_factor

GHOSTS

rec variable meaning
• ∗ NA number of atoms to be transformed into ghosts
• ∗ LA(L),L=1,NA label of the atoms to be transformed.

Selected atoms may be transformed into ghosts, by deleting the nuclear charge and the shell
electron charges, but leaving the basis set centred at the atomic position. The conventional
atomic number is set to zero., the symbol is “XX”.
If the system is forced to maintain the original symmetry (KEEPSYMM), all the atoms
symmetry related to the given one are transformed into ghosts.
Useful to create a vacancy (Test 37), leaving the variational freedom to the defective region
and to evaluate the basis set superposition error (BSSE), in a periodic system. The periodic
structure is maintained, and the energy of the isolated components computed, leaving the basis
set of the other one(s) unaltered. For instance, the energy of a mono-layer of CO molecules on
top of a MgO surface can be evaluated including the basis functions of the first layer of MgO,
or, vice-versa, the energy of the MgO slab including the CO ad-layer basis functions.
See test36 and test37.

Warning Do not use with ECP.

Warning The keyword ATOMREMO (input block 1, page 39) creates a vacancy, removing
nuclear charge, electron charge, and basis functions. The keyword GHOSTS creates a vacancy,
but leaves the basis functions at the site, so allowing better description of the electron density
in the vacancy.
Warning - Removal of nuclear and electron charge of the atoms selected is done after complete
processing of the input. They look still as ”atoms” in the printed output before that operation.

NOPRINT

Printing of basis set is removed. No input data required.

PRINTOUT - Setting of printing environment

See input block 1, page 62.

SETINF - Setting of INF values

See input block 1, page 64.

SETPRINT - Setting of printing options

See input block 1, page 64.

STOP

Execution stops immediately. Subsequent input records are not processed.
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TEST[BS]

Basis set input is checked, then execution stops. Subsequent input records (block3) are not
processed.

SYMMOPS

See input block 1, page 70

Effective core pseudo-potentials - ECP

rec variable value meaning
• A PSN pseudo-potential keyword:

HAYWLC Hay and Wadt large core ECP.
HAYWSC Hay and Wadt small core ECP.
BARTHE Durand and Barthelat ECP.
DURAND Durand and Barthelat ECP.
INPUT free ECP - input follows.

if PSN = INPUT insert II
• ∗ ZNUC effective core charge (ZN in eq. 3.16).

M Number of terms in eq. 3.17
M0 Number of terms in eq. 3.18 for ` =0.
M1 Number of terms in eq. 3.18 for ` =1.
M2 Number of terms in eq. 3.18 for ` =2.
M3 Number of terms in eq. 3.18 for ` =3.
M4 Number of terms in eq. 3.18 for ` =4. - CRYSTAL09

insert M+M0+M1+M2+M3+M4 records II
• ∗ ALFKL Exponents of the Gaussians: αk`.

CGKL Coefficient of the Gaussians: Ck`.
NKL Exponent of the r factors: nk`.

Valence-electron only calculations can be performed with the aid of effective core pseudo-
potentials (ECP). The ECP input must be inserted into the basis set input of the atoms with
conventional atomic number > 200.

The form of pseudo-potential Wps implemented in CRYSTAL is a sum of three terms: a
Coulomb term (C), a local term (W0) and a semi-local term (SL):

Wps = C +W0 + SL (3.15)

where:
C = −ZN/r (3.16)

W0 =

M∑
k=1

rnkCke
−αkr2 (3.17)

SL =

4∑
`=0

[

M∑̀
k=1

rnk`Ck`e
−αk`r2 ]P` (3.18)

ZN is the effective nuclear charge, equal to total nuclear charge minus the number of electrons
represented by the ECP, P` is the projection operator related to the ` angular quantum number,
and M, nk, αk, M`, nk`, Ck`, αk` are atomic pseudo-potential parameters.

1. Hay and Wadt (HW) ECP ([116, 114]) are of the general form 3.15. In this case, the
NKL value given in the tables of ref. [116, 114] must be decreased by 2 (2 → 0, 1 → -1,
0 → -2).
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2. Durand and Barthelat (DB) ([13] - [66], [14], [15]), and Stuttgart-Dresden [180] ECPs
contain only the Coulomb term C and the semi-local SL term.

3. In Durand and Barthelat ECP the exponential coefficient α in SL depends only on ` (i.e.
it is the same for all the Mk terms).

SL =

3∑
`=0

e−α`r
2

[

M∑̀
k=1

rnk`Ck`]P` (3.19)

The core orbitals replaced by Hay and Wadt large core and Durand-Barthelat ECPs are as
follows:

Li-Ne = [He]
Na-Ar = [Ne]
first series = [Ar]
second series = [Kr]
third series = [Xe]4f14.

The core orbitals replaced by Hay and Wadt small core ECPs are as follows:

K-Cu = [Ne]
Rb-Ag = [Ar] 3d10

Cs-Au = [Kr] 4d10 .

The program evaluates only those integrals for which the overlap between the charge distri-
bution ϕ0

µ ϕ
g
ν (page 349) and the most diffuse Gaussian defining the pseudopotential is larger

than a given threshold Tps (the default value is 10−5). See also TOLPSEUD (Section 2.3).

Pseudopotential libraries

The following periodic tables show the effective core pseudo-potentials included as internal
data in the CRYSTAL code.
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HAY AND WADT LARGE CORE ECP. CRYSTAL92 DATA

------- ------------------

Na Mg Al Si P S Cl Ar

------------------------------------------------------

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

------------------------------------------------------

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

------------------------------------------------------

Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi

------------------------------------------------------

HAY AND WADT SMALL CORE ECP. CRYSTAL92 DATA

-------------------------------------------------------

K Ca Sc Ti V Cr Mn Fe Co Ni Cu

-------------------------------------------------------

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag

-------------------------------------------------------

Cs Ba Hf Ta W Re Os Ir Pt Au

-------------------------------------------------------

DURAND AND BARTHELAT’S LARGE CORE ECP - CRYSTAL92 DATA

------ ------------------

Li Be B C N O F Ne

------ ------------------

Na Mg Al Si P S Cl Ar

-------------------------------------------------------

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

-------------------------------------------------------

Rb Y Ag In Sn Sb I

-------------------------------------------------------

Tl Pb Bi

-------------------------------------------------------

BARTHE, HAYWSC and HAYWLC pseudopotential coefficients and exponents are in-

serted as data in the CRYSTAL code. The data defining the pseudo-potentials where in-

cluded in CRYSTAL92, and never modified. The keyword INPUT allows entering updated

pseudo-potentials, when available. An a posteriori check has been possible for HAYWLC

and HAYWSC only, as the total energy of the atoms for the suggested configuration and

basis set has been published [116, 115]. Agreement with published atomic energies data is

satisfactory (checked from Na to Ba) for Hay and Wadt small core and large core pseudo-

potentials, when using the suggested basis sets. The largest difference is of the order of 10−3

hartree.

For Durand and Barthelat the atomic energies are not published, therefore no check has been

performed. The printed data should be carefully compared with those in the original papers.

The authors of the ECP should be contacted in doubtful cases.

Valence Basis set and pseudopotentials

Hay and Wadt ([116, 115]) have published basis sets suitable for use with their small and large

core pseudopotentials. and in those basis set the s and p gaussian functions with the same

quantum number have different exponent. It is common in CRYSTAL to use sp shells, where

basis functions of s and p symmetry share the same set of Gaussian exponents, with a conse-

quent considerable decrease in CPU time. The computational advantage of pseudopotentials

over all-electron sets may thus be considerably reduced.

Basis set equivalent to those suggested by Hay and Wadt can be optimized by using CRYSTAL

as an atomic package (page 83), or any atomic package with effective core pseudopotentials.
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See Chapter 16 for general comments on atomic basis function optimization. Bouteiller et al

[27] have published a series of basis sets optimized for Durand and Barthelat ECPs.

Stuttgart-Dresden ECP (formerly STOLL and PREUSS ECP)

The most recent pseudopotential parameters, optimized basis sets, a list of references and

guidelines for the choice of the pseudopotentials can be found in:

http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html

The clickable periodic table supplies, in CRYSTAL format, ECP to be used in CRYSTAL via

the INPUT keyword (basis set input, block2, page 75).

http://www.theochem.uni-stuttgart.de/pseudopotentials/clickpse.en.html

RCEP Stevens et al.

Conversion of Stevens et al. pseudopotentials An other important family of pseudopotentials

for the first-, second-, third-, fourth and fifth-row atoms of the periodic Table (excluding

the lanthanide series) is given by Stevens et al. [206, 207]. Analytic Relativistic Compact

Effective Potential (RCEP) are generated in order to reproduce the ”exact” pseudo-orbitals

and eigenvalues as closely as possible. The analytic RCEP expansions are given by:

r2Vl(r) =
∑
k

Alkr
nl,ke−Blkr

2

An example of data for Ga atom (Table 1, page 616 of the second paper) is:

Alk nlk Blk
Vd -3.87363 1 26.74302

Vs−d 4.12472 0 3.46530
260.73263 2 9.11130

-223.96003 2 7.89329
Vp−d 4.20033 0 79.99353

127.99139 2 17.39114

The corresponding Input file for the CRYSTAL program will be as follows:

INPUT
21. 1 3 2 0 0 0

26.74302 -3.87363 -1
3.46530 4.12472 -2
9.11130 260.73263 0
7.89329 -223.96003 0

79.99353 4.20033 -2
17.39114 127.99139 0

Note that for the r-exponent (nlk), -2 has been subtracted to the value given in their papers,

as in the case of Hay and Wadt pseudopotentials.
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3.3 Computational parameters, Hamiltonian,
SCF control

Single particle Hamiltonian

RHF Restricted Closed Shell 107 –
UHF Unrestricted Open Shell 115 –
MP2 Electron correlation energy 104 –

DFT DFT Hamiltonian 115 –
SPIN spin-polarized solution 124 –

Choice of the exchange-correlation functionals

EXCHANGE exchange functional 118 I
LDA functionals

LDA Dirac-Slater [53] (LDA)
VBH von Barth-Hedin [220] (LDA)

GGA functionals
BECKE Becke 1988[18] (GGA)
PBE Perdew-Becke-Ernzerhof 1996 [160] (GGA)
PBESOL GGA. PBE functional revised for solids [162]
mPW91 modified Perdew-Wang 91 (GGA)
PWGGA Perdew-Wang 91 (GGA)
SOGGA second order GGA. [238]
WCGGA GGA - Wu-Cohen [229]

CORRELAT correlation functional 118 I
LDA functionals

PZ Perdew-Zunger [166] (LDA)
VBH von Barth-Hedin [220] (LDA)
VWN Vosko,-Wilk-Nusair [221] (LDA)

GGA functionals
LYP Lee-Yang-Parr [133] (GGA)
P86 Perdew 86 [158] (GGA)
PBE Perdew-Becke-Ernzerhof [160] (GGA)
PBESOL GGA. PBE functional revised for solids [162]
PWGGA Perdew-Wang 91 (GGA)
PWLSD Perdew-Wang 92 [164, 165, 163] (GGA)
WL GGA - Wilson-Levy [227]

Standalone keywords: exchange+correlation
SVWN see [53, 221] 118
BLYP see [18, 133] 118
PBEXC see [160] 118
PBESOLXC see [162] 118
SOGGAXC see [238] 118

Global Hybrid functionals
Standalone keywords
B3PW B3PW parameterization 119 –
B3LYP B3LYP parameterization 119 –
PBE0 Adamo and Barone [6] 119
PBESOL0 Derived from PBE0 119
B1WC see [22] 119
WC1LYP see [51] 119
B97H see [5, 81] 119
PBE0-13 see [36] 119
User defined global hybrids
HYBRID hybrid mixing 119 I
NONLOCAL local term parameterization 119 I
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Range-Separated Hybrid functionals
Short-range Corrected RSH functionals
HSE06 Screened-Coulonb PBE XC functional [3, 160] 121 –
HSESOL Screened-Coulomb PBESOL XC functional [132, 162] 121 –
SC-BLYP SC-RSH BLYP functional based on ITYH scheme [110,
231]

121 –

Middle-range Corrected RSH functionals
HISS MC based on PBE XC functional [210, 211] 121 –
Long-range Corrected RSH functionals
RSHXLDA LC LDA XC functional [2, 123] 121 –
wB97 Chai/Head-Gordon LC functional [124, 5] 121 –
wB97X Chai/Head-Gordon SC/LC functional [124, 5] 121 –
LC-wPBE LC hybrid based on PBE XC functional [67] 121 –
LC-wPBESOL LC hybrid based on PBESOL XC functional [67] 121 –
LC-wBLYP LC hybrid based on BLYP XC functional [67] 121 –
LC-BLYP LC-RSH BLYP functional based on ITYH scheme [110,
231]

121 –

CAM-B3LYP Coulomb-Attenuating method)[214] based on the BLYP
XC functional

121 –

User defined range separated hybrids
SR-OMEGA setting of ωSR for SC hybrids 122 –
MR-OMEGA setting of ωSR and ωLR for MC hybrids 122 –
LR-OMEGA setting of ωLR for LC hybrids 122 –
SR-HYB WB97XOption to change the amount of SR-HF exchange in the
ωB97-X functional

122 –

LSRSH-PBE User-controllable RSH x-functional based on the PBE
functional

122 –

meta-GGA functionals
Pure mGGA functionals
M06L pure mGGA M06-type functional [233] 122 –
Global hybrid mGGA functionals
M05 Minnesota 2005 functional [237] 122 –
M052x M05-2X functional [236] 122 –
M06 Minnesota 2006 functional [235] 122 –
M062X M06-2X functional [235] 122 –
M06HF M06-type functional with 100% HF [233] 122 –

Double Hybrid functionals
B2PLYP DH method based on BLYP functional [190] 123 –
B2GPPLYP General purpose variant of B2PLYP [1] 123 –
mPW2PLYP DH method based on mPW91-LYP functional [213] 123 –
DHYBRID HF exchange and MP2-like mixing for double hybrids 123 I
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Numerical accuracy control

ANGULAR definition of angular grid 126 I
RADIAL definition of radial grid 126 I
[BECKE] selection of Becke weights (default) 126 –
SAVIN selection of Savin weights 126 –
OLDGRID ”old” default grid 129
LGRID ”large” predefined grid 129
[XLGRID] ”extra large” predefined grid (new default)
XXLGRID ”extra extra large” predefined grid 129
RADSAFE safety radius for grid point screening I

TOLLDENS density contribution screening 6 130 I

TOLLGRID grid points screening 14 130 I
[BATCHPNT] grid point grouping for integration 130 I
CHUNKS max n. points in a batch for numerical int. 130 I
DISTGRID distribution of DFT grid across nodes 131

LIMBEK size of local arrays for integration weights 400 131 I

Atomic parameters control

RADIUS customized atomic radius 131 I
FCHARGE customized formal atomic charge 131 I

Auxiliary

END close DFT input block

Numerical accuracy and computational parameters control

BIPOLAR Bipolar expansion of bielectronic integrals 85 I
BIPOSIZE size of coulomb bipolar expansion buffer 85 I
EXCHSIZE size of exchange bipolar expansion buffer 85 I
EXCHPERM use permutation of centers in exchange integrals 90 –
ILASIZE Maximum size of array ILA for 2-electron integral calculation

6000
101 I

INTGPACK Choice of integrals package 0 102 I

MADELIND reciprocal lattice vector indices for Madelung sums 50 103 I
NOBIPCOU Coulomb bielectronic integrals computed exactly 105 –
NOBIPEXCH Exchange bielectronic integrals computed exactly 105 –
NOBIPOLA All bielectronic integrals computed exactly 105 –

POLEORDR Maximum order of multipolar expansion 4 106 I

TOLINTEG Truncation criteria for bielectronic integrals 6 6 6 6 12 114 I

TOLPSEUD Pseudopotential tolerance 6 114 I

Type of run

ATOMHF Atomic wave functions 83 I
SCFDIR SCF direct (mono+biel int computed) 107 –
EIGS S(k) eigenvalues - basis set linear dependence check 88 –
FIXINDEX Reference geometry to classify integrals 93 –

Basis set - AO occupancy

FDAOSYM f and d degeneracies analysis 91 I
FDAOCCUP f and d orbital occupation guess 92 I
GUESDUAL Density matrix guess - different Basis set 97 I

Integral file distribution

BIESPLIT writing of bielectronic integrals in n files n = 1 ,max=10 84 I

MONSPLIT writing of mono-electronic integrals in n file n = 1 , max=10 104 I
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Numerical accuracy control and convergence tools

ANDERSON Fock matrix mixing 83 I
BROYDEN Fock matrix mixing 85 I
DIIS Fock matrix mixing/convergence accelerator 86 I

FMIXING Fock/KS matrix (cycle i and i-1) mixing 0 95 I
LEVSHIFT level shifter no 102 I

MAXCYCLE maximum number of cycles 50 103 I
SMEAR Finite temperature smearing of the Fermi surface no 110 I

TOLDEE convergence on total energy 6 114 I

Initial guess

EIGSHIFT alteration of orbital occupation before SCF no 88 I
EIGSHROT rotation of the reference frame no 89 I
GUESSP density matrix from a previous run 99 –

GUESSPAT superposition of atomic densities 100 –

Spin-polarized system

ATOMSPIN setting of atomic spin to compute atomic densities 83 I
BETALOCK beta electrons locking 84 I
SPINLOCK spin difference locking 113 I
SPINEDIT editing of the spin density matrix used as SCF guess 112 I

Auxiliary and control keywords

END terminate processing of block3 input –
FULLTIME detailed report on running time 95 –
KSYMMPRT printing of Bloch functions symmetry analysis 102 –
LOWMEM inhibits allocation of large arrays 103 –
NOLOWMEM allows allocation of large arrays 103 –
MAXNEIGHB maximum number of equidistant neighbours from an atom 51 I
NEIGHBOR number of neighbours to analyse in PPAN 59 I
MEMOPRT Synthetic report about dynamic memory usage 103 –
MEMOPRT2 Detailed report about dynamic memory usage 104 –
PRINTOUT setting of printing options 62 I

QVRSGDIM maximum size of mutipole moment gradient array 90000000 107 I
NOSYMADA No Symmetry Adapted Bloch Functions 106 –
SYMADAPT Symmetry Adapted Bloch Functions (default) 113 –
SETINF setting of inf array options 64 I
SETPRINT setting of printing options 64 I
STOP execution stops immediately 65 –
TESTPDIM stop after symmetry analysis 113 –
TEST[RUN] stop after integrals classification and disk storage estimate 113 –

Restricted to MPPcrystal

CMPLXFAC Overloading in handling matrices at “complex” k points with

respect to “real” k points 2.3

86 I

REPLDATA to run MPPcrystal as Pcrystal 107 –
STDIAG Enable standard diagonalization method (D&C method dis-

abled)
113 –

Output of data on external units

NOFMWF wave function formatted output not written in file fort.98. 105 –
SAVEWF wave function data written every two SCF cycles 107 –
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Post SCF calculations

POSTSCF post-scf calculations when convergence criteria not satisfied 106 –
EXCHGENE exchange energy evaluation (spin polarized only) 90 –
GRADCAL analytical gradient of the energy 95 –
PPAN population analysis at the end of the SCF no 106

Computational parameters, Hamiltonian, SCF control
optional keywords

ANDERSON

Anderson’s method [7], as proposed by Hamann [112], is applied. No input data are required.

See test49 dft, a metallic Lithium 5 layers slab, PWGGA Hamiltonian.

ATOMHF - Atomic wave function calculation

The Hartree-Fock atomic wave functions for the symmetry unique atoms in the cell are com-

puted by the atomic program [188]. Full input (geometry, basis set, general information, SCF)

is processed. No input data are required. The density matrix, constructed from a superpo-

sition of atomic densities, is computed and written on Fortran unit 9, along with the wave

function information. The crystal program then stops. It is then possible to compute charge

density (ECHG) and classical electrostatic potential (CLAS) maps by running the program

properties. This option is an alternative to the keyword PATO in the program properties

(page 301), when the calculation of the periodic wave function is not required. The atomic

wave function, eigenvalues and eigenvectors, can be printed by setting the printing option 71.

1. The atomic basis set may include diffuse functions, as no periodic calculation is carried

out.

2. A maximum of two open shells of different symmetry (s, p, d) are allowed in the electronic

configuration. In the electronic configuration given in input the occupation number of

the shells must follow the rules given in Section 2.2.

3. For each electronic configuration, the highest multiplicity state is computed. Multiplicity

cannot be chosen by the user.

Warning: DFT wave function for isolated atoms can not be computed.

ATOMSPIN - Setting of atomic spin

rec variable meaning
• ∗ NA number of atoms to attribute a spin
• ∗ LA,LS(LA),L=1,NA atom labels and spin (1, 0, -1)

The setting of the atomic spins is used to compute the density matrix as superposition of

atomic densities (GUESSPAT must be SCF initial guess); it does not work with GUESSP).

The symmetry of the lattice may be reduced by attributing a different spin to geometrically

symmetry related atoms. In such cases a previous symmetry reduction should be performed

using the MODISYMM keyword. The program checks the symmetry taking the spin of the

atoms into account. If the spin pattern does not correspond to the symmetry, the program

prints information on the new symmetry, and then stops.
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The formal spin values are given as follows:

1 atom spin is taken to be alpha;

0 atom spin is irrelevant;

-1 atom spin is taken to be beta.

In a NiO double-cell (four atoms, Ni1 Ni2 O1 O2) we might use:

atom Ni1 Ni2

spin 1 1 for starting ferromagnetic solutions: ↑ ↑
spin 1 -1 for starting anti ferromagnetic solutions: ↑ ↓

SPINLOCK forces a given nα − nβ electrons value: to obtain a correct atomic spin density

to start SCF process, the atomic spins must be set even for the ferromagnetic solution.

See test 30 and 31.

BETALOCK - Spin-polarized solutions

rec variable meaning
• ∗ INF97 nβ electrons
∗ INF98 number of cycles the nβ electrons is maintained

The total number of of β electrons at all k points can be locked at the input value. The number

of α electrons is locked to (N + INF95)/2, where N is the total number of electrons in the

unit cell. INF95 must be odd when the number of electrons is odd, even when the number of

electrons is even. See SPINLOCK for alternative way to define spin setting.

Note: if INF98 is < 0, then the lock duration is controlled by energy difference between

successive cycles (disappears when < 10−INF98) instead of by number of cycles. This is useful

when the locking must be relaxed before the convergence of the SCF -otherwise there is a risk

to arrive to a spurious solution- but at the same time one does not know exactly in which SCF

cycle the density matrix can be considered to be close enough to the right electronic structure

so as to avoid a divergent behavior after the locking finishes.

Situations like this may occur in geometry optimizations of ferromagnetic systems, for instance:

the SCF of the first optimization point converges in CYC 20 with the locking finishing in CYC

12; in the remaining points, as the density matrix of the previous one is used as initial guess,

the SCF converges in CYC 10 under locking and, so, the true convergence is not ensured.

Using FINALRUN=4 this situation could lead to an extremely large or even non convergent

optimization process.

On the other hand, to fix locking since the energy difference between cycles is less than a given

threshold is a quite handy criterion that could be in several cases preferable than fixing the

duration in terms of number of cycles.

BIESPLIT - Splitting of large bielectronic integral files

rec variable meaning

• ∗ NFILE number of files to be used 1 (max 10)

Very compact crystalline systems, and/or very diffuse basis functions and/or very tight toler-

ances can produce billions integrals to be stored. The storage of bielectronic integrals can be
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avoided by running the direct SCF code scfdir rather than the standard SCF, at the expenses

of a certain amount of CPU time.

When the standard SCF code is used, distributing the integrals on several disk files can improve

performance.

BIPOLAR - Bipolar expansion approximation control

rec variable meaning

• ∗ ITCOUL overlap threshold for Coulomb 18

∗ ITEXCH overlap threshold for exchange 14

The bipolar approximation is applied in the evaluation of the Coulomb and exchange integrals

(page 353). ITCOUL and ITEXCH can be assigned any intermediate value between the default

values (18 and 14) (see page 353) and the values switching off the bipolar expansion (20000

and 20000).

Note that default values have become tighter, 18 and 14, from Crystal14, whereas

before they were 14 and 10, respectively. Results are now expected to be more

accurate but the program might be slower.

BIPOSIZE -Size of buffer for Coulomb integrals bipolar expansion

rec variable meaning
• ∗ ISIZE size of the buffer in words

Size (words) of the buffer for bipolar expansion of Coulomb integrals (default value is 4000000,

that is 32 Mb, per core). The size of the buffer is printed in the message:

BIPO BUFFER LENGTH (WORDS) = XXXXXXX

or

COULOMB BIPO BUFFER TOO SMALL - TO AVOID I/O SET BIPOSIZE = XXXXXX

BROYDEN

rec variable meaning
• ∗ W0 W0 parameter in Anderson’s paper [125]
∗ IMIX percent of Fock/KS matrices mixing when Broyden method is switched on
∗ ISTART SCf iteration after which Broyden method is active (minimum 2)

A modified Broyden [32] scheme, following the method proposed by Johnson [125], is applied

after the ISTART SCF iteration, with IMIX percent of Fock/KS matrices simple mixing. The

value of % mixing given in input after the keyword FMIXING is overridden by the new one.

Level shifter should be avoided when Broyden method is applied.

Suggested values:

FMIXING

80

BROYDEN

0.0001 50 2

See test50 dft, a metallic Lithium 5 layers slab, PWGGA Hamiltonian.
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CMPLXFAC - Weight for diagonalization time

This directive is supported by MPPcrystal only.
rec variable meaning
• ∗ WEIGHT estimated ratio of the computational time required to diagonalize complex

and real matrices. Default value: 2.3.
Fock matrix elements at a general k point in reciprocal space are complex numbers. At special

k points (such as Γ, for example) those elements are real. Computational times required to

diagonalize real (tr) and complex (tc) matrices are different. WEIGHT is an estimate of the

ratio: WEIGHT = tc/tr.

An appropriate assessement of WEIGHT improves load balancing. The default value is: 2.3.

DIIS – Direct Inversion of the Iterative Subspace convergence accel-
erator

The Direct Inversion of Invariant Subspace (DIIS) is a powerful technique to accelerate the

SCF convergence that gained success in recent years. Initially proposed by Pulay in 1984 for

SCF convergence,[184, 182] it gained considerable reputation during the last 30 years. This is

a new Crystal17 feature, and is activated by default.
Select DIIS scheme

keyword meaning

DIIS Activates the Γ−point only DIIS procedure [default].
DIIS1K Equivalent to DIIS
PRTDIIS Activates detailed printing of the Fock mixing coefficients in the DIIS pro-

cedure.
DIISALLK DIIS is performed over all k-points of the Brillouin zone
SLOSHING DIIS is performed over all k-points of the Brillouin zone but weighted ac-

cording to Kerker factors to avoid charge sloshing.
NODIIS Deactivates DIIS and restores FMIXING 30% + LEVSHIFT

optional additional keywords
rec variable meaning
A HISTDIIS Limits DIIS mixing to the most recent NCY C cycles

• ∗ NCYC maximum number of previous cycles to be kept
A THREDIIS Postpones the activation of DIIS by performing Fock mixing until the dif-

ference in energy is below DEDIIS.
• ∗ DEDIIS threshold for ∆E to activate DIIS

A THRKDIIS All the Fock matrices having a weight lower than KDIISTHR are discarded
from DIIS history.

• ∗ DIISTHR threshold on DIIS weight for discarding earlier Fock matrices
A SLOSHFAC Sets Kerker factor if SLOSHING is active

• ∗ FKERK Set the parameter used for Kerker factors (k-points weights) [Default: 1.2 ]

Note: DIISALLK and SLOSHING are not available in MPPcrystal

Let us consider an SCF iterative procedure. Cycle n starts with the definition of a density

matrix Dn(k), either obtained as an initial guess (at cycle 0) or from eigenvectors of the

previous cycle. A Fock matrix Fn(k) is then obtained from this density matrix, and then

diagonalized in each k point to obtain eigenvectors Cn(k). These will form the Dn+1(k)

density matrices and so on. In the DIIS procedure, at each iterative cycle n, instead of the

Fock matrix Fn(k), an averaged effective Hamiltonian is generated as a linear combination of

the Fock matrices of previous iterations:
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Fn =

n∑
i=1

ciFi . (3.20)

The ci coefficients are obtained by minimizing a suitable error functional e, subject to the

constraint that
∑n
i=1 ci = 1. This is obtained by solving the linear equation system:(

e 1T

1 0

)(
c
λ

)
=

(
0
1

)
, (3.21)

where e is an error matrix having the size of the iterative space up to cycle n and λ is a

Lagrange multiplier. The error matrix is defined through scalar products of suitable error

vectors in each k point of the Brillouin zone:

enm =
∑
k

fk < en(k)|em(k) > . (3.22)

where k-dependent factors fk are introduced.

- By default, only gamma point is used in DIIS (DIIS1K), and in this case fk = 1 and

no summation is performed over k points.

- Sum can be extended to all k points, with factors set all equal to 1/Nk, by using the

keyword DIISALLK.

- The keyword SLOSHING is similar to DIISALLK, but different weights for different

k-points are used, according to Kerker’s formula

According to Pulay’s commutator-DIIS (CDIIS) formulation,[182] we define the error vector

for the SCF procedure as:

en(k) = Fn(k)Dn(k)S(k)− S(k)Dn(k)Fn(k) , (3.23)

where S(k) is the overlap matrix. The CDIIS formulation is particularly convenient because

it allows the number of occupied orbitals in a given k point to vary during iterations.

DFT

The Kohn-Sham [129, 121] DFT code is controlled by keywords, that must follow the general

keyword DFT, in any order.

The DFT input block ends with the keyword END or ENDDFT. Default values are supplied

for all computational parameters. For further details see Chapter 4.

DOPING - Fractional charge doping

rec variable meaning
• ∗ CHGDOPamount of electrons to be added to the system (real number)

The keyword allows to add (or remove) electrons from the system independently of the number

of electrons given as initial guess in the basis set input or using CHEMOD (see page 72). The

additional electronic charge is added after the first diagonalization of the SCF procedure. If

the resulting cell is not neutral, a uniform compensating charge background is added auto-

matically (similarly to keyword CHARGED, page 72). At difference with CHEMOD, through
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this keyword it is possible to add a fractional amount of electrons to a periodic cell, obtaining

equivalent results with respect to adding one electron to an appropriate supercell of the original

cell.

Warning: when adding a fractional number of electrons to a cell, particular care must be

taken in verifying that the sampling of reciprocal space is well converged. The appropriate

value of the shrinking factor for such a system is in some cases several times larger than for

the neutral cell, and is dependent on the amount of charge doping.

EIGS - Check of basis set linear dependence

In order to check the risk of basis set linear dependence, it is possible to calculate the eigenvalues

of the overlap matrix. Full input (geometry, basis set, general information, SCF) is processed.

No input data are required. The overlap matrix in reciprocal space is computed at all the k-

points generated in the irreducible part of the Brillouin zone, and diagonalized. The eigenvalues

are printed.

The higher the numerical accuracy obtained by severe computational conditions, the closer

to 0 can be the eigenvalues without risk of numerical instabilities. Negative values indicate

numerical linear dependence. The crystal program stops after the check (even if negative

eigenvalues are not detected).

The Cholesky reduction scheme [130], adopted in the standard SCF route, requires linearly

independent basis functions.

MPP doesn’ support EIGS.

EIGSHIFT - Alteration of orbital occupation before SCF

rec variable meaning
• ∗ NORB number of elements to be shifted

> 0 level shift of diagonal elements only
< 0 off-diagonal level shift

insert NORB records
if NORB > 0

• ∗ IAT label of the atom
ISH sequence number of the shell in the selected atom Basis Set (as given in Basis

Set input)
IORB sequence number of the AO in the selected shell (see Section 2.2, page 25).
SHIF1 α (or total, if Restricted) Fock/KS matrix shift
[SHIF2 β Fock/KS matrix shift - spin polarized only ]

if NORB < 0
• ∗ IAT label of the atom

ISH sequence number of the shell in the selected atom Basis Set
IORB1 sequence number of the AO in the selected shell
IORB2 sequence number of the AO in the selected shell
SHIF1 α (or total, if Restricted) Fock/KS matrix shift
[SHIF2 β Fock/KS matrix shift - spin polarized only]

Selected diagonal Fock/KS matrix elements can be shifted upwards when computing the initial

guess, to force orbital occupation. This option is particularly useful in situations involving d

orbital degeneracies which are not broken by the small distortions due to the crystal field, but

which are broken by some higher-order effects (e.g. spin-orbit coupling). The EIGSHIFT

option may be used to artificially remove the degeneracy in order to drive the system to a

stable, non-metallic solution. The eigenvalue shift is removed after the first SCF cycle.
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If the shift has to be applied to matrix elements of atoms symmetry related, the input data

must be repeated as many times as the atoms symmetry related.

Example: KCoF3 (test 38). In the cubic environment, two β electrons would occupy the three-

fold degenerate t2g bands. A state with lower energy is obtained if the degeneracy is removed

by a tetragonal deformation of the cell (keyword ELASTIC), and the dxy orbital (see page

25 for d orbital ordering) is shifted upwards by 0.3 hartree.

Warning EIGSHIFT acts on the atoms as specified in input. If there are atoms symmetry-

related to the chosen one, hamiltonian matrix elements shift is not applied to the others. The

programs checks the symmetry compatibility, and, if not satisfied, stops execution. The matrix

elements of all the atoms symmetry-related must be shifted, if the symmetry of the systems

must be kept

The keyword ATOMSYMM (input block 1, page 40) prints information on the atoms sym-

metry related in the cell.

EIGSHROT

Consider now the case of CoF2. The first six neighbors of each Co2+ ion form a slightly

distorted octahedron (2 axial and 4 equatorial equivalent distances); also in this case, then, we

are interested in shifting upwards the dxy orbital, in order to drive the solution towards the

following occupation:

α: all five d orbitals

β: dxz and dyz

The principal axis of the CoF6 octahedron, however, is not aligned along the z direction, but lies

in the xy plane, at 450 from the x axis. The cartesian reference frame must then be reoriented

before the shift of the dxy orbital.

To this aim the option EIGSHROT must be used. The reoriented frame can be specified in

two ways, selected by a keyword:

rec variable meaning
• MATRIX keyword - the rotation matrix R is provided
• ∗ R11 R12 R13 first row of the matrix.
• ∗ R21 R22 R23 second row of the matrix.
• ∗ R31 R32 R33 third row of the matrix.

or
• ATOMS keyword - the rotation is defined by three atoms of the crystal
• ∗ IA label of first atom in the reference cell

AL,AM,AN indices (direct lattice, input as reals) of the cell where the first atom
is located

• ∗ IB label of second atom in the reference cell
BL,BM,BN indices (direct lattice, input as reals) of the cell where the second

atom is located
• ∗ IC label of third atom in the reference cell

CL,CM,CN indices (direct lattice, input as reals) of the cell where the third atom
is located

insert EIGSHIFT input records (Section 3.3, page 88)

When the rotation is defined by three atoms, the new reference frame is defined as follows :

Z-axis from atom 2 to atom 1

X-axis in the plane defined by atoms 1-2-3 (the vector joining atom 3 to atom 1, in general, is

not orthogonal to the vectors joining atom 2 to atom 1; it is then orthogonalized.)

Y-axis orthogonal to Z- and X-axis
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Notice that the wave function calculation is performed in the original frame: the aim of the

rotation is just to permit a shift of a particular orbital. A rotation of the eigenvectors can be

obtained in properties by entering the keyword ROTREF, allowing AO projected Density

of States or Population Analysis orienting the cartesian frame along the principal axes of the

octahedron.

Example:

CoF2

ROTREF

ATOMS

5

0 0 0

2

0 0 0

3

0 0 0

PPAN

END

END

END

Terminate processing of block 3,(last input block). Execution continues. Subsequent input

records are not processed.

EXCHGENE - Exchange energy calculation

In RHF calculations Coulomb and exchange integrals are summed during their calculation,

and there is no way to separate the exchange contribution to the total energy. In UHF/ROHF

calculations, this option allows the independent calculation and printing of the exchange con-

tribution to the total energy. See equation 17.19, page 352.

No input data are required. See tests 29, 30, 31, 38.

EXCHPERM - Use permutation of center in exchange integrals

In HF and hybrids calculations exact exchange integrals (see equation 17.19, page 352) are

normally calculated in the same routine that calculates Coulomb integrals, exploiting the sym-

metry of the system in order to reduce the number of computed integrals. In case of systems

without symmetry (having only the identity as symmetry operator), this option separates the

calculation of exchange from that of Coulomb integrals, and exploits invariance of bielectronic

integrals under permutation of centers instead of symmetry.

Given a bielectronic integral (µρ|νσ), where µ ν ρ σ label the four centers (see chapter 17),

the integrals obtained with the permutations:

µ↔ ρ , ν ↔ σ and (µρ)↔ (νσ) (3.24)

are related to the original one by hermiticity. Of the 23 = 8 equivalent integrals only 4 are used

to obtain the irreducible part of the Fock matrix, since hermiticity of the Fock matrix is already

exploited. With this option the time required for the calculation of the exchange contribution

to the Fock matrix is reduced to 40-50% of the normal value. The option is usable only in a

SCFDIR run (see page 107) and it is automatically switched off in presence of symmetry.

No input data are required.
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EXCHSIZE - Size of buffer for exchange integrals bipolar expansion

rec variable meaning
• ∗ ISIZE size of the buffer in words

Size (words) of the buffer for bipolar expansion of exchange integrals (default value is 4000000,

that is 32 Mb, per core).

The size of the buffer is printed in the message:

EXCH. BIPO BUFFER: WORDS USED = XXXXXXX

or

EXCH. BIPO BUFFER TOO SMALL - TO AVOID I/O SET EXCHSIZE = XXXXXX

FDAOSYM - f and d degeneracies analysis

rec variable meaning
• ∗ NA number of atoms for which the AOs mixing check is performed
• ∗ ISCAT(J),J=1,NA atomic label (output order) of atoms to be checked

This keyword performs the symmetry analysis that permits to know if AOs belonging to the

same shell are mixed or not by the symmetry operators that don’t move the atom, to which

they belong to. This analysis is implemented for d and f shell types only. The FDAOSYM

keyword must be inserted in the third block of the CRYSTAL input.

In the output, the subgroup of operators that do not move the atom is performed first (ATOM-

SYMM keyword). Then the AOs are listed with the indication of mixing with other AOs (if

any).

This keyword is useful for partially occupied shells (d or f). AOs that mix will form a sym-

metry constrained degeneracy subset. If n AOs of the shell mix generating these subsets, and

m<n (open shell case) electrons are supposed to populate the shell, then Jahn-Teller symmetry

breaking should be taken into account. If a guess AOs occupation is defined with FDOCCUP

keyword or forced with EIGSHIFT keyword, information obtained by FDAOSYM can indicate

which AOs will have the same occupation.

Example. Ce2O3 bulk. Structure 4d shell is completely filled and 4f shell contains one elec-

tron. Suppose Ce atom is labeled 1. Information produced by FDAOSYM indicates which

AOs will have the same occupation. If combined with TESTRUN such information is obtained

at zero cost and then a new input with FDOCCUP or EIGSHIFT keywords can be run. The

input is

FDAOSYM

1

1

TESTRUN

Output obtained contains also d shell information, here just f part is reported.

ANALYSIS FOR SHELL TYPE F

COMPONENT MIXES WITH SYMMETRY OPERATORS

1

2 3 2 3 10 12

3 2 2 3 10 12

4 5 2 3 10 12

5 4 2 3 10 12

6

7
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That is: AOs 1, 6 and 7 do not mix with any other AO, 2 and 3 mix as well as 4 and 5.

Label and characteristic polynomial for quantum angular symmetry d and f are reported in

the FDOCCUP keyword description.

FDOCCUP - f and d orbital occupation guess

rec variable meaning
• ∗ INSELOC number of records describing the occupation of d or f shells

insert INSELOC records II
IATNUM atom label, output order
ISHATO shell label, atomic list
SHTYP angular quantum label of ISHATO(I)

• ∗ IAOCALPH(J) α occupation of the 5 d (J=1,5) or 7 f (J=1,7) AOs of the shell
• ∗ IAOC BETA(J) β occupation of the 5 d (J=1,5) or 7 f (J=1,7) AOs of the shell

Label and characteristic polynomial for quantum angular symmetry d and f are reported in

the following. Spherical harmonics are used, it follows that 5 and 7 functions are reported for

d and f symmetry respectively.

Symmetry d, label 3 Symmetry f , label 4
Label Polynomial label Polynomial

1 (2z2 − x2 − y2) 1 (2z2 − 3x2 − 3y2)
2 xz 2 x(4z2 − x2 − y2))
3 yz 3 y(4z2 − x2 − y2)
4 (x2 − y2) 4 z(x2 − y2)
5 xy 5 (xyz)

6 x(x2 − 3y2)
7 y(3x2 − y2)

The option FDOCCUP permits to define the occupation of specific f or d orbitals in a given
shell in the initial guess calculation. This option can be used only for open shell cases, where
electrons belonging to partially filled shells can be assigned to selected AOs.

INSELOC specifies the number of shell occupation descriptions; for each shell, the atom IAT-
NUM (output order) and the shell label ISHATO (basis set order) is specified. As a cross
check, also the shell label type SHTYP (3 and 4 for d and f respectively) is required. Finally
the α and β occupation for the 5 (d) or 7 (f) AOs in the shell is indicated. The occupation
numbers in IAOCALPH(J) and IAOCBETA(J) are normalized a posteriori to the number of
d or f electrons resulting from the input charges.

Note that the input information must be inserted just one time per atomic number (say 26,
Fe) and IATNUM can be any of the output order atom labels for the selected atom. See
EXAMPLE 1 for test case.

To attribute different AOs guess occupation to atoms with the same atomic number, it is just
needed to insert as many input as the number of different occupation one wants to set with
IATNUM indicating atom labels of atoms with same atomic number but not symmetry related.
If different AOs occupation for atoms symmetry related is required, the program stops and an
indication of symmetry relations between atoms is reported (as the one obtained by the use of
ATOMSYMM keyword).
FDOCCUP can be used in conjunction with EIGSHIFT, ATOMSPIN and SPINLOCK. Note
that FDOCCUP and ATOMSPIN act at CYCLE 0, EIGSHIFT at CYCLE 1 and SPINLOCK
works from CYCLE 1 for a defined number of cycles.
On the contrary FDOCCUP, as ATOMSPIN, is incompatible with SPINEDIT, where the ini-
tial guess calculation is bypassed because the initial guess is obtained by a previous calculation.

Example. Ce2O3. The Ce3+ ion is required to have one f electron. Suppose Ce is the first
atom in the input list and that the seventh shell in the Basis Set list is the f shell with charge
one. Suppose to distribute the f electron in two AOs with similar occupation: f(2z2−3x2−3y2)z

(first f AO) and f(x2−3y2)y (sixth f AO). Use of FDOCCUP in this case is reported in the
following:

FDOCCUP

1
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1 7 4

1 0 0 0 0 1 0

0 0 0 0 0 0 0

Output is printed in the ATOMIC WAVEFUNCTION(S) part and is reported in the following.
Note that the nuclear charge is 30 instead of 58 because pseudopotential is used.

NUCLEAR CHARGE 30.0 SYMMETRY SPECIES S P D

N. ELECTRONS 27.0 NUMBER OF PRIMITIVE GTOS 11 11 5

NUMBER OF CONTRACTED GTOS 4 4 1

NUMBER OF CLOSED SHELLS 2 2 1

OPEN SHELL OCCUPATION 0 0 0

ZNUC SCFIT TOTAL HF ENERGY KINETIC ENERGY VIRIAL THEOREM ACCURACY

30.0 7 -4.706164398E+02 1.769968771E+02 -3.658896854E+00 3.4E-06

FDOCCUP ACTIVE - ATOM 1 SHELL 6 F SYMMETRY WITH CHARGE 1.0

DIAGONAL ELEMENTS OF DENSITY MATRIX FOR SHELL 6

ALPHA+BETA 0.500 0.000 0.000 0.000 0.000 0.500 0.000

ALPHA-BETA 0.500 0.000 0.000 0.000 0.000 0.500 0.000

Note: the printed information refers to α + β and α − β, while in input α and β are inserted

separately.

FIXINDEX

No input data required.

When the geometrical and/or the basis set parameters of the system are changed, maintaining

the symmetry and the setting, the truncation criteria of the Coulomb and exchange series,

based on overlap (Chapter 17) can lead to the selection of different numbers of bi-electronic

integrals. This may be the origin of numerical noise in the optimization curve. When small

changes are made on the lattice parameter or on the Gaussian orbital exponents, the indices of

the integrals to be calculated can be selected for a reference geometry (or basis set), ”frozen”,

and used to compute the corresponding integrals with the modified geometry (or basis set).

This procedure is recommended only when basis set or geometry modifications are relatively

small.

• The corresponding irreducible atoms in the two geometries must be entered in the same

order, and their position in the second geometry must be slightly shifted in comparison

with the first geometry (reference);

• the reference geometry must correspond to the most compact structure;

• the reference basis set must have the lowest outer exponent.

This guards against the loss of significant contributions after, for example, expansion of the

lattice.

If estimate of resource is requested with TESTRUN, the reference geometry is used.

Two sets of input data must be given:

1. complete input (geometry, Section 2.1; basis set, Section 2.2; general information, Section

2.3; SCF, Section 2.3), defining the reference basis set and/or geometry;

2. ”restart” option input, selected by one of the following keywords (format A) to be added

after the SCF input:

GEOM
restart with new geometrical parameters

insert geometry input, page 17
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or

BASE
restart with new basis set

insert basis set input, page 23

or

GEBA
restart with new basis set and new geometrical parameters

insert geometry input, page 17
insert basis set input, page 23

BASE: the only modification of the basis set allowed is the value of the orbital exponent

of the GTFs and the contraction coefficient; the number and type of shells and AOs cannot

change.

GEOM: geometry variation must keep the symmetry and the setting unchanged.

The resulting structure of the input deck is as follows:

0 Title

1 standard geometry input (reference geometry). Section 2.1

1b geometry editing keywords (optional; Section 3.1)

END

2 standard basis set input (reference basis set). Section 2.2

2b basis set related keywords (optional; Section 3.2)

END

3 FIXINDEX

3 block3 keywords

END

GEOM BASE GEBA
⇓ ⇓ ⇓

geometry input(p 17) basis set input(p 23) geometry input (p 17)
(block 1, 1b) (block 2, 2b) (block 1, 1b)

END END END
basis set input(p 23)

(block 2, 2b)
END

Warning: The reference geometry and/or basis set is overwritten by the new one, after

symmetry analysis and classification of the integrals. If the reference geometry is edited through

appropriate keywords, the same editing must be performed through the second input. Same

for basis set input.

If the geometry is defined through the keyword EXTERNAL, the reference geometry data

should be in file fort.34, the wave function geometry in file fort.35.

Note In geometry optimization (OPTGEOM, page 156) FIXINDEX is automatically set,

with input geometry as reference geometry. See keyword FINALRUN, page 163 to redefine
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the reference geometry.

See tests 5 and 20.

FMIXING - Fock/KS matrix mixing

rec variable meaning

• ∗ IPMIX percent of Fock/KS matrices mixing 30

The Fock/KS matrix at cycle i is defined as:

F ′i = (1− p)Fi + pF ′i−1

where p, input datum IPMIX, is the % of mixing. Too high a value of p (>50%) causes higher

number of SCF cycles and can force the stabilization of the total energy value, without a real

self consistency.

Note that from Crystal14, a Fock/KS mixing of 30 % is activated by default. Set

IPMIX = 0 to switch this option off.

FULLTIME - Detailed timing report

A more detailed report of the timing data is generated:

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SHELXG TELAPSE 19.68 TCPU 18.42

WWWWWWWWWWWWWWW SHELXG MX 1.07 MN 1.07 MD 1.07

QQQQQQQQQQQQQQQ SHELXG MX 1.07 MN 0.92 MD 0.98

The first line is the standard data. The second line reports the minimum, maximum and mean

wall time since the last report. The last line reports the minimum, maximum and mean cpu

time since the last report. The minimum, maximum and mean operations are across processors,

and so this directive is most useful for parallel job.

GRADCAL

No input data required.

Analytic calculation of the nuclear coordinates gradient of the HF, UHF, DFT energies after

SCF (all electrons and ECP).

If numerical gradient is requested for the geometry optimization (NUMGRALL, page 165;

NUMGRATO, page 165; NUMGRCEL, page 165;), analytical gradient is not computed.

GRIMME - Grimme dispersion correction for energy and gradient

The keyword GRIMME, inserted in third input block, calculates a London-type pairwise em-

pirical correction to the energy as proposed by Grimme [103], to include long-range dispersion

contributions to the computed ab initio total energy and gradients.

Therefore geometry optimization and vibrational frequency calculation can be carried out by

including the empirical correction.
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rec variable meaning
• A GRIMME keyword
• * s6 scaling factor

* d steepness
* Rcut cutoff distance to truncate direct lattice summation

• * NATS number of atomic species
II insert NATS records II
• * NAT “conventional” atomic number (page 24).

* C6 dispersion coefficient for atomic number NAT (Jnm6mol−1)
* Rvdw van der Waals radius for atomic number NAT (Å)

The keyword GRIMME is followed by a set of computational parameters [i.e. scaling factor,

steepness and cutoff radius for g (direct lattice) summation], the number of atomic species and

for each atomic species the “conventional atomic number” (page 24) and the value of C6 and

Rvdw (in Jnm6mol−1 and Å, respectively).

Note that the atomic number is defined as the “conventional atomic number”. In this way, if one

wants to use different atomic parameters for the same atomic species, a different conventional

atomic number can be used. For example, 1 and 101 for hydrogen.

The current implementation has been mainly tested and used in combination with the B3LYP

method [44, 45, 218], even if it can be applied to whatever level of theory.

The original proposal by Grimme was to augment DFT methods with an empirical London-type

correction. To that purpose, Grimme defined a general set of atomic empirical parameters (see

Table 1 of ref. [103]) and used an optimized scaling factor to adjust the dispersion correction

for each DFT method.

The total energy is given by

EDFT−D = EKS−DFT + Edisp

where Edisp, the empirical dispersion correction, is given as

Edisp = −s6

Nat−1∑
i=1

Nat∑
j=i+1

∑
g

Cij6
Rij,g

fdump(Rij,g)

The summation is over all atom pairs and g lattice vectors with the exclusion of the i=j

contribution (i.e. self interaction) for g = 0, Cij6 is the dispersion coefficient for the atom pair

ij, s6 is a scaling factor that depends only on the adopted DFT method (e.g. s6 is 1.05 for

B3LYP) and Rij,g is the interatomic distance between atoms i in the reference cell and j in

the neighbouring cells at distance |g|. For a set of molecular crystals, a cutoff distance of 25.0

Å was used to truncate the summation over lattice vectors which corresponds to an estimated

error of less than 0.02 kJ/mol on computed cohesive energies with respect to larger cutoffs

[44, 45].

A damping function is used to avoid near-singularities for small interatomic distances:

fdump(Rij,g)= 1

1+exp
−d(Rij,g/Rvdw−)

where Rvdw is the sum of atomic van der Waals radii (i.e. Rvdw = Rivdw + Rjvdw) and d

determines the steepness of the damping function (d = 20). Van der Waals radii and atomic

C6 coefficients were taken from Table 1 of ref. [103]. From the latter, the Cij6 dispersion

coefficients are computed by using a geometric mean:

Cij6 =

√
Ci6C

j
6
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The input requires to specify all parameters that enter equations above and it looks like (urea

molecular crystal):

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441-0.0380

Optional keywords

END (ENDG)

Basis set input

END

DFT

. . . . . .

END

. . . . .

GRIMME

1.05 20. 25.

1.05 20. 25. s6 (scaling factor) d (steepness) Rcut (cutoff radius)

4

1 0.14 1.001 Hydrogen Conventional Atomic number , C6 , Rvdw

6 1.75 1.452 Carbon Conventional Atomic number , C6 , Rvdw

7 1.23 1.397 Nitrogen Conventional Atomic number , C6 , Rvdw

8 0.70 1.342 Oxygen Conventional Atomic number , C6 ,‘Rvdw

SHRINK

. . . . . .

END

GUESDUAL - SCF guess (density matrix from a previous run with a
different basis set)

rec variable value meaning
• ∗ NFR number of modification (NFR ≥ 1) in the atomic basis set given in input

IC 1 complete SCF calculation
0 stop before the first hamiltonian matrix diagonalization (to be used

in Cryscor - see http://www.cryscor.unito.it when the dual basis set
option is activated)

insert NFR records - for each shell
• ∗ NAT formal atomic number of the atom whose basis set is modified

* NSH sequence number of the reference shell in the atomic basis set, starting
from which shell(s) is(are) inserted/deleted

∗ NU number of shells inserted/deleted after the reference shell NSH

The keyword is to be inserted in the third (Hamiltonian-SCF) input block. It defines how the

basis set given in input differs from the one used to compute the density matrix used as SCF
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guess. The two basis sets must be marginally different. It can be used to add polarization

functions, or diffuse functions (see http://www.cryscor.unito.it).

The present calculation and the one used to compute the density matrix SCF guess have same

symmetry and number of atoms, but different number of shells in the BS of some atoms. Dif-

ferent geometrical parameters and computational conditions are allowed.

The density matrix P0 (direct lattice) of the previous run, SCF guess, is read from external

unit (copy file fort.9 of the previous run in file fort.20). Density matrix is reorganized: ele-

ments corresponding to basis functions removed are removed, elements corresponding to basis

functions added are set to 0.

Warning. The efficiency of this guess can be dramatically compromised if not congruent BS

modifications, i.e. insertion or elimination of significantly populated shells, are made. Check

the normalization factor.

Example. LiH bulk. The BS of Li in the reference calculation is referred to as BS1 and reported

on the left, the modified one is referred to as BS2 and reported on the right. The GUESDUAL

option following BS2 illustrates how BS2 differs with respect to BS1.

BS1 | BS2

3 3 | 3 4

0 0 6 2.0 1.0 | 0 0 6 2.0 1.0

700. .001421 | 700. .001421

220. .003973 | 220. .003973

70. .01639 | 70. .01639

20. .089954 | 20. .089954

5. .31565 | 5. .31565

1.5 .4946 | 1.5 .4946

0 0 1 0.0 1.0 | 0 0 1 0.0 1.0

0.5 1. | 0.5 1.

0 2 1 0.0 1.0 | 0 2 1 0.0 1.0

0.6 1. | 0.6 1.

1 4 | 0 3 1 0. 1.

0 0 5 2. 1. | 0.4 1.

120. .000267 | 1 5

40. .002249 | 0 0 5 2. 1.

12. .006389 | 120. .000267

4. .032906 | 40. .002249

1.2 .095512 | 12. .006389

0 0 1 0. 1. | 4. .032906

0.45 1. | 1.2 .095512

0 0 1 0. 1. | 0 0 1 0. 1.

0.13 1. | 0.45 1.

0 2 1 0. 1. | 0 0 1 0. 1.

0.3 1. | 0.13 1.

99 0 | 0 2 1 0. 1.

END | 0.6 1.

| 0 2 1 0. 1.

| 0.3 1.
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| 99 0

| END

GUESDUAL

2 0

3 3 1

1 3 1

END

In this case two modifications (NFR=2) has been introduced in BS2 with respect to BS1.

Complete SCF calculation (IC=1) is required.

First modification in Li (formal atomic number NAT=3) basis set, after the third shell

(NSH=3), one shell was added (NU=1).

Second modification in H (atomic number IA=1) basis set, after the third shell (NSH=3), one

shell (NU=1) was inserted.

GUESSP - SCF guess - Density matrix from a previous run

The density matrix from a previous run, P0 (direct lattice), is read from disk, and used as SCF

guess. No input data are required.

The density matrix can be edited to modify the spin state. See SPINEDIT, page 112.

The density matrix used as SCF guess was written with wave function information in file fort.9

at the end of a previous SCF run, and read as file fort.20.

The two cases, the present one and that used for the restart, must have same symmetry, and

same number of atoms, basis functions and shells. Atoms and shells must be in the same order.

The program does not check the 1:1 old–new correspondence.

Different geometrical parameters, computational conditions or exponents of the Gaussian prim-

itives are allowed.

In geometry and/or basis set optimization, this technique will significantly reduce the number

of SCF cycles. The following scheme shows how to proceed.

1. First run to generate the density matrix

Program inp. block section comments
crystal 0 2 Title

1 2.1 geometry input
2 2.2 basis set input
3 2.3 computational parameters and SCF input

save wf in file fort.9 (binary) or file.98 (formatted)

2. Second run - the density matrix is read in as a guess to start SCF

copy file fort.9 to fort.20 (or convert file fort.98 and then copy)
Program inp. block section comments

crystal 0 2 Title
1 2.1 geometry input
2 2.2 basis set input
3 2.3 computational parameters and SCF input

(GUESSP)

Warning The modification of the geometry may result in a different order in the storage of

the matrix elements associated to each overlap distribution in the present and the previous

run. To avoid the mismatch it is strongly recommended to classify the integrals of the present

case using the geometry of the previous case (FIXINDEX, page 93).
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Warning When wave function information are stored formatted in file fort.98, the data must

be converted to binary by the keyword RDFMWF, page 282 of the properties program).

Warning SCF guess from a density matrix computed with a different basis set is allowed by

the keyword GUESDUAL, page 97.

GUESSPAT - Superposition of atomic densities

The standard initial guess to start the SCF cycle is the superposition of atomic (or ionic)

densities. No input data are required. The electronic configuration of the atoms is entered as

a shell occupation number in the basis set input (page 23). Different electronic configurations

may be assigned to atoms with the same atomic number and basis set (but not symmetry

related) through the keyword CHEMOD (page 23).

GUESSYMP - Restart from a previous density matrix with higher or
equal symmetry

This keyword allows for the use of a density matrix obtained from a previous run as initial guess

for the SCF of a second calculation in which the symmetry of the system has been lowered.

The symmetry-group of the second calculation must be a sub-group of the former one.

Both the fort.9 and fort.13 units (symmetry-reducible density matrix; see keyword

SAVEPRED to generate it, page 108) from the first calculation are needed.

The two calculations must have the same number of atoms, basis functions and shells.

Slightly different geometrical parameters, computational conditions or exponents of the Gaus-

sian primitive functions are allowed.

This option can be very useful when the inversion of one or more atomic spins (see the

SPINEDIT keyword at page 112) leads to a symmetry reduction, as happens in the study of

ferro-antiferromagnetic coupling constants or in defective structures where dangling bonds are

present and different spin states are thus available, for instance.

HIRSHCHG/HIRSHBLK - Iterative Hirshfeld Population Analysis

The Hirshfeld-I analysis of atomic charge/electron population analysis is performed at the end

of the SCF calculation. There are two possible strategies for the input structure. A black-

block form, ruled by the HIRSHCHG keyword, after which no input data are required

and the default conditions concerning spatial integration and convergence are considered for

computation of the atomic populations. And a second form in which a block, introduced by the

keyword HIRSHBLK and completed by the keyword END, does contain several particular

settings for the calculation of the Hirshfeld-I populations. In particular, the charge integration

grid and the parameters of the iterative procedure can be redefined by the keywords described

below.

Grids for charge integration

Integration in Hirshfeld-I exploits approaches similar to those considered in the DFT integration

scheme (see page 126). The predefined options, that can be eventually used, are the followings:

SGRID: Small grid (default)

This grid correspond to a relatively cheap one that is in general enough for the evaluation of

Hirshfeld-I electron population. It is equivalent to OLDGRID (see page 129). Other more

accurate integration options are:
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LGRID: See page 129

XLGRID: See page 129

XXLGRID: See page 129

General keywords to control the iterative procedure

ITCONV

rec variable value meaning
• ∗ TOLHIRSH NUMERR Convergence tolerance

The iterative process stops when the RMS of the differences in atomic population between

consecutive cycles is less than a given tolerance. By default, such a value (NUMERR) is

actually the numerical error in the estimation of the number of electrons employing the chosen

integration grid. As setting ITCONV a given real number, the iterative procedure stops when

the most restrictive of both criteria is satisfied.

MXNUMITER

rec variable value meaning
• ∗ NHIRSHIT 200 Maximum number of allowed iterations

If none of the convergence criteria is satisfied, the iterative procedure stops at a NHIRSHIT

number of steps.

DETLDINFO

Print a step-by-step detailed information of the iterative procedure. Recommended just for

developers.

UNPRUNE

Change the integration grid from pruned to unpruned. This option sometimes provides a

numerical integration better than the default but require substantially larger computational

time and memory resources. Recommended just for developers.

ILASIZE - set the new size for array ILA used in the calculation of
Coulomb 2-electron integrals

rec variable meaning
• ∗ ISIZE size of array ILA

ILA is an array containing a list of contributions to be computed in the evaluation of the

Coulomb series. Use of this option is recommended upon receiving the following error message:

“ILA DIMENSION EXCEEDED - INCREASE ILASIZE”. Default value of ISIZE is:

6000.
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INTGPACK - Choice of bielectronic integrals package

rec variable value meaning
• ∗ IPACK [0] s, sp shells→ POPLE; p, d shells → ATMOL

1 ATMOL for Coulomb integrals;
POPLE for exchange integrals

2 POPLE for Coulomb integrals;
ATMOL for exchange integrals

3 ATMOL for Coulomb integrals;
ATMOL for exchange integrals

By default the bielectronic integrals are computed using a set of routines derived from Pople’s

GAUSSIAN 70 package [117], if s and sp shells are involved, and by routines derived from

ATMOL [147] for p and d shells. The value of IPACK allows different choices. Integrals involving

p or d shells are always computed by ATMOL. The ATMOL package can compute integrals over

functions of any quantum number, but the symmetry treatment implemented in the CRYSTAL

package allows usage of s, p and d functions only. The use of sp shells (s and p orbitals sharing

the same exponent) reduces the time required to compute the integrals considerably.

KSYMMPRT

Symmetry Adapted Bloch Functions [239, 240] (page 113)are used as basis for the Fock/KS

matrix diagonalization. The results of the symmetry analysis in reciprocal space are printed.

At each k-point: number of point symmetry operators, number of active IRs, maximum IR

dimension and maximum block dimension in the Fock/KS matrix factorization. TESTRUN

stops execution after this information is printed.

No input data required.

Extended information can be obtained by setting the value N of LPRINT(47) (keyword SET-

PRINT, page 64) before KSYMMPRT.

N information
0 Basic Symmetry Information - At each k-point: list of point symmetry operators,

IR dimensions and number of Irreducible Sets.
> 0 Symmetry Information - At each k-point ≤ N: class structure, character table

and IR information concerning the K-Little Group. For the rest of the k-point
the same information as -1 is printed.

< −1 Full Symmetry Information - At each k-point: the same information as N > 0,
together with the matrix representatives of the point operators.

MPP doesn’t support KSYMMPRT.

LEVSHIFT - Eigenvalue level shifting

rec variable value meaning
• ∗ ISHIFT The level shifter is set to ISHIFT *0.1 hartree.

ILOCK 0 no locking
1 causes a lock in a particular state (eg non-conducting) even if the so-

lution during the SCF cycles would normally pass through or even con-
verge to a conducting state.

The eigenvalue level shifting technique is well known in molecular studies [109, 46], and may

also be used for periodic systems. The technique involves the addition of a negative energy

shift to the diagonal Fock/KS matrix elements (in the Crystalline Orbital basis) of the occupied

orbitals and thus reducing their coupling to the “unoccupied” set. This shift may be main-

tained (ILOCK=1) or removed (ILOCK=0) after diagonalization. The former case causes a
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lock in a particular state (eg non- conducting) even if the solution during the SCF cycles would

normally pass through or even converge to a conducting state.

This option provides an alternative damping mechanism to Fock/KS matrix mixing (FMIX-

ING, page 95). The locking is effective only if ISHIFT is large enough. If locking is used, the

Fermi energy and the eigenvalues are depressed by the value of the level shifter. Suggested

values :

1. Normal cases require no mixing of Fock/KS matrices in successive cycles to converge:

ISHIFT=0 (default).

2. When 20% to 30% mixing of Fock/KS matrices is necessary, an ISHIFT value of between

1 and 3 (giving a level shift of 0.1 to 0.3 hartree) may produce an equivalent or even

superior convergence rate.

3. If serious convergence difficulties are encountered, ISHIFT=10 will normally be adequate,

corresponding to a level shift of 1 hartree. But it may happen that the system moves

towards an excited state, and no convergence is obtained.

Warning - Hamiltonian eigenvalues are modified by the level shifter. Take into account when

looking at top and bottom bands eigenvalues printed.

See tests 29, 30, 31, 32, 38.

LOWMEM - Reduce memory storage requirements

When this option is active, none of the largest arrays is allocated and quantities are recalculated

when needed. This option is very efficient in decreasing random access memory requirements

for calculations with large unit cells. Usage of LOWMEM may affect running time. It is

default in MPPcrystal calculations.

MAXCYCLE

rec variable meaning
• ∗ NMAX maximum number of SCF cycles [50]

The possibility to modify the maximum number of SCF cycles allows: increasing the number

of cycles in case of very slow convergence (metals, magnetic systems, DFT);

The keyword POSTSCF forces saving wave function data in file fort.9, even if SCF ends

before reaching convergence for ”too many cycles”.

MADELIND - parameter for Madelung series

rec variable meaning
• ∗ IIND mql inf(103)

Maximum number of indices for reciprocal lattice vectors to be considered in reciprocal lattice

Madelung sums. Default value of IIND: 50.

MEMOPRT - Synthetic report about dynamic memory usage

Memory usage is printed at every step of a CRYSTAL calculation, that is, every time running-

time information is also printed. Printed information includes: the total memory allocated by

core 0 at that stage of the calculation and the maximum amount of memory required within

that step, as well as the total amount of memory allocated by all cores.
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MEMOPRT2 - Detailed report about dynamic memory usage

Memory status is printed at every allocation or deallocation of an array. Printed information

includes: size of the allocated/deallocated array/matrix and the total amount of memory used

by core 0 up to that stage of the calculation.

MONSPLIT - Splitting of large monoelectronic integral files

rec variable meaning
• ∗ NFILE number of files to be used [1] (max 10)

Very large basis sets can produce billions monoelectronic integrals to be stored, as the number

of monoelectronic integrals scales as the square of basis set size. The multipolar expansion

technique based on the atoms reduces the disk space up to a factor 3, compared to the value

printed as estimate. The distribution of the integrals over several disk files may be necessary,

if available disk space is limited.

MP2 - Electron correlation energy at second order Møller-Plesset

rec variable meaning
• A MP2 Begin MP2 input block
• A KNET reconstruction of the HF Density Matrix
• I 8 Shrinking factor
• A MEMORY Memory required
• I 3000 Value in Mbytes
• A DFITTING Density Fitting input block
• A PG-VTZ Density Fitting auxiliarly basis set
• A ENDDF End Density Fitting input block
• A DOMMOL Definition of the excitation domains
• A ENDMP2 End MP2 input block

The public Cryscor code, a post-HF local-correlation program for periodic crystals,[174,

177] has been fully incorporated into the CRYSTAL14 package. This means that it is now

possible to perform, on top of and HF-SCF run, a calculation of the electron correlation

energy contribution for systems periodic in 1 to 3 dimensions. A simple input example is here

reported: for more details about how to run a Cryscor calculation please refer to Cryscor

User’s Manual[74] and to Cryscor web page: www.cryscor.unito.it.

The post-HF method currently implemented is a perturbative method, namely Møller-Plesset

at the second-order (MP2). Well localized Wannier Functions (WF) [243] are adopted instead

of delocalized Bloch functions for the description of the occupied manifold; this permits the

exploitation of the short-range nature (E ∝ r−6) of electron correlation following the general

Pulay scheme[183]. An MP2 correction to the HF Density Matrix is feasible so that many

of the Properties can be currently evaluated taking into account the effects of the dynamic

correlation.

The code has been widely used to study, among others, the structure and stability of different

polymorph,[38, 76] the energetic balance in van der Waals and hydrogen-bonded crystals,[145]

interactions between molecules and surfaces,[140] and the upshot of electron correlation on

some fundamental properties such as vibrational spectra,[69] electron density and Compton

profiles.[78]

Note that the localization procedure and the MP2 technique implemented in
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Cryscor are not suitable for open-shell systems, for conductors, or for semicon-

ductors with very small gap.

MYBIPOLA - Bipolar expansion approximation control

rec variable meaning

• ∗ ILCOUL maximum multipole order for Coulomb 4

∗ ITCOUL overlap threshold for Coulomb 14

∗ IFCOUL reducing factor for Coulomb 90

• ∗ ILEXCH maximum multipole order for exchange 2

∗ ITEXCH overlap threshold for exchange 10

∗ IFEXCH reducing factor for exchange 70

The bipolar approximation is applied in the evaluation of the Coulomb and exchange integrals

(page 353). Maximum values for ILCOUL and ILEXCH are 8 and 4, respectively. ITCOUL and

ITEXCH can be assigned any intermediate value between the default values (14 and 10) (see

page 353) and the values switching off the bipolar expansion (20000 and 20000). Increasing

IFCOUL and IFEXCH the threshold is lightly modified in order to increase the number of

approximated integrals, and vice versa.

Warning - for developers only

NEIGHBOR/NEIGHPRT

See input block 1, page 59

NOBIPOLA - Bipolar expansion approximation suppression

All the bielectronic integrals, coulomb and exchange, are evaluated exactly. The overlap thresh-

old both for coulomb and exchange integrals is set to 2000000.

No input data required. The CPU time in the integrals program may increase up to a factor

3.

NOBIPCOU - Bipolar expansion approximation of coulomb integrals
suppression

Coulomb bielectronic integrals are evaluated exactly. The overlap threshold for coulomb inte-

grals is set to 2000000.

No input data required.

NOBIPEXC - Bipolar expansion approximation of exchange integrals
suppression

Exchange bielectronic integrals are evaluated exactly. The overlap threshold for exchange

integrals is set to 2000000. No input data required.

NOFMWF - Wave function formatted output

CRYSTAL writes the formatted wave function in file fort.98 at the end of SCF by default.

This keyword deletes this feature.
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NOLOWMEM - Disable reduction of memory storage requirements

LOWMEM option (see page 103) is disabled. CRYSTAL calculations are speeded up but the

amount of requested memory increases. It is default in Pcrystal calculations.

NOMONDIR - Monoelectronic integrals on disk

No input data required.

In the SCF step bielectronic integrals are computed at each cycle, while monoelectronic inte-

grals are computed once and read from disk at each cycle.

NOSYMADA

The Symmetry Adapted Functions are not used in the Hamiltonian matrix diagonalization. No

input data are required. This choice increases the diagonalization CPU time when the system

has symmetry operators.

POLEORDR - Maximum order of multipolar expansion

rec variable meaning
• ∗ IDIPO maximum order of pole [4]

Maximum order of shell multipoles in the long-range zone for the electron-electron Coulomb

interaction. Maximum value = 6. See Section 17.3, page 351.

POSTSCF

Calculation to be done after scf (gradient, population analysis) are performed even if conver-

gence is not reached. It may be useful when convergence is very slow, and scf ends for ”TOO

MANY CYCLES” very close to the convergence criteria required.

No input data are required.

PPAN/MULPOPAN - Mulliken Population Analysis

Mulliken population analysis is performed at the end of SCF process.

No input data are required.

Bond populations are analysed for the first n neighbours (n default value 3; see NEIGHBOR,

page 59, to modify the value).

Computed data:

1. aµ =
∑
ν

∑
g P

g
µνS

g
µν orbital charges

2. sl =
∑
µ∈l aµ shell charges

3. qA =
∑
l∈A sl atomic charges

4. b(A0, Bg) =
∑
µ∈A

∑
ν∈B P

g
µνS

g
µν bond populations between the non-equivalent atoms in

the unit cell (A0) and their first NVI neighbours (Bg in cell g). The printed values must

be multiplied by 2 when B6=A to compare with standard molecular calculations.

Formatted data are written in file PPAN.DAT (opened in forrtran unit 24).

See Appendix D, page 399.
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PRINTOUT - Setting of printing environment

See input block 1, page 62.

QVRSGDIM - limiting size switch for multipole moments gradients

rec variable meaning
• ∗ NFILE limiting size of multipole moment gradients to switch from generation by

pairs to generation by shells. Default 90000000.
NFILE limits the maximum amount of data to be stored to memory. This is a way to reduce

memory storage requirements with some possible reduction of performance.

REPLDATA - Replicated-data mode

This option is supported by MPPcrystal only. It allows the User to run MPPcrystal as Pcrystal.

All computational parameters and settings are changed accordingly.

RHF [default]

A restricted closed-shell hamiltonian calculation is performed ([189, 175], Chapter 8 of ref.

[171]). Default choice.

ROHF

rec variable meaning
• ∗ NSPIN nα-nβ electrons (Section 3.3, page 113)

In the Restricted Open Shell[189] Hamiltonian, the variational space is split into three sub-

spaces: doubly and singly occupied, and unoccupied. In order to correctly describe the two

occupied subspaces, the difference between the amount of α and β electrons (NSPIN) must be

locked at all k points; this difference is kept until the end of the SCF. There are three main

differences with respect to UHF: (1) only alpha electrons are allowed to be assigned to singly

occupied states, (2) the imposed occupancy constraint allows the ROHF approach to provide

solutions that are eigenfunctions of the spin operator, Ŝ2, and (3) solutions are in general less

stable than those obtained with the UHF method. It is important to underline that ROHF

solutions never exhibit locally negative spin densities. In CRYSTAL the symmetry adaption

of the crystal (molecular) orbitals is disabled for the ROHF method.

SCFDIR

No input data required.

In the SCF step monoelectronic and bielectronic integrals are evaluated at each cycle. No

screening of the integrals is performed. This option is activated by default from Crys-

tal14. It can be deactivated by inserting the NODIRECT keyword.

SAVEWF

The wave function is written in file fort.79 every two cycles. The format is the same as in file

fort.9, written at the end of SCF.

To restart SCF cycles using the density matrix written in file fort.79, it has to be copied in file

fort.20

No input data required.
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SAVEPRED

The symmetry-reducible density matrix is written in unit fort.13 at the end of the SCF.

No input data required.

SETINF - Setting of INF values

See input block 1, page 64

SETPRINT - Setting of printing options

See input block 1, page 64.

SHRINK - Pack-Monkhorst/Gilat shrinking factors

rec variable value meaning
if the system is periodic insert II

• ∗ IS Shrinking factor in reciprocal space (Section 17.7, page 355)
ISP Shrinking factor for a denser k point net (Gilat net) in the

evaluation of the Fermi energy and density matrix.
if IS = 0 insert II

• ∗ IS1,IS2,IS3 Shrinking factors along B1,B2,B3 (reciprocal lattice vectors);
to be used when the unit cell is highly anisotropic

optional keywords terminated by END or STOP II

For periodic systems, 1D, 2D, 3D, the mandatory input information is the shrinking factor, IS,

to generate a commensurate grid of k points in reciprocal space, according to Pack-Monkhorst

method. The Hamiltonian matrix computed in direct space, Hg, is Fourier transformed for

each k value, and diagonalized, to obtain eigenvectors and eigenvalues:

Hk =
∑
g

Hge
igk

HkAk = SkAkEk

A second shrinking factor, ISP, defines the sampling of k points, ”Gilat net” [98, 97], used

for the calculation of the density matrix and the determination of Fermi energy in the case of

conductors (bands not fully occupied).

In 3D crystals, the sampling points belong to a lattice (called the Pack-Monkhorst net), with

basis vectors:

b1/is1, b2/is2, b3/is3 is1=is2=is3=IS, unless otherwise stated

where b1, b2, b3 are the reciprocal lattice vectors, and is1, is2, is3 are integers ”shrinking

factors”.

In 2D crystals, IS3 is set equal to 1; in 1D crystals both IS2 and IS3 are set equal to 1. Only

points ki of the Pack-Monkhorst net belonging to the irreducible part of the Brillouin Zone

(IBZ) are considered, with associated a geometrical weight, wi. The choice of the reciprocal

space integration parameters to compute the Fermi energy is a delicate step for metals. See

Section 17.7, page 355. Two parameters control the accuracy of reciprocal space integration

for Fermi energy calculation and density matrix reconstruction:

IS shrinking factor of reciprocal lattice vectors. The value of IS determines the number of k

points at which the Fock/KS matrix is diagonalized. Multiples of 2 or 3 should be used,

according to the point symmetry of the system (order of principal axes).
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In high symmetry systems, it is convenient to assign IS magic values such that all low

multiplicity (high symmetry) points belong to the Monkhorst lattice. Although this

choice does not correspond to maximum efficiency, it gives a safer estimate of the integral.

The k-points net is automatically made anisotropic for 1D and 2D systems.

The figure presents the reciprocal lattice cell of 2D graphite (rhombus), the first

Brillouin zone (hexagon), the irreducible part of Brillouin zone (in grey), and the

coordinates of the ki points according to a Pack-Monkhorst sampling, with shrinking

factor 3 and 6.

ISP shrinking factor of reciprocal lattice vectors in the Gilat net (see [175], Chapter II.6).

ISP is used in the calculation of the Fermi energy and density matrix. Its value can be

equal to IS for insulating systems and equal to 2*IS for conducting systems.

The value assigned to ISP is irrelevant for non-conductors. However, a non-conductor

may give rise to a conducting structure at the initial stages of the SCF cycle, owing, for

instance, to a very unbalanced initial guess of the density matrix. The ISP parameter

must therefore be defined in all cases.

Note. The value used in the calculation is ISP=IS*NINT(MAX(ISP,IS)/IS), a multiple

integer of IS. For instance:

input data IS ISP ISP for wf calculation

3 4 3

3 6 6

3 8 6

In the following table the number of sampling points in the IBZ and in BZ is given for a

fcc lattice (space group 225, 48 symmetry operators) and hcp lattice (space group 194, 24

symmetry operators). The CRYSTAL code allows 413 k points in the Pack-Monkhorst net,

and 2920 in the Gilat net.
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IS points in IBZ points in IBZ points BZ
fcc hcp

6 16 28 112
8 29 50 260
12 72 133 868
16 145 270 2052
18 195 370 2920
24 413 793 6916
32 897 1734 16388
36 1240 2413 23332
48 2769 5425 55300

1. When an anisotropic net is user defined (IS=0), the ISP input value is taken as ISP1

(shrinking factor of Gilat net along first reciprocal lattice) and ISP2 and ISP3 are set to:

ISP2=(ISP*IS2)/IS1,

ISP3=(ISP*IS3)/IS1.

2. User defined anisotropic net is not compatible with SABF (Symmetry Adapted Bloch

Functions). See NOSYMADA, page 106.

Some tools for accelerating convergence are given through the keywords LEVSHIFT (page

102 and tests 29, 30, 31, 32, 38), FMIXING (page 95), SMEAR (page 110), BROYDEN

(page 85) and ANDERSON (page 83).

At each SCF cycle the total atomic charges, following a Mulliken population analysis scheme,

and the total energy are printed.

The default value of the parameters to control the exit from the SCF cycle (∆E < 10−6 hartree,

maximum number of SCF cycles: 50) may be modified entering the keywords:

TOLDEE (tolerance on change in total energy) page 114;

TOLDEP (tolerance on SQM in density matrix elements) page ??;

MAXCYCLE (maximum number of cycles) page 103.

SMEAR

rec variable meaning
• ∗ WIDTH temperature smearing of Fermi surface

Modifies the occupancy of the eigenvalues (fj) used in reconstructing the density matrix from

the step function, (equation 17.9, page 350) to the Fermi function;

fj = (1 + e
(εj−εF )

kbT )−1 (3.25)

where εF is the Fermi energy and kbT is input as WIDTH in hartree.

The smearing of the Fermi surface surface may be useful when studying metallic systems in

which the sharp cut-off in occupancy at εF can cause unphysical oscillations in the charge

density. It may also result in faster convergence of the total energy with respect to k-point

sampling.

In density functional theory the use of Fermi surface smearing finds a formal justification in

the finite temperature DFT approach of Mermin [146]. In this case the “free energy” of the

system may be computed as:
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F = E(T )− TS(T )

= E + kbT

Nstates∑
i

fi ln fi + (1− fi) ln(1− fi) (3.26)

where S is the electronic entropy. Often we wish to compute properties for the athermal limit

(T=0). For the free electron gas the dependencies of the energy and entropy on temperature

are:

E(T ) = E(0) + αT 2

S(T ) = 2αT (3.27)

and so the quantity

E0 =
F (T ) + E(T )

2
= E(0) +O(T 3) (3.28)

may be used as an estimate of E(0).
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Figure 3.5: The surface energy (J/M2) of Li(100) for various numbers of layers in a slab model
showing the effects of WIDTH (0.02H and 0.001H) and the use of E(T) or E0

Figure 3.5 shows the effect of WIDTH on the convergence of the Li(100) surface energy. Despite

the dense k-space sampling (IS=24, ISP=48) the surface energy is rather unstable at low

temperature (0.001H). There is a significant improvement in the stability of the solution for

higher values of WIDTH (0.02H) but use of E(T) results in a surface energy of 0.643 J/M2

significantly above that obtained by extrapolating E(T) to the T=0 limit (0.573 J/M2). The

use of E0 at WIDTH=0.02H results in an excellent estimate of the surface energy - 0.576 J/M2.

Note that for conducting systems analytic first derivatives are not fully implemented when the

keyword SMEAR is used. In that case, numerical first derivatives should be computed (see

page 165). For very small value of smearing (around 0.001 hartree) analytical gradients should

be reliable in geometry optimization.
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SPINEDIT - Editing of the spin density matrix

rec variable meaning
• ∗ N number of atoms for which spin must be reversed
• ∗ LB, L=1,N atom labels

The spin density matrix from a previous run is edited to generate an approximate guess for a

new spin configuration. The sign of the elements of the spin density matrix of selected atoms

is reversed. The keyword SPINEDIT must be combined with UHF (input block 3, page 115)

or DFT/SPIN (input block 3, page 124) and GUESSP.

Example: the anti ferromagnetic solution for the spinel MnCr2O4 can be obtained by calculat-

ing the ferro magnetic solution, and using as guess to start the SCF process the density matrix

of the ferromagnetic solution with reversed signs on selected atoms.

SPINLOCK - Spin-polarized solutions

rec variable meaning
• ∗ NSPIN nα-nβ electrons
∗ NCYC number of cycles the difference is maintained

The difference between the number of α and β electrons at all k points can be locked at the

input value. The number of α electrons is locked to (N + NSPIN)/2, where N is the total

number of electrons in the unit cell; the number of β electrons is locked to (N - NSPIN)/2.

NSPIN must be odd when the number of electrons is odd, even when the number of electrons

is even.

Example. Bulk NiO. If a anti ferromagnetic solution is required, a double cell containing 2

NiO units must be considered (test 30). The two Ni atoms, related by translational symmetry,

are considered nonequivalent. The number of electron is 72, each Ni ion is expected to have

two unpaired electrons.

INF95 type of solution corresponding to the spin setting

0 anti ferromagnetic ↑ ↓ ↑ ↓
4 ferromagnetic ↑ ↑ ↑ ↑

Warning To lock the difference between α and β electrons α and β eigenvalues are forced to

be split. Their printed value is meaningless, until locking is active.

See tests 29, 30, 32, 33, 37, 38.

Note: if NCYC is < 0, then the lock duration is controlled by energy difference between

successive cycles (disappears when < 10−NCY C) instead of by number of cycles. This is useful

when the locking must be relaxed before the convergence of the SCF -otherwise there is a risk

to arrive to a spurious solution- but at the same time one does not know exactly in which SCF

cycle the density matrix can be considered to be close enough to the right electronic structure

so as to avoid a divergent behavior after the locking finishes.

Situations like this may occur in geometry optimizations of ferromagnetic systems, for instance:

the SCF of the first optimization point converges in CYC 20 with the locking finishing in CYC

12; in the remaining points, as the density matrix of the previous one is used as initial guess,

the SCF converges in CYC 10 under locking and, so, the true convergence is not ensured.

Using FINALRUN=4 this situation could lead to an extremely large or even non convergent

optimization process.
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On the other hand, to fix locking since the energy difference between cycles is less than a given

threshold is a quite handy criterion that could be in several cases preferable than fixing the

duration in terms of number of cycles.

SPINLOC2 - Spin-polarized solutions

rec variable meaning
• ∗ SPIN nα-nβ electrons
∗ NCYC number of cycles the difference is maintained or energy thereshold

The keyword functions similarly to SPINLOCK, but instead of shifting the eigenvalues in

order to lock the system in a specific spin state, fills separately the α and β bands with the

appropriate number of electrons. This allows the system to pass through or converge to a

conducting state while the locking is active. Additionally, it is possible to set the value of

SPIN to a real number.

Using this keyword the energies for the top of virtual and bottom of valence band , as well as

the band gap, are printed for both α and β electrons. These values are not meaningless as in

the case of SPINLOCK but should be interpreted with care, since if the spin state is unstable

there may be α occupied states at higher energy with respect to β virtual states or vice versa.

STDIAG - Force standard diagonalization method

This option is supported by MPPcrystal only. Matrix diagonalization method in reciprocal

space is switched from “Divide and Conquer method” (default, more efficient) to standard.

STOP

Execution stops immediately. Subsequent input records are not processed.

SYMADAPT

A computational procedure for generating space-symmetry-adapted Bloch functions, when BF

are built from a basis of local functions (AO), is implemented. The method, that applies to

any space group and AOs of any quantum number, is based on the diagonalization of Dirac

characters [239, 240].

The Symmetry Adapted Functions are used in the Hamiltonian matrix diagonalization. No

input data are required. This choice reduces the diagonalization CPU time when the system

has symmetry operators. Default choice.

Not supported by MPP execution.

TESTPDIM

The program stops after processing of the full input (all four input blocks) and performing

symmetry analysis. The size of the Fock/KS and density matrices in direct space is printed.

No input data are required.

It may be useful to obtain information on the neighbourhood of the non equivalent atoms (up

to 3, default value; redefined through the keyword NEIGHBOR, input block 1, page 59).

TEST[RUN] - Integrals classification and selection

Full input (geometry, basis set, general information, SCF) is processed.
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The symmetry analysis is performed, and the monoelectronic and bielectronic integrals classi-

fied and selected, according to the the truncation criteria adopted. The size of the Fock/KS

and density matrices (direct lattice) and the disk space required to store the bielectronic are

printed. The value printed as ”disk space for monoelectronic integrals” is an upper limit. The

new technique of atomic multipolar expansion reduces the required space to about 1/3 of the

printed value.

No input data required.

This type of run is fast, and allows an estimate of the resources to allocate for the traditional

SCF wave function calculation.

TOLDEE - SCF convergence threshold on total energy

rec variable meaning
• ∗ ITOL 10−ITOL threshold for convergence on total energy

Different default values are set for different type of calculation:

SCF single point 6
Geometry optimization OPTGEOM 7
Frequency calculation FREQCALC 10
Elastic constants ELASTCON 8
Equation of state EOS 8

TOLINTEG - Truncation criteria for bielectronic integrals
(Coulomb and HF exchange series)

rec variable meaning

• ∗ ITOL1 overlap threshold for Coulomb integrals- page 351 7

ITOL2 penetration threshold for Coulomb integrals-page 352 7

ITOL3 overlap threshold for HF exchange integrals-page 352 7

ITOL4 pseudo-overlap (HF exchange series-page 352) 7

ITOL5 pseudo-overlap (HF exchange series-page 352) 14

The five ITOL parameters control the accuracy of the calculation of the bielectronic Coulomb

and exchange series. Selection is performed according to overlap-like criteria: when the overlap

between two Atomic Orbitals is smaller than 10−ITOL, the corresponding integral is disregarded

or evaluated in a less precise way. Criteria for choosing the five tolerances are discussed in

Chapter 17.

TOLPSEUD - Truncation criteria for integrals involving ECPs

rec variable meaning

• ∗ ITPSE overlap threshold for ECP integrals 6

The program evaluates only those integrals for which the overlap between the charge distri-

bution ϕ0
µ ϕ

g
ν (page 349) and the most diffuse Gaussian defining the pseudopotential is larger

than a given threshold Tps=10−ITPSE (default value 10−6; it was 5 in CRYSTAL98).
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Figure 3.6: Molecular Orbitals diagram for the Restricted Open Shell method (ROHF, left)
and for the Unrestricted Open Shell method (UHF, right)

UHF - Hamiltonian for Open Shell Systems

For the description of systems containing unpaired electrons (such as molecules with an odd

number of electrons, radicals, ferromagnetic and anti ferromagnetic solids) a single determinant

is not an appropriate wave-function; in order to get the correct spin eigenfunction of these

systems, it is necessary to choose a linear combination of Slater determinants (whereas, in

closed shell systems, a single determinant gives always the appropriate spin eigenfunction)

([175, 8], Chapter 6 of ref. [171]).

In the Restricted Open Shell [189] Hamiltonian, the same set of molecular (i.e. crystalline)

orbitals describes alpha and beta electrons; levels can be doubly occupied (by one alpha and

one beta electron, as in the RHF closed shell approach), singly occupied or left vacant. The

wave-function is multi-determinantal; in the special case of half-closed shell systems, where we

can define a set of orbitals occupied by paired electrons and a second set occupied by electrons

with parallel spins, the wave-function is formed by a single determinant.

Another mono-determinantal approach for the study of open-shell systems is the UHF method

[178]. In this theory, the constraint of double occupancy is absent and α electrons are allowed

to populate orbitals other than those occupied by the β electrons. Energy levels corresponding

to a ROHF and UHF description are plotted in fig. 3.6.

The double occupancy constraint allows the ROHF approach to obtain solutions that are eigen-

functions of the spin operator, Ŝ2, whereas UHF solutions are formed by a mixture of spin states.

The greater variational freedom allows the UHF method to produce wave-functions that are

energetically more stable than the corresponding ROHF ones; another advantage of the UHF

method is that it allows solutions with locally negative spin density (i.e. anti ferromagnetic

systems), a feature that ROHF solutions can never exhibit.

ROHF solution is not supported by CRYSTAL any more.

Related keywords

SPINLOCK definition of (nα - nβ electrons)
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BETALOCK definition of nβ electrons.
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Chapter 4

Density Functional Methods

The Kohn-Sham [129, 121] DFT code is controlled by keywords, that must follow the general

keyword DFT, in any order. These keywords can be classified into four groups:

1 Choice of the exchange-correlation functional

1 Dispersion correction to DFT (DFT-D)

2 Integration grid and numerical accuracy control (optional)

3 Atomic parameters (optional)

The DFT input block ends with the keyword END or ENDDFT. Default values are sup-

plied for all computational parameters. Choice of exchange and/or correlation potential is

mandatory.

4.1 Choice of the exchange-correlation functional

Many different approximate exchange-correlation functionals are available in CRYSTAL: from

semilocal (i.e. LDA, GGA and mGGA) to global and range-separated hybrid functionals, as

well as double hybrid methods.

EXCHANGE and CORRELAT keywords, each followed by an alpha-numeric record, allow

the selection of the exchange and correlation functionals.

If the correlation potential is not set (keyword CORRELAT), an exchange-only potential is

used in the Hamiltonian. If the exchange potential is not set (keyword EXCHANGE), the

Hartree-Fock potential is used.

A list of the exchange and correlation functionals that can be select in input is reported below.
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EXCHANGE Exchange potential (default: Hartree-Fock exchange).
Insert one of the following keywords II

LDA functionals
LDA LSD. Dirac-Slater [53]
VBH LSD. von Barth-Hedin [220]

GGA functionals
BECKE GGA. Becke 1988 functional [18]
mPW91 GGA. modified Perdew-Wang 1991 functional [?]
PBE GGA. Perdew-Becke-Ernzerhof [160]
PBESOL GGA. PBE functional revised for solids [162]
PWGGA GGA. Perdew-Wang [161]
SOGGA GGA. Second Order corrected GGA functional. It must be used in com-

bination with the PBE correlation functional[238]
WCGGA GGA - Wu-Cohen 2006 functional [229]

CORRELAT Correlation Potential (default: no correlation).
Insert one of the following keywords II

LDA functionals
PWLSD LSD. Perdew-Wang parameterization of the Ceperley-Alder free electron

gas correlation results [163]
PZ LSD. Perdew-Zunger parameterization of the Ceperley-Alder free electron

gas correlation results [166]
VBH LSD. von Barth-Hedin [220]
VWN LSD. Vosko-Wilk-Nusair parameterization of the Ceperley-Alder free elec-

tron gas correlation results. Also known as VWN5. [221]
GGA functionals

LYP GGA. Lee-Yang-Parr [133]
P86 GGA. Perdew 86 [158]
PBE GGA. Perdew-Burke-Ernzerhof [160]
PBESOL GGA. PBE functional revised for solids [162]
PWGGA GGA. Perdew-Wang [161]
WL GGA - Wilson-Levy [227]

Examples of possible selection of the correlation and exchange functionals are:

exchange correlation
—– PWGGA Hartree-Fock exchange, GGA Perdew-Wang correlation.
LDA VWN probably the most popular LDA formulation, also known as S-

VWN
VBH VBH was the most popular LDA scheme in the early LDA solid state

applications (1975-1985).
PBE PBE the well-known PBE XC functional
BECKE LYP B-LYP

Standalone keywords for common exchange-correlation functionals are also available.

SVWN Combination of Slater for exchange and VWN for correlation [53, 221]
BLYP Combination of B88 for exchange and LYP for correlation [18, 133]
PBEXC Full PBE XC GGA functional [160]
PBESOLXC XC GGA revised PBE functional for solids [162]
SOGGAXC Combination of SOGGA for exchange and PBE for correlation [238]
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Global Hybrid functionals

Global hybrid (GH) functionals have the general formula:

EGHxc = (1−A) ∗ EDFAx +A ∗ EHFx + EDFAc

They include a constant fraction of HF exchange (A).

Standalone keywords are available to define global hybrid functionals completely.

B3PW Becke’s 3 parameter functional [19] combined with the non-local correla-
tion PWGGA [159, 164, 165, 163]

B3LYP Becke’s 3 parameter functional [19] combined with the non-local correla-
tion LYP. B3LYP in CRYSTAL is based on the ’exact’ form of the Vosko-
Wilk-Nusair correlation potential (corresponds to a fit to the Ceperley-
Alder data). In the original paper [221]) it is reported as functional V,
which is used to extract the ’local’ part of the LYP correlation potential.

PBE0 Hybrid version of the PBE XC functional with 25% (1/4) of HF exchange.
Adamo and Barone [6]

PBESOL0 Same as PBE0 but with the PBEsol XC functional instead of PBE

B1WC One-parameter hybrid functional which combines WC exchange functional
with 16% of HF exchange and the PWGGA correlation functional (see
[22])

WC1LYP As for the B1WC functional, but with the LYP correlation functional
instead of the PWGGA (see [51])

B97H Hybrid functional based on the B97 XC functional [5, 81]

PBE0-13 Revised version of the PBE0 functional with 33.3333% (1/3) of HF ex-
change [36]

User-defined global hybrid functionals

It is possible to define other global hybrid functionals by specifying an exchange functional (see

the EXCHANGE keyword) and a correlation one (see the CORRELAT keyword) and then

include a given amount of exact Hartree-Fock exchange into the exchange functional through

the keyword HYBRID.

HYBRID Hybrid method - 1 record follows:
• ∗A Fock exchange percentage (default 100.)

Any mixing (0-100) of exact Hartree-Fock and DFT exchange can be used.

The keyword HYBRID can also be used to modifiy the fraction of HF exchange in existing

GH functionals.

NONLOCAL setting of non-local weighting parameters - 1 record follows:
• ∗B exchange weight of the non-local part of exchange

C weight of the non-local correlation

NONLOCAL allows users to modify the relative weight of the local and non-local part both

in the exchange and the correlation potential with respect to standard definition of Becke’s 3
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parameter functional types:

Exc = (1−A) ∗ (ELDAx +B ∗ EBECKEx ) +A ∗ EHFx + (1− C) ∗ ELDAc + C ∗ EGGAc

A, B, and C are the input data of HYBRYD and NONLOCAL. Becke’s 3 parameter

functionals currently implemented in CRYSTAL are B3PW and B3LYP.

For example, the following sequences correspond to the stand-alone keywords for some of the

available GH functionals.

B3PW
corresponds to the sequence:
EXCHANGE
BECKE
CORRELAT
PWGGA
HYBRID
20
NONLOCAL
0.9 0.81

B3LYP
corresponds to the sequence:
EXCHANGE
BECKE
CORRELAT
LYP
HYBRID
20
NONLOCAL
0.9 0.81

PBE0
corresponds to the sequence:
EXCHANGE
PBE
CORRELAT
PBE
HYBRID
25

PBESOL0
corresponds to the sequence:
EXCHANGE
PBESOL
CORRELAT
PBESOL
HYBRID
25

B1WC
corresponds to the sequence:
EXCHANGE
WCGGA
CORRELAT
PWGGA
HYBRID
16

WC1LYP
corresponds to the sequence:
EXCHANGE
WCGGA
CORRELAT
LYP
HYBRID
16

Range-Separated Hybrid functionals

CRYSTAL offers a wide variety of range-separated hybrid (RSH) functionals in which the
amount of HF exchange included depends on the distance between electrons
They are obtained from the separation of the Coulomb operator in different ranges (three
ranges in the current implementation) by means of the error function as:

1

r12
=

erfc(ωSRr12)

r12︸ ︷︷ ︸
SR

+
1− erfc(ωSRr12)− erf(ωLRr12)

r12︸ ︷︷ ︸
MR

+
erf(ωLRr12)

r12︸ ︷︷ ︸
LR

where ω is the length scale of separation. Then, the general form of a range-separated hybrid
is:

ERSHxc = EDFAxc + cSR(EHFx,SR − EDFAx,SR ) + cMR(EHFx,MR − EDFAx,MR) + cLR(EHFx,LR − EDFAx,LR )

According to the values of cSR, cMR, cLR, ωSR and ωLR, short-, middle- and long-range
corrected RSH functionals can be defined.
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The following RSH functionals are available:

Short-range Corrected (SC) functionals
HSE06 Screened-Coulomb PBE functional [3, 160] combined with PBE correlation
HSEsol Screened-Coulomb PBEsol functional [132, 162] combined with PBEsol

correlation
SC-BLYP Short-range corrected RSH functional based on Iirikura-Tsuneda-Yanai-

Hirao scheme[110, 231] of the BLYP XC functional

Middle-range Corrected (MC) functionals
HISS Middle-range corrected functional based on the PBE exchange hole [210,

211]) combined with PBE correlation (labeled B in ref. [210])

Long-range Corrected (LC) functionals
RSHXLDA Long-range corrected LDA exchange functional [2, 123] combined with

VWN for correlation
LC-wPBE Long-range corrected RSH functional[67] based on PBE XC functional
LC-wPBEsol Long-range corrected RSH functional[67] based on PBEsol XC functional

LC-wBLYP Long-range corrected RSH functional[67] based on BLYP XC functional
wB97 Chai-Head-Gordon long-range corrected RSH functional[124, 5]
wB97X Chai-Head-Gordon long-range corrected RSH functional[124, 5] with a

small contribution of HF exchange at short-range
LC-BLYP Long-range corrected RSH functional based on Iirikura-Tsuneda-Yanai-

Hirao scheme [110, 231] of the BLYP XC functional
CAM-B3LYP Long-range corrected RSH functional (Coulomb-Attenuating

method)[214] based on the BLYP XC functional

Details of the amount of RS-HF exchange and the length scale separation ω for the RSH
functionals available in CRYSTAL are given in the table below:
Method Exchange cSR cMR cLR ωSR(a−1

0 ) ωLR(a−1
0 ) Correlation Ref.

HSE06 PBE 0.25 0.00 0.00 0.11 0.11 PBE [3, 160]
HSEsol PBEsol 0.25 0.00 0.00 0.11 0.11 PBEsol [132, 162]
SC-BLYP B88 0.20 0.00 0.00 0.11 0.11 LYP [110, 231, 18, 133]
HISS PBE 0.00 0.60 0.00 0.84 0.20 PBE [210, 211, 160]
LC-ωPBE PBE 0.00 0.00 1.00 0.40 0.40 PBE [67, 160]
LC-ωPBEsol PBEsol 0.00 0.00 1.00 0.60 0.60 PBEsol [67, 162]
LC-ωBLYP B88 0.00 0.00 1.00 0.60 0.60 LYP [67, 18, 133]
RSHXLDA S 0.00 0.00 1.00 0.40 0.40 VWN [2, 123, 221]
ωB97 B97 0.00 0.00 1.00 0.40 0.40 B97 [124, 5]
ωB97-X B97 0.157706 0.00 1.00 0.30 0.30 B97 [124, 5]
LC-BLYP B88 0.00 0.00 1.00 0.47 0.47 LYP [110, 231, 18, 133]
CAM-B3LYP B88 0.157706 0.00 1.00 0.33 0.33 LYP [214, 18, 133]

Notes for RSH functionals:

(i) the bipolar expansion is not active in the calculation of the exchange integrals (on average,
the cost can increase by a factor 2 to 3);

(ii) one- and two-electron repulsion integrals are computed in direct mode;

(iii) implementation of HSE06, HISS, LC-wPBE and related RSH methods is based on the
Henderson-Janesko-Scuseria model of the PBE exchange hole[212].

For available RSH functionals, the value(s) of the length scale separation ω can be modified in
input by using the following keywords.
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SR-OMEGA For screened-Coulomb RSH methods - 1 record follows:
• ∗ ωSR value of the length scale separation ω at short-range (default 0. a−1

0 )

MR-OMEGA For middle-range corrected RSH methods - 1 record follows:
• ∗ ωSR value of the length scale separation ω at short-range (default 0. a−1

0 )
ωLR value of the length scale separation ω at long-range (default 0. a−1

0 )

LR-OMEGA For long-range corrected RSH methods - 1 record follows:
• ∗ ωLR value of the length scale separation ω at long-range (default 0. a−1

0 )

SR-HYB WB97X Option to change the amount of SR-HF exchange in the ωB97-X func-
tional - 1 record follows:

• ∗ cSR value of the coefficient for the SR-HF exchange term

The amount of HF exchange (i.e. cSR, cMR, cLR) can be modified by specifying the HYBRYD
keyword (see above for details).

User-controllable RSH x-functional based on the PBE functional

LSRSH-PBE User-controllable RSH x-functional based on the PBE functional - 1 record
follows:

• ∗ ω value of the length scale separation ω (default 0. a−1
0 )

cSR value of the coefficient for the SR-HF exchange term
cLR value of the coefficient for the LR-HF exchange term

The keyword LSRSH-PBE allows users to specify the value of omega, cSR and cLR for a generic
RSH functional based on the PBE functional. So, the input looks like:

...

DFT

LSRSH-PBE

0.11 0.25 0.00001

END

...

For instance, this corresponds to the HSE06 functional.
According to the general form of the RSH functional, one can also obtain the LC-ωPBE
functional as: ω=0.4 a−1

0 ; cSR=0.00001; cLR=1.00.
Note that cSR and cLR can be small but not zero (threshold: 1E-06).

meta-GGA functionals

Both pure and hybrids meta-GGA (mGGA) functionals are available. In the current version,
all implemented mGGA functionals belong to the Minnesota set of functionals as proposed by
Truhlar and co-workers[], in particular the M05 and M06 families.

Pure mGGA functionals
M06L pure mGGA version of the M06 hybrid functional[233]

Global hybrid mGGA functionals
M05 Minnesota 2005 global hybrid mGGA XC functional hybridized with 28%

of HF exchange[237]
M052X as M05 but with a doubled amount of HF exchange[236]
M06 Minnesota 2006 global hybrid mGGA XC functional hybridized with 27%

of HF exchange[235]
M062X as M06 but with twice amount of HF exchange[235]
M06HF global hybrid mGGA with 100% HF exchange[234]
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Double Hybrid functionals

Double hybrid (DH) functionals implemented in CRYSTAL have the general formula:

EDHxc = (1−A) ∗ EDFAx +A ∗ EHFx + (1−B) ∗ EDFAc +B ∗ EMP2
c

as proposed by S. Grimme [190].

The following DH functionals are currently available:
A% B%

B2PLYP Becke88’s exchange functional [18] combined with the LYP correlation
functional[190]

53 27

B2GPPLYP General purpose (GP) version of B2PLYP DH functional [1] 63 36

mPW2PLYP Modified PW91 exchange functional[] combined with the LYP corre-
lation functional[213]

55 25

DH functionals can only be used in combination with a post-SCF MP2-like calculation through
the CRYSCOR program.

Notes:

(i) the total energy printed at the end of the SCF process is meaningless because it does not
include the MP2 correlation correction;

(ii) current implementation is limited to the LYP correlation functional;

(iii) there are neither numeric nor analytic gradients for DH functionals;

(iv) the MP2 correlation correction is available for closed shell systems, only;

(v) DH methods have the same computational cost as MP2, rather than that of DFT;

(vi) DH methods are available only for sequential runnings.

See the CRYSCOR User’s Manual for further details on the post-SCF MP2-like calculation.

The amount of HF exchange and MP2 correlation correction can be modified by means of the
DHYBRYD keyword.

DHYBRID Double Hybrid method - 1 record follows:
• ∗A Fock exchange percentage (default 100.)

B MP2 correlation correction percentage (default 0.)

Availability of XC functionals

Not all functionals are available for all types of calculations and computed properties. A
summary is given in the following table (Y=Yes, N=Not)

DFA Energy Gradients CPKS
LDA Y Y Y
GGA Y Y Y
mGGA Y Y N
Global hybrids (LDA,GGA) Y Y Y
Global hybrids (mGGA) Y Y N
Range-separated hybrids Y Y Y
Double hybrids Y N N

Note that only a subset of the pure and hybrid LDA/GGA XC functionals can be used in the
CPKS scheme, namely:

123



LDA/GGA Global hybrids Range-separated hybrids
LDA B3LYP RSHXLDA
VWN PBE0 ωB97

BECKE PBEsol0 ωB97-X
PBE (XC) B1WC LC-BLYP

PBEsol (XC) WC1LYP SC-BLYP
SOGGA B97H CAM-B3LYP
WCGGA

LYP

The calculation of properties that require the solution of the CPKS equations, such as lin-
ear and non-linear electric susceptibilities (e.g. dielectric constant), Raman intensities and
photoelasticity, is then limited to that subset of XC functionals.

Spin-polarized systems

All functionals are formulated in terms of total density and spin density. Default is total
density. To use functionals of spin density insert the keyword SPIN.

SPIN unrestricted spin DF calculation (default: restricted)

Self-consistent Hybrids

For a long time, hybrid functionals (either global or screened-exchange) have been characterized
by a fixed, system-independent Fock exchange fraction α (0.2 in B3LYP and B3PW91, 0.25
in PBE0 and HSE06, 0.16 in B1WC, for instance). Many properties of solids turn out to be
significantly affected by the α parameter, which makes the identification of its optimal value
both conceptually and practically important. For instance, it is known that the electronic
band structure of small or large band gap solids is better reproduced by use of smaller or
larger values of α, respectively.
In recent years, the use of a system-specific optimal Fock fraction, as linked to the static elec-
tronic screening of the system, has been proposed, whose practical prescription implies defining
α as inversely proportional to the static electronic dielectric constant ε∞ of the material. The
dielectric constants entering the definition of these functionals have been either taken from the
experiment or computed with different techniques. In this respect, Skone et al. [Phys. Rev.
B 89, 195112 (2014)] have recently proposed a promising iterative scheme for the calculation
of the optimal Fock exchange fraction of global hybrids, where the static electronic dielectric
response of the material and α are self-consistently determined. Self-consistent hybrids are
becoming popular in solid state applications mainly because of their reliable description of the
electronic band structure and some optical properties.
The system-specific character of self-consistent hybrid functionals on the one hand has the
advantage of bringing into the exchange-correlation functional the electronic screening proper
of the material but, on the other hand, it makes it necessary to determine α for each system
as a pre-step to any calculation, which implies a higher computational cost and a reduced
user-friendliness compared to standard hybrids, unless computationally-efficient, automated
strategies are devised for their definition.
In Crystal17, a fully-automated (i.e. requiring a single calculation), computationally-efficient
implementation of self-consistent hybrid functionals has been implemented. The static elec-
tronic dielectric tensor of the system is computed by adopting a Coupled-Perturbed-Hartree-
Fock/Kohn-Sham (CPHF/KS) approach and full advantage is taken of internal guesses of
perturbed and unperturbed density matrices from previous iterations to achieve high compu-
tational efficiency.
A schematic representation of the fully-automated algorithm for the determination of the op-
timal Fock exchange of self-consistent hybrid functionals is reported in Figure 4.1, as imple-
mented into Crystal17. The procedure starts with a guess for the exact exchange fraction α
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Figure 4.1: Flow chart of the automated algorithm for the system-specific definition of self-
consistent hybrid functionals, as implemented in Crystal17.

(any value in the range from 0 to 1) and with the choice of the adopted exchange-correlation
DFT functional. At each iteration n of the procedure, the static electronic dielectric tensor of

the system is computed, from which an average dielectric constant ε
(n)
∞ is evaluated. At the

end of each iteration n, the Fock exchange fraction is updated according to α = 1/ε
(n)
∞ and

convergence of the whole process is checked on the average dielectric constant (i.e. convergence
is reached when ε∞ changes by less than 0.1% between two subsequent iterations).

The optimal fraction of exact exchange is self-consistently determined by performing a pre-
liminary calculation activated by the keyword SCHYBRID, to be inserted at the end of the
geometry input block. This keyword opens a block that must be terminated by a keyword
END.
A possible input reads as follows:

...geometry...

SCHYBRID Keyword to compute the optimal exchange fraction of self-consistent hybrid

END End of Self-consistent hybrid input

END End of geometry input block

...basis set...

END End of basis set input block

DFT Keyword to set a DFT calculation

PBE0 The PBE0 global hybrid functional is selected, for instance

END End of DFT input block

END End of computational parameter input block

At the end of the output file, the following information is found:

SCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCH

SELF-CONSISTENT HYBRID CALCULATION

Implemented by A. Erba on April 2015
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based on the paper by J.H. Skone, M. Govoni and G. Galli

Phys. Rev. B, 89, 195112 (2014)

SCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCHSCH

CONVERGENCE ON DIELECTRIC CONSTANT REACHED AFTER 4 CYCLES

AVERAGE DIELECTRIC CONSTANT: 2.7355

OPTIMAL EXCHANGE FRACTION: 36.5473

Users of this module are kindly requested to cite the following reference:
A. Erba, J. Phys.: Condens. Matter, 29, 314001 (2017) Self-consistent Hybrid Functionals for
Solids: A fully-automated Implementation

The optimal fraction of Fock exchange is given in the last row. At this point, all one needs to
do is to use this Fock exchange fraction in the calculation. To do that, the HYBRID keyword
of the DFT block can be used:

...geometry...

END End of geometry input block

...basis set...

END End of basis set input block

DFT Keyword to set a DFT calculation

PBE0 The PBE0 global hybrid functional is selected, for instance

HYBRID Keyword to set the Fock exchange fraction

36.5473

END End of DFT input block

END End of computational parameter input block

4.2 Dispersion correction to DFT (DFT-D)

The proper description of noncovalent interactions requires the inclusion of long-range electron
correlation effects that are missing in both HF and DFT methods. In particular, the treatment
of the weak London forces is crucial because of their attractive and ubiquitous nature.

In CRYSTAL, empirical and semi-classical corrections D2/D3 as proposed by S. Grimme[102,
104] are available to take into account dispersive interactions.
For a range of common density functionals, the D3 correction can be invoked by simply speci-
fying the XC functional with the suffix ’-D3’ in the DFT input block by means of stand-alone
keywords. For more details, users are referred to Chapther 5.5.

The older D2 corrections can still be used by means of either the option ”version 2” of the
DFTD3 keyword (see 5.5) or the keyword GRIMME (see 3.3).[44, 45, 218]

4.3 Integration grid and numerical accuracy control

No input data are required: Becke weights are chosen by default, as well as a set of safe values
for the computational parameters of integration.
The generation of grid points in CRYSTAL is based on an atomic partition method, originally
developed by Becke [16] for molecular systems and then extended to periodic systems [216].
Each atomic grid consists of a radial and an angular distribution of points. Grid points are
generated through a radial and an angular formula: Gauss-Legendre radial quadrature and
Lebedev two-dimensional angular point distribution are used.
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Lebedev angular grids are classified according to progressive accuracy levels, as given in the
following table:

LEV CR98 ` Nang LEV CR98 ` Nang

1 1 9 38 16 53 974
2 2 11 50 17 59 1202
3 13 74 * 18 65 1454
4 15 86 19 71 1730
5 3 17 110 20 77 2030
6 19 146 21 83 2354
7 21 170 22 89 2702
8 4 23 194 23 95 3074
9 25 230 * 24 101 3470
10 5 27 266 * 25 107 389
11 6 29 302 26 113 4334
12 31 350 27 119 4802
13 7 35 434 28 125 5294
14 41 590 29 131 5810
15 47 770

Index of Lebedev accuracy levels
LEV: Lebedev accuracy level
CR98: corresponding index in CRYSTAL98

`: maximum quantum number of spher-
ical harmonics used in Lebedev
derivation

Nang: number of angular points generated
per radial point

∗ : sets with negative weights, to be
avoided

If one Lebedev accuracy level is associated with the whole radial range, the atomic grid is
called unpruned, or uniform. In order to reduce the grid size and maintain its effectiveness, the
atomic grids of spherical shape can be partitioned into shells, each associated with a different
angular grid. This procedure, called grid pruning, is based on the assumption that core electron
density is usually almost spherically symmetric, and surface to be sampled is small.
Also, points far from the nuclei need lower point density, as associated with relatively small
weights, so that more accurate angular grids are mostly needed within the valence region than
out of it.
The choice of a suitable grid is crucial both for numerical accuracy and need of computer
resources.

Different formulae have been proposed for the definition of grid point weights. In CRYSTAL
Becke and Savin weights are available; Becke weights are default, and provide higher accuracy.

[BECKE] Becke weights [17]. Default choice.

SAVIN Savin weights [198]

A default grid is available in CRYSTAL, however the user can redefine it by the following
keywords:

127



RADIAL Radial integration information
rec variable meaning
• ∗ NR number of intervals in the radial integration [default 1]
• ∗ RL(I),I=1,NR radial integration intervals limits in increasing sequence [default 4.0]

(last limit is set to ∞)
• ∗ IL(I),I=1,NR number of points in the radial quadrature in the I-th interval

[default 55].

ANGULAR Angular integration information
rec variable meaning
• ∗ NI number of intervals in the angular integration [default 1]
• ∗ AL(I),I=1,NI upper limits of the intervals in increasing sequence. The last limit must

be 9999.0 [default 9999.0]
• ∗ LEV(I),I=1,NI accuracy level in the angular integration over the I-th interval; positive

for Lebedev level (see Lev in page 127) [default 13]

Note: A new default grid has been set. It corresponds to the XLGRID in CRYS-
TAL09

The default grid is a pruned (75,974) grid, having 75 radial points and a maximum number of
974 angular points in regions relevant for chemical bonding. Each atomic grid is split into five
shells with different angular grids.

This grid guarantees accurate integration of the XC potential when numerical derivatives of
energy or related properties (i.e. spontaneous polarization) and gradients have to be computed
(e.g. bulk modulus, elastic constants, piezoelectric tensor, ferroelectric transitions). It also
provides accurate results for atoms up to fourth-row and heavier.

Default grid - corresponds to the sequence:

RADIAL Keyword to specify the radial grid
1 Number of intervals in the radial part
4.0 Radial integration limits of the i-th interval
75 Number of radial points in the i-th interval
ANGULAR Keyword to specify the angular grid
5 Number of intervals in the angular part
0.1667 0.5 0.9 3.5 9999.0 Angular integration limits of the i-th interval
4 8 12 16 12 Angular grid accuracy level of the i-th interval

Information on the size of the grid, grid thresholds, and radial (angular) grid is reported in the
CRYSTAL output with the following format:

SIZE OF GRID= 44707

BECKE WEIGHT FUNCTION

RADSAFE = 2.00

TOLERANCES - DENSITY:10**- 6; POTENTIAL:10**- 9; GRID WGT:10**-14

RADIAL INTEGRATION - INTERVALS (POINTS,UPPER LIMIT): 1( 75, 4.0*R)

ANGULAR INTEGRATION - INTERVALS (ACCURACY LEVEL [N. POINTS] UPPER LIMIT):

1( 4[ 86] 0.2) 2( 8[ 194] 0.5) 3( 12[ 350] 0.9) 4( 16[ 974] 3.5)

5( 12[ 350]9999.0)

Three more pre-defined grids are available which can be selected to improve accuracy (or reduce
the cost) by inputing the following global keywords:
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OLDGRID Old default grid

This is the old default grid in CRYSTAL09. It is a pruned (55,434) grid, having 55 radial
points and a maximum number of 434 angular points in regions relevant for chemical bonding.
Each atomic grid is split into ten shells with different angular grids.
This grid is good enough for either single-point energy calculations or medium-accuracy
geometry optimizations. Due to the large pruning, the cost of the calculation is modest.

Default grid - corresponds to the sequence:

RADIAL Keyword to specify the radial grid
1 Number of intervals in the radial part
4.0 Radial integration limits of the i-th interval
55 Number of radial points in the i-th interval
ANGULAR Keyword to specify the angular grid
10 Number of intervals in the angular part
0.4 0.6 0.8 0.9 1.1 2.3 2.4 2.6 2.8 9999.0 Angular integration limits of the i-th interval
1 2 5 8 11 13 11 8 5 1 Angular grid accuracy level of the i-th interval

LGRID Large grid

Global keyword to choose a smaller grid than default, corresponding to the sequence:

RADIAL

1

4.0

75

ANGULAR

5

0.1667 0.5 0.9 3.05 9999.0

2 6 8 13 8

The large grid is a pruned (75,434) grid, having 75 radial points and a maximum number of 434
angular points in the region relevant for chemical bonding. Five shells with different angular
points are adopted to span the radial range as proposed by Gill et al. [99].

[XLGRID] Extra large grid (default)

XXLGRID Extra extra large grid

The extra-extra-large grid is a pruned (99,1454) grid, consisting of 99 radial points and 1454
angular points in the region of chemical interest. This is very large and accurate grid which
can be used for benchmark calculations. It corresponds to:

RADIAL

1

4.0

99

ANGULAR

5

0.1667 0.5 0.9 3.5 9999.0

6 10 14 18 14
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Unpruned grids

To switch from a pruned grid to the corresponding unpruned grid, only one shell must be
defined in the radial part and the same angular accuracy is used everywhere. The use of
unpruned grids increases the cost of the calculations by about 50-60% with respect to the
pruned grid.
For example, to transform the default grid to the corresponding unpruned grid input the
following data:

ANGULAR

1

9999.0

13

Numerical accuracy and running time are also controlled by the following keywords:

TOLLGRID
• ∗ IG DFT grid weight tolerance [default 14]
TOLLDENS
• ∗ ID DFT density tolerance [default 6]

The DFT density tolerance ID controls the level of accuracy of the integrated charge density
Nel (number of electron per cell):

Nel =

∫
cell

ρ(r)dr =
∑
µ,ν,g,l

P g+g′

µ,ν

∑
i

w(ri)ϕ
g
µ(ri)ϕ

g′

ν (ri)

all contributions where |ϕµ(ri)| < 10−ID or |ϕν(ri)| < 10−ID are neglected (see Chapter 17.12
for notation). The default value of ID is 6.
Grid points with integration weights less than 10−IG are dropped. The default value of IG is
14.

RADSAFE
• ∗ RAD for developers only [default 2]

BATCHPNT
• ∗ BATCH average number of points in a batch for numerical integration [default 100]

In CRYSTAL (serial and parallel versions), in the calculation of the exchange-correlation con-
tribution to the Kohn-Sham Hamiltonian matrix elements and energy gradients, a grid of
NPOINT points is partitioned into batches of points as suggested by Ahlrichs [217]. The unit
cell volume is then divided into a number of equivalent sub-volumes which approximates the
following ratio: NPOINT/BATCH. Each grid point is assigned to a sub-volume and the set of
points inside a sub-volume forms a batch. Since the distribution of grid points is not uniform
in the unit cell (it is an atomic grid) the population of batches may vary from a few points
to a few thousands. For this reason BATCH does not correspond to the maximum number of
points in a batch. For example, batches of grid points close to the nuclei contain many more
points than batches in internuclear regions. This may produce load unbalancing in parallel
calculations (see CHUNKS).
The number of sub-volumes into which subdivided rhe unit cell is altered by changing BATCH.
Reducing BATCH may result in some degree of inefficiency (minimum value: 1). Changing
the value of BATCH can also affect results at some extent if TOLDENS is not sufficiently
accurate, as the selection of contributions to the total density at a point can be influenced by
the definition of the sub-volumes.
Default value of BATCH is 100, as averagely good balance between accuracy and efficiency.

CHUNKS
• ∗ NCHU maximum number of points allowed in a batch for numerical integration

[default 10000000]
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This option is available for replicated-data calculations (Pcrystal only). Since different batches
can contain a different number of points in a rather wide range, task farming can be unbalanced.
CHUNKS allows user to set the maximum number of points per batch so improving load
balancing. Recommended value of NCHU: 200.
CHUNKS is not implemented under DISTGRID.

DISTGRID

This option is available for both replicated-data and massive-parallel calculations. It forces
the code to distribute the DFT grid information, which becomes huge for large unit cell cases,
across all available processors. This permits a reduction in memory usage per processor.

LIMBEK
• ∗ LBEK size of local arrays for integration weights [default 400]

4.4 Atomic parameters

The radius attributed to each atom for the integration is computed from the formal charge as
specified in the initial electronic configuration. It is possible to enter for selected atoms a given
atomic radius or a different formal charge.

• A RADIUS
• ∗ NUMAT number of atoms selected

insert NUMAT records II
• ∗ NA (formal) atomic number of the atom

RAD(LB) radius (Å) attributed to the atom

• A FCHARGE
• ∗ NUMAT number of atoms selected

insert NUMAT records II
• ∗ NA (formal) atomic number of the atom

FCH(LB) formal charge attributed to the atom

The atomic radius or formal charge set in this way is used only the construction of the DFT
grid. The value is applied to all atoms with the same formal atomic number.
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Chapter 5

Semi-classical corrections for HF
and DFT

¡¡¡¡¡¡¡ .mine
HF and semi-local approximations to DFT have well known limitations in the description on
noncovalent interactions, mainly due to the lack of long-range Coulomb correlation. These
effects lead to the omnipresent attractive London dispersion interaction (also known as at-
tractive part of the van der Waals force). Though considered as a relatively ’weak’ London
dispersion interactions play a major role in all organic (organo-metallic) systems and influence
the geometry, noncovalent binding energy (lattice energy), frequencies, and even reactivities,
i.e. the whole potential energy surface. Thus, for these systems it is crucial to include this
interaction. Varies different correction schemes are described and compared in Ref. [106].
In CRYSTAL, the D3 London dispersion correction, which has been mainly developed in the
group of Prof. Grimme, is implemented including three-body dispersion contributions with
fast analytical gradients.[104]
Due to restrictions in the computational resources, small atomic orbital basis set expansions are
widely used. As the set of orbitals is neither complete nor independent of the geometry, artificial
interactions occur, typically referred to as basis set superposition error. A critical analysis of
the error sources and its’ implications is given in Ref. [208]. Apart from the standard Boys-
Bernardi couterpoise correction (see keywords GHOSTS and MOLEBSSE), a semi-empirical
geometric counterpoise correction (gCP) has been implemented in CRYSTAL.[131]
While both dispersion and counterpoise corrections can be applied independently, e.g. with a
B3LYP-D3-gCP/6-31G* calculation, the performance is best when the parametrization is done
together and basis set incompletenesses errors are simultaneously treated by an additional semi-
classical correction or by compensating them with an adjusted exchange-correlation functional.
Two of these ’composite’ methods are implemented in CRYSTAL and described below, namely
a minimal basis set HF with corrections (HF-3c)[209] and a hybrid density functional evaluated
in small double-ζ type orbitals with dispersion and counterpoise correction (PBEh-3c).[107]
The following schemes have been carefully tested for molecular dimers, larger molecular as-
semblies, host-guest-complexes, and molecular crystals.
Note that studies on inorganic crystals and metals are less well tested and should
be treated carefully.

5.1 DFT-D3 - C6 based London dispersion correction

For a range of common density functionals, the D3 correction can be invoked by simply speci-
fying the XC functional with the suffix ’-D3’ in the DFT input block by means of stand-alone
keywords. Here an example follows for the common B3LYP functional.

...

DFT

B3LYP-D3
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END

...

By default, the D3 correction includes a damped (BJ damping) atom-atom pairwise term
(no three-body term) to the KS-DFT energies (and atomic and cell gradients) (see below for
details).[104]
Note that not all functionals available in CRYSTAL have been parametrized. A list of
available D3 dispersion corrected DFT methods follows: BLYP, PBE, B97, B3LYP, PBE0,
PW1PW, M06, HSE06, HSEsol, LC-wPBE. For other XC functionals, parameters must be
provided in input (see below)

Additionally, the keyword DFTD3, inserted in the third input block and closed by END,
allows users to include the three-body term, modify/specify all free method parameters,
change the damping function and other options as detailed in the following.

D3 correction

The D3 augmented KS-DFT energies are obtained as

EDFT-D3 = EKS-DFT + Edisp (5.1)

with Edisp being the sum of the two- and three-body contributions to the dispersion energy:

Edisp = E(2) + E(3) (5.2)

= −1

2

∑
n=6,8

atoms∑
A,B

sn
CABn
RnAB

· fdn(RAB)− 1

6

atoms∑
A,B,C

CABC9

R
9

ABC

· fd9 (RABC , θABC). (5.3)

This expression assumes dispersion coefficients that can be distributed to isotropic atom con-
tributions. While the series should in principle incorporate higher orders, they were shown to
be of less importance for many systems.[106]
In order to match the long- and midrange correlation of D3 with the semilocal correlation
computed by the functional, an adequate damping function fdn must be included. CABn denotes
the averaged (isotropic) nth-order dispersion coefficient for atom pair AB, and RAB is their
internuclear distance. sn is a functional-dependent scaling factor (see below). In contrast
to the D2 method, here the CAB6 coefficients are estimated from first principles by TD-DFT
computation of the dynamical polarizability α for model hydrides of all elements and using the
Casimir-Polder integration

CAB6 = − 3

π

∫
dω αA(iω)αB(iω) (5.4)

These reference C6 are then mapped to the real system via a geometric coordination number.

Damping functions
In order to avoid near singularities for small distances (RAB), the dispersion contribution needs
to be damped at short distances. One possible way is to use rational Becke-Johnson damping
as proposed by Becke and Johnson [20, 126, 127], which is the recommended option for the
two-body contributions as it avoids artificial repulsive forces:

fdn=6,8(RAB) =
RnAB

RnAB + f(RAB0 )n
(5.5)

with[127]

RAB0 =

√
CAB8

CAB6

(5.6)

133



and

f(RAB0 ) = a1R
AB
0 + a2. (5.7)

In the literature this is typically used as D3(BJ).

Damping the dispersion contribution to zero for short ranges (as in Ref.[104]) is also possible:

fdn=6,8 =
1

1 + 6(RAB/(sr,nRAB0 ))−αn
. (5.8)

Note that the RAB0 used with this damping are from Ref.[104], the scheme is typically
abbreviated as D3(0). For more information on the supported damping functions, see Ref
[105].

The Axildor-Teller-Muto type three-body term is used in the following form:

fd9 = (3 cos θa cos θb cos θc + 1)× 1

1 + 6(RABC/(sr,nR
ABC

0 ))−αn
. (5.9)

where θa, θb and θc are the internal angles of the triangle formed by RAB , RBC and RCA, RABC
is the geometric mean of RAB , RBC and RAB . The C9 coefficient is approximated by:

CABC9 ≈ −
√
CAB6 CAC6 CBC6 . (5.10)

The damping function is similar to the zero damping and has not been revised. Inclusion of
the three-body term is often denoted by D3atm.

DFTD3 - opens D3 input block

VERSION - chooses between D2, D3 and the different damping functions
rec variable meaning
• * NAT (2) Old D2 correction, (3) D3 with zero-damping, (4) D3 with Becke-

Johnson damping (default)

FUNC - chooses the functional for automatic parameter loading
rec variable meaning
• * CHAR List of parametrized functionals available on the homepage

http://www.thch.uni-bonn.de/tc/dftd3

ABC - switches on the three-body dispersion term

S6 - define s6 manually
rec variable meaning
• * REAL define s6 scaling parameter manually (should be always 1.0 for GGA

and hybrid functionals)

S8 - define s8 manually
rec variable meaning
• * REAL define s8 scaling parameter manually

A1 - define a1 manually
rec variable meaning
• * REAL define a1 parameter of rational Becke-Johnson damping manually

A2 - define a2 manually
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rec variable meaning
• * REAL define a2 parameter of rational Becke-Johnson damping manually

A2 - define a2 manually
rec variable meaning
• * REAL define a2 parameter of rational Becke-Johnson damping manually

RS6 - define rs6 manually
rec variable meaning
• * REAL define rs6 parameter of zero-damping manually

RS8 - define rs8 manually
rec variable meaning
• * REAL define rs8 parameter of zero-damping manually

RADIUS - define two-body real-space cutoff manually
rec variable meaning
• * REAL define distance cutoff for real-space summation of two-body contribu-

tions [a.u.]

CNRADIUS - define tree-body real-space cutoff manually
rec variable meaning
• * REAL define distance cutoff for real-space summation of three-body contri-

butions and of the coordination number function [a.u.]

PRINTC6 - extensive output with individual CAA6 and RAA0 values

END - closes D3 input block

The older D2 corrections can still be used by means of either the option ”version 2” of the
DFTD3 keyword or the keyword GRIMME (see 3.3).[44, 45, 218]

Examples

A typical input looks like (urea molecular crystal):

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

ENDG

BASISSET

def2-SV(P)

DFT

B3LYP-D3

END

SHRINK

4 4

END
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This is a simplified version of the explicit input.

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

ENDG

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

VERSION

4

S6

1.0000

S8

1.9889

A1

0.3981

A2

4.4211

END

SHRINK

4 4

END

A change of the damping parameter should be generally avoided as they have been carefully
optimized individually for all functionals.
A more useful test is the impact of the Axilrod-Teller-Muto type three body dispersion, e.g.
via

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

ENDG

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3
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ABC

END

SHRINK

4 4

END

More input examples can be found at the CRYSTAL tutorials web page.
Note that cohesive energies at the given level will suffer severely from basis set superposition
errors.

5.2 GCP - Geometrical counterpoise correction

The keyword GCP, inserted in the last section of the CRYSTAL input and closed by END,
calculates atom-pair wise counterpoise corrections which are added to the KS-DFT energies
(and atomic and cell gradients).[131]

Note that the gCP scheme has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully.

gCP correction
The central idea is to add in a semi-empirical fashion an energy correction ∆EgCP to the
energies of molecular (or periodic) systems in order to remove artificial overbinding effects from
BSSE.[131, 30] As the focus lies on the contribution of individual atoms a natural outcome is
its ability to yield also intramolecular BSSE corrections. The parametrization is constructed
such that it approximates the Boys and Bernadi[28] counterpoise (CP) correction ∆ECP in
the intermolecular case

∆ECP ≈ ∆EgCP , (5.11)

where e.g. for a complexation reaction A+B → C our correction is given by

∆EgCP = EgCP(C)− EgCP(A)− EgCP(B) . (5.12)

In practice, EgCP can simply be added to the HF/DFT energy

Etotal = EHF/DFT + EgCP . (5.13)

The central equation over all atoms N reads:

EgCP = σ ·
N∑
A

∑
g

′
N∑
B

emiss
A · fdec(RAB + g) , (5.14)

where the energy emiss
A is a measure for the incompleteness for the chosen target basis set (that

is typically small), and fdec(RAB) is a decay function that depends on the inter-atomic distance
RAB .

fdec(RAB) =
exp

(
−αRABβ

)
√
AABNB

virt

(5.15)

The potential is normalized by the Slater-type overlap SAB , the number of virtual orbitalsNB
virt,

and the empirical parameters α and β. In molecular systems, the sum over the translation
invariant vectors g is omitted. For periodic systems, a sum over all atompairs inside a supercell
is utilized with default distance-cutoff of 60 Bohr analogue to the non-periodic version. The
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prime (′) indicates that for g = 0, A 6= B. The scaling factor σ is one out of 4 parameters
needed for every <method>/<basis set> combination.

Small basis sets show not only a large BSSE, but general shortcomings. These effects are
not always clearly distinguishable. If computationally affordable, large basis sets (triple-ζ and
higher) are always preferable for a given system.
The gCP has been developed for a range of standard basis sets, including MINIS, def2-SV(P),
def2-SVP, def-TZVP, def2-TZVP, 6-31G*, pob-TZVP. The parametrization distinguishes
between generalized gradient approximated functionals ’GGA’, hybrid functionals ’DFT’, and
pure Hartree-Fock ’HF’. The DFT parametrization will often also work GGA functionals,
but the couterpoise correction is typically underestimated. The following combinations are
parametrized:

GGA DFT HF

MINIS yes no yes
SV yes yes yes
SV(P) no yes yes
SVP yes yes yes
def-TZVP no yes yes
def2-TZVP no yes yes
6-31G* no yes yes
pob-TZVP no yes no

A more extensive list can be found at the web page:
http://www.thch.uni-bonn.de/tc/?section=downloads.

The gCP correction can be invoked by a single line in the third CRYSTAL input block

GCPAUTO - It includes the gCP correction with automatic parameter setup

This is however only possible if the basis set has been defined with a general BASISSET
keyword. Then, the routine automatically selects the most suitable available parametrization.
Otherwise, the gCP correction has to be defined by an individual input block:

GCP - opens gCP input block

METHOD - choose gCP method combination
rec variable meaning
• * CHAR Choose between different gCP parametrization. The method distin-

guishes between different types of Hamiltonians (HF, GGA, DFT)
and the used basis set name, separated by a slash. E.g., dft/svp

SIGMA - define σ manually
rec variable meaning
• * REAL define σ scaling parameter manually

ALPHA - define α manually
rec variable meaning
• * REAL define α parameter manually

BETA - define β manually

138



rec variable meaning
• * REAL define β parameter manually

ETA - define η manually
rec variable meaning
• * REAL define η parameter manually

RADIUS - define real-space cutoff manually
rec variable meaning
• * REAL define distance cutoff for real-space summation [a.u.]

PRINTEMISS - extensive output with emiss, Nvirt, and individual Egcp contributions

END - closes gCP input block

Examples

A typical input looks like (urea molecular crystal):

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

ABC

END

GCPAUTO

SHRINK

4 4

END

This is a simplified version of the following explicit input.

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380
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BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

VERSION

4

S6

1.0000

S8

1.9889

A1

0.3981

A2

4.4211

END

GCP

METHOD

DFT/SVP

SIGMA

0.2424

ETA

1.2371

ALPHA

0.6076

BETA

1.4078

END

SHRINK

4 4

END

5.3 HF-3C - Minimal basis HF composite method

The keyword HF3C, inserted in the last section of the CRYSTAL input and closed by the
keyword END, calculates three semi-classical corrections (D3, gCP, SRB), which are added
to the HF energies (and atomic and cell gradients).[209]

The HF-3c method
This composite method is based on a minimal basis set HF calculation as:

EHF-3c = EHF/MINIX + ED3 + EgCP + ESRB (5.16)

It is designed to compete with semi-empirical (tight–binding or NDO) methods without
neglecting any of the many-center integrals. This keyword should only be used in combination
with a pure HF calculation in the MINIX orbital basis set. Its original design targeted
organic complexes[209], but it has been used for periodic systems[31], and specifically tested
as implemented in CRYSTAL.[47].

Note that the HF-3c method has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully.

The keyword HF3C automatically switches on all needed correction schemes with proper
parameter setup. While the D3 and gCP schemes have been described before (see sections 5.5),
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a third short-range basis (SRB) correction is introduced. This correction mainly improves the
bond distances of electronegative elements that have a systematic error in the restricted basis
set expansion.

HF3C - opens HF-3c input block

RESCALES8 - scale C8 contribution in D3 correction
rec variable meaning
• * REAL scales the C8 contribution in the D3 dispersion correction. Can also

be adjusted individually in the DFTD3 input block.

SCALEGCP - scale contribution from gCP correction
rec variable meaning
• * REAL scales the contribution from the gCP correction. Can also be adjusted

individually in the GCP input block.

END - closes HF-3c input block

Examples
The urea crystal can be treated like

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

MINIX

HF3C

END

SHRINK

4 4

END

The scaled s-HF-3c with scaled down C8 dispersion contribution as introduced in Ref. [47] can
be defined by

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET
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MINIX

HF3C

RESCALES8

0.70

END

SHRINK

4 4

END

5.4 PBEH-3C - Small basis DFT composite method

The keyword PBEH3C, inserted in the DFT Hamiltonian input block as a standalone keyword
(see section 4), corresponds to a modified global hybrid functional PBEh with semi-classical
corrections (D3, gCP).[107]

EPBEh-3c = EPBEh/def2-mSVP + ED3 + EgCP (5.17)

This composite method is based on a modified double-ζ orbital set dubbed def2-mSVP, which
should be always used when performing PBEh-3c calculations. The basis set development and
explicit definition is given in Ref [107]. The PBE type correlation and exchange enhancement
factors have been optimized to absorb certain incompleteness errors of the restricted basis set.
The percentage of HF exchange (42%) is adjusted to get covalent bond length that are on
average correct.

Note that the PBEh-3c method has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully..

The keyword PBEH3C automatically switches on all needed correction schemes with proper
parameter setup. The D3 and gCP schemes have been described before (see sections 5.5),
in order to avoid contributions of the gCP for covalent bond length and thermochemistry,
a short-range damping has been introduced. The D3 correction is used in its rational
Becke-Johnson damping scheme and includes per default the three-body Axilrod-Teller-Muto
term.

Note that vibrational frequencies computed with PBEh-3c will be scaled by 0.95 as recom-
mended in its original publication. See section ( 7.1) for changing the frequency scaling factor
manually.

Example
The urea crystal can be treated like

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

def2-mSVP

DFT

PBEH3C
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END

SHRINK

4 4

END

=======
HF and semi-local approximations to DFT have well known limitations in the description on
noncovalent interactions, mainly due to the lack of long-range Coulomb correlation. These ef-
fects lead to the omnipresent attractive London dispersion interaction (also known as attractive
part of the van der Waals force). Though considered as a relatively ’weak’ London dispersion
interactions play a major role in all organic (organo-metallic) systems and influence the geom-
etry, noncovalent binding energy (lattice energy), frequencies, and even reactivities, i.e. the
whole potential energy surface. Thus, for these systems it is crucial to include this interac-
tion. Different correction schemes are described and compared in Ref. [106]. In CRYSTAL,
the D3 London dispersion correction, which has been mainly developed in the group of Prof.
Grimme, is implemented including three-body dispersion contributions with fast analytical
gradients.[104]
Due to restrictions in the computational resources, small atomic orbital basis set expansions are
widely used. As the set of orbitals is neither complete nor independent of the geometry, artificial
interactions occur, typically referred to as basis set superposition error. A critical analysis of
the error sources and its’ implications is given in Ref. [208]. Apart from the standard Boys-
Bernardi couterpoise correction (see keywords GHOSTS and MOLEBSSE), a semi-empirical
geometric counterpoise correction (gCP) has been implemented in CRYSTAL.[131]
While both dispersion and counterpoise corrections can be applied independently, e.g. with a
B3LYP-D3-gCP/6-31G* calculation, the performance is best when the parametrization is done
together and basis set incompletenesses errors are simultaneously treated by an additional semi-
classical correction or by compensating them with an adjusted exchange-correlation functional.
These ’composite’ methods are implemented in CRYSTAL and described below, namely: a
minimal basis set HF with corrections (HF-3c)[209], a hybrid density functional evaluated in
small double-ζ type orbitals with dispersion and counterpoise correction (PBEh-3c)[107], a
screened exchange variant of PBEh-3c, dubbed HSE-3c, specifically designed to be numerically
robust for molecular solids,[?] and a pure GGA functional based on the B97 XC functional
evaluated in medium sized triple-ζ type orbitals with dispersion and short-range correction
(B97-3c)[?].
The following schemes have been carefully tested for molecular dimers, larger molecular as-
semblies, host-guest-complexes, and molecular crystals.
Note that studies on inorganic crystals and metals are less well tested and should
be treated carefully. In particular when using a triple-ζ basis set.

5.5 DFT-D3 - C6 based London dispersion correction

For a range of common density functionals, the D3 correction can be invoked by simply speci-
fying the XC functional with the suffix ’-D3’ in the DFT input block by means of stand-alone
keywords. Here an example follows for the common B3LYP functional.

...

DFT

B3LYP-D3

END

...

By default, the D3 correction includes a damped (BJ damping) atom-atom pairwise term
(no three-body term) to the KS-DFT energies (and atomic and cell gradients) (see below for
details).[104]
Note that not all functionals available in CRYSTAL have been parametrized. A list of
available D3 dispersion corrected DFT methods follows: BLYP, PBE, B97, B3LYP, PBE0,
PW1PW, M06, HSE06, HSEsol, LC-wPBE. For other XC functionals, parameters must be
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provided in input (see below)

Additionally, the keyword DFTD3, inserted in the third input block and closed by END,
allows users to include the three-body term, modify/specify all free method parameters,
change the damping function and other options as detailed in the following.

D3 correction

The D3 augmented KS-DFT energies are obtained as

EDFT-D3 = EKS-DFT + Edisp (5.18)

with Edisp being the sum of the two- and three-body contributions to the dispersion energy:

Edisp = E(2) + E(3) (5.19)

= −1

2

∑
n=6,8

atoms∑
A,B

sn
CABn
RnAB

· fdn(RAB)− 1

6

atoms∑
A,B,C

CABC9

R
9

ABC

· fd9 (RABC , θABC). (5.20)

This expression assumes dispersion coefficients that can be distributed to isotropic atom con-
tributions. While the series should in principle incorporate higher orders, they were shown to
be of less importance for many systems.[106]
In order to match the long- and midrange correlation of D3 with the semilocal correlation
computed by the functional, an adequate damping function fdn must be included. CABn denotes
the averaged (isotropic) nth-order dispersion coefficient for atom pair AB, and RAB is their
internuclear distance. sn is a functional-dependent scaling factor (see below). In contrast
to the D2 method, here the CAB6 coefficients are estimated from first principles by TD-DFT
computation of the dynamical polarizability α for model hydrides of all elements and using the
Casimir-Polder integration

CAB6 = − 3

π

∫
dω αA(iω)αB(iω) (5.21)

These reference C6 are then mapped to the real system via a geometric coordination number.

Damping functions
In order to avoid near singularities for small distances (RAB), the dispersion contribution needs
to be damped at short distances. One possible way is to use rational Becke-Johnson damping
as proposed by Becke and Johnson [20, 126, 127], which is the recommended option for the
two-body contributions as it avoids artificial repulsive forces:

fdn=6,8(RAB) =
RnAB

RnAB + f(RAB0 )n
(5.22)

with[127]

RAB0 =

√
CAB8

CAB6

(5.23)

and

f(RAB0 ) = a1R
AB
0 + a2. (5.24)

In the literature this is typically used as D3(BJ).
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Damping the dispersion contribution to zero for short ranges (as in Ref.[104]) is also possible:

fdn=6,8 =
1

1 + 6(RAB/(sr,nRAB0 ))−αn
. (5.25)

Note that the RAB0 used with this damping are from Ref.[104], the scheme is typically
abbreviated as D3(0). For more information on the supported damping functions, see Ref
[105].

The Axildor-Teller-Muto type three-body term is used in the following form:

fd9 = (3 cos θa cos θb cos θc + 1)× 1

1 + 6(RABC/(sr,nR
ABC

0 ))−αn
. (5.26)

where θa, θb and θc are the internal angles of the triangle formed by RAB , RBC and RCA, RABC
is the geometric mean of RAB , RBC and RAB . The C9 coefficient is approximated by:

CABC9 ≈ −
√
CAB6 CAC6 CBC6 . (5.27)

The damping function is similar to the zero damping and has not been revised. Inclusion of
the three-body term is often denoted by D3atm.

DFTD3 - opens D3 input block

VERSION - chooses between D2, D3 and the different damping functions
rec variable meaning
• * NAT (2) Old D2 correction, (3) D3 with zero-damping, (4) D3 with Becke-

Johnson damping (default)

FUNC - chooses the functional for automatic parameter loading
rec variable meaning
• * CHAR List of parametrized functionals available on the homepage

http://www.thch.uni-bonn.de/tc/dftd3

ABC - switches on the three-body dispersion term

S6 - define s6 manually
rec variable meaning
• * REAL define s6 scaling parameter manually (should be always 1.0 for GGA

and hybrid functionals)

S8 - define s8 manually
rec variable meaning
• * REAL define s8 scaling parameter manually

A1 - define a1 manually
rec variable meaning
• * REAL define a1 parameter of rational Becke-Johnson damping manually

A2 - define a2 manually
rec variable meaning
• * REAL define a2 parameter of rational Becke-Johnson damping manually

A2 - define a2 manually
rec variable meaning
• * REAL define a2 parameter of rational Becke-Johnson damping manually
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RS6 - define rs6 manually
rec variable meaning
• * REAL define rs6 parameter of zero-damping manually

RS8 - define rs8 manually
rec variable meaning
• * REAL define rs8 parameter of zero-damping manually

RADIUS - define two-body real-space cutoff manually
rec variable meaning
• * REAL define distance cutoff for real-space summation of two-body contribu-

tions [a.u.]

CNRADIUS - define tree-body real-space cutoff manually
rec variable meaning
• * REAL define distance cutoff for real-space summation of three-body contri-

butions and of the coordination number function [a.u.]

PRINTC6 - extensive output with individual CAA6 and RAA0 values

END - closes D3 input block

The older D2 corrections can still be used by means of either the option ”version 2” of the
DFTD3 keyword or the keyword GRIMME (see 3.3).[44, 45, 218]

Examples

A typical input looks like (urea molecular crystal):

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

ENDG

BASISSET

def2-SV(P)

DFT

B3LYP-D3

END

SHRINK

4 4

END

This is a simplified version of the explicit input.

Urea

CRYSTAL

0 0 0

113

5.565 4.684
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5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

ENDG

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

VERSION

4

S6

1.0000

S8

1.9889

A1

0.3981

A2

4.4211

END

SHRINK

4 4

END

A change of the damping parameter should be generally avoided as they have been carefully
optimized individually for all functionals.
A more useful test is the impact of the Axilrod-Teller-Muto type three body dispersion, e.g.
via

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

ENDG

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

ABC

END

SHRINK

4 4

END

More input examples can be found at the CRYSTAL tutorials web page.
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Note that cohesive energies at the given level will suffer severely from basis set superposition
errors.

5.6 GCP - Geometrical counterpoise correction

The keyword GCP, inserted in the last section of the CRYSTAL input and closed by END,
calculates atom-pair wise counterpoise corrections which are added to the KS-DFT energies
(and atomic and cell gradients).[131]

Note that the gCP scheme has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully.

gCP correction
The central idea is to add in a semi-empirical fashion an energy correction ∆EgCP to the
energies of molecular (or periodic) systems in order to remove artificial overbinding effects from
BSSE.[131, 30] As the focus lies on the contribution of individual atoms a natural outcome is
its ability to yield also intramolecular BSSE corrections. The parametrization is constructed
such that it approximates the Boys and Bernadi[28] counterpoise (CP) correction ∆ECP in
the intermolecular case

∆ECP ≈ ∆EgCP , (5.28)

where e.g. for a complexation reaction A+B → C our correction is given by

∆EgCP = EgCP(C)− EgCP(A)− EgCP(B) . (5.29)

In practice, EgCP can simply be added to the HF/DFT energy

Etotal = EHF/DFT + EgCP . (5.30)

The central equation over all atoms N reads:

EgCP = σ ·
N∑
A

∑
g

′
N∑
B

emiss
A · fdec(RAB + g) , (5.31)

where the energy emiss
A is a measure for the incompleteness for the chosen target basis set (that

is typically small), and fdec(RAB) is a decay function that depends on the inter-atomic distance
RAB .

fdec(RAB) =
exp

(
−αRABβ

)
√
AABNB

virt

(5.32)

The potential is normalized by the Slater-type overlap SAB , the number of virtual orbitalsNB
virt,

and the empirical parameters α and β. In molecular systems, the sum over the translation
invariant vectors g is omitted. For periodic systems, a sum over all atompairs inside a supercell
is utilized with default distance-cutoff of 60 Bohr analogue to the non-periodic version. The
prime (′) indicates that for g = 0, A 6= B. The scaling factor σ is one out of 4 parameters
needed for every <method>/<basis set> combination.

Small basis sets show not only a large BSSE, but general shortcomings. These effects are
not always clearly distinguishable. If computationally affordable, large basis sets (triple-ζ and
higher) are always preferable for a given system.
The gCP has been developed for a range of standard basis sets, including MINIS, def2-SV(P),
def2-SVP, def-TZVP, def2-TZVP, 6-31G*, pob-TZVP. The parametrization distinguishes
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between generalized gradient approximated functionals ’GGA’, hybrid functionals ’DFT’, and
pure Hartree-Fock ’HF’. The DFT parametrization will often also work GGA functionals,
but the couterpoise correction is typically underestimated. The following combinations are
parametrized:

GGA DFT HF

MINIS yes no yes
SV yes yes yes
SV(P) no yes yes
SVP yes yes yes
def-TZVP no yes yes
def2-TZVP no yes yes
6-31G* no yes yes
pob-TZVP no yes no

A more extensive list can be found at the web page:
http://www.thch.uni-bonn.de/tc/?section=downloads.

The gCP correction can be invoked by a single line in the third CRYSTAL input block

GCPAUTO - It includes the gCP correction with automatic parameter setup

This is however only possible if the basis set has been defined with a general BASISSET
keyword. Then, the routine automatically selects the most suitable available parametrization.
Otherwise, the gCP correction has to be defined by an individual input block:

GCP - opens gCP input block

METHOD - choose gCP method combination
rec variable meaning
• * CHAR Choose between different gCP parametrization. The method distin-

guishes between different types of Hamiltonians (HF, GGA, DFT)
and the used basis set name, separated by a slash. E.g., dft/svp

SIGMA - define σ manually
rec variable meaning
• * REAL define σ scaling parameter manually

ALPHA - define α manually
rec variable meaning
• * REAL define α parameter manually

BETA - define β manually
rec variable meaning
• * REAL define β parameter manually

ETA - define η manually
rec variable meaning
• * REAL define η parameter manually
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RADIUS - define real-space cutoff manually
rec variable meaning
• * REAL define distance cutoff for real-space summation [a.u.]

PRINTEMISS - extensive output with emiss, Nvirt, and individual Egcp contributions

END - closes gCP input block

Examples

A typical input looks like (urea molecular crystal):

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

ABC

END

GCPAUTO

SHRINK

4 4

END

This is a simplified version of the following explicit input.

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

def2-SVP

DFT

PBE0

END

DFTD3

VERSION

4

S6
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1.0000

S8

1.9889

A1

0.3981

A2

4.4211

END

GCP

METHOD

DFT/SVP

SIGMA

0.2424

ETA

1.2371

ALPHA

0.6076

BETA

1.4078

END

SHRINK

4 4

END

5.7 HF-3C - Minimal basis HF composite method

The keyword HF3C, inserted in the last section of the CRYSTAL input and closed by the
keyword END, calculates three semi-classical corrections (D3, gCP, SRB), which are added
to the HF energies (and atomic and cell gradients).[209]

The HF-3c method
This composite method is based on a minimal basis set HF calculation as:

EHF-3c = EHF/MINIX + ED3 + EgCP + ESRB (5.33)

It is designed to compete with semi-empirical (tight–binding or NDO) methods without
neglecting any of the many-center integrals. This keyword should only be used in combination
with a pure HF calculation in the MINIX orbital basis set. Its original design targeted
organic complexes[209], but it has been used for periodic systems[31], and specifically tested
as implemented in CRYSTAL.[47].

Note that the HF-3c method has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully.

The keyword HF3C automatically switches on all needed correction schemes with proper
parameter setup. While the D3 and gCP schemes have been described before (see sections 5.5),
a third short-range basis (SRB) correction is introduced. This correction mainly improves the
bond distances of electronegative elements that have a systematic error in the restricted basis
set expansion.

HF3C - opens HF-3c input block

RESCALES8 - scale C8 contribution in D3 correction
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rec variable meaning
• * REAL scales the C8 contribution in the D3 dispersion correction. Can also

be adjusted individually in the DFTD3 input block.

SCALEGCP - scale contribution from gCP correction
rec variable meaning
• * REAL scales the contribution from the gCP correction. Can also be adjusted

individually in the GCP input block.

END - closes HF-3c input block

Examples
The urea crystal can be treated like

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

MINIX

HF3C

END

SHRINK

4 4

END

The scaled s-HF-3c with scaled down C8 dispersion contribution as introduced in Ref. [47] can
be defined by

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

MINIX

HF3C

RESCALES8

0.70

END

SHRINK

4 4

END
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5.8 PBEH-3C - Small basis DFT composite method

The keyword PBEH3C, inserted in the DFT Hamiltonian input block as a standalone keyword
(see section 4), corresponds to a modified global hybrid functional PBEh with semi-classical
corrections (D3, gCP).[107]

EPBEh-3c = EPBEh/def2-mSVP + ED3 + EgCP (5.34)

This composite method is based on a modified double-ζ orbital set dubbed def2-mSVP, which
should be always used when performing PBEh-3c calculations. The basis set development and
explicit definition is given in Ref [107]. The PBE type correlation and exchange enhancement
factors have been optimized to absorb certain incompleteness errors of the restricted basis set.
The percentage of HF exchange (42%) is adjusted to get covalent bond length that are on
average correct.

Note that the PBEh-3c method has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully..

The keyword PBEH3C automatically switches on all needed correction schemes with proper
parameter setup. The D3 and gCP schemes have been described before (see sections 5.5),
in order to avoid contributions of the gCP for covalent bond length and thermochemistry,
a short-range damping has been introduced. The D3 correction is used in its rational
Becke-Johnson damping scheme and includes per default the three-body Axilrod-Teller-Muto
term.

Note that vibrational frequencies computed with PBEh-3c will be scaled by 0.95 as recom-
mended in its original publication. See section ( 7.1) for changing the frequency scaling factor
manually.

Example
The urea crystal can be treated like

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

def2-mSVP

DFT

PBEH3C

END

SHRINK

4 4

END

HSE-3C - Small basis DFT composite method

The keyword HSE3C, inserted in the DFT Hamiltonian block as standalone keyword (see
section 4), corresponds to a modified screened exchange hybrid functional HSE with semi-
classical corrections (D3, gCP).[?]
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EHSE−3c =EHSE/def2-mSVP + ED3 + EgCP

EHSE-3c
xc =aEHF,SR

x (ω) + (1− a)EPBEh-3c,SR
x (ω) + EPBEh-3c,LR

x (ω) + EPBEh-3c
c . (5.35)

In close correspondence to PBEh-3c, this composite method is based on the modified double-ζ
basis set def2-mSVP, which should be always used when performing HSE-3c calculations.[107].
The Henderson-Janesko-Scuseria (HJS) exchange hole model[212, 67] has been parametrized
to closely reproduce the PBEh-3c exchange enhancement factor. The correlation enhancement
is kept fixed, the short-range HF exchange is a = 0.42, and the standard error function
separation (controlled via the parameter ω = 0.11)[3] switches the HSE-3c potential to a pure
generalized gradient approximation (GGA) at long-range.

Note that the HSE-3c method has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully.

The keyword HSE-3c automatically switches on all needed correction schemes with proper
parameter setup. The D3 and (SR-damped) gCP schemes have been described before (see
sections 5.5), The D3 correction is used in its rational Becke-Johnson damping scheme and
includes per default the three-body Axilrod-Teller-Muto term. The accuracy of HSE-3c has
been shown to be identical to PBEh-3c, but we see a significantly computational speed-up.
This holds especially for organic solids with smaller band gaps (e.g. oligoacenes).[?] Note
that frequencies computed with HSE-3c will be scaled by 0.95 as recommended in its original
publication. See section ( 7.1) for changing the frequency scaling faction manually.

The urea crystal can be treated like

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

def2-mSVP

DFT

HSE3C

END

SHRINK

4 4

END

B97-3C - Medium basis DFT composite method

The keyword B973C, inserted in the DFT Hamiltonian block as standalone keyword (see sec-
tion 4), corresponds to a modified GG functional of the B97 form with semi-classical corrections
(D3, SRB).[?]

EB97-3c = EB97/def2-mTVP + ED3 + ESRB (5.36)

This composite method is based on a modified triple-ζ orbital set dubbed mTZVP, which
should be always used when performing B97-3c calculations. The basis set development and
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explicit definition is given in Ref [?]. The B97 type correlation and exchange enhancement
factors have been optimized to absorb certain incompleteness errors of the still not converged
basis set. Due to the rather large basis set and the flexible exchange-correlation form most basis
set errors can be absorbed into the functional parametrization. Thus, the semi-empirical gCP
scheme is not needed. However, all bond-length are systematically too long, which actually
holds for all GGA functionals. To correct this, the SRB atom-pair correction (see section 5.7)
has been adopted.

Note that the B97-3c method has been carefully tested for molecular crystals.
Applications to inorganic crystals and metals are less well tested and should be
treated carefully..

The keyword B973C automatically switches on all needed correction schemes with proper
parameter setup. The D3 and SRB schemes have been described before (see sections 5.5), The
D3 correction is used in its rational Becke-Johnson damping scheme and includes per default
the three-body Axilrod-Teller-Muto term.
The urea crystal can be treated like

Urea

CRYSTAL

0 0 0

113

5.565 4.684

5

6 0.0000 0.5000 0.3260

8 0.0000 0.5000 0.5953

7 0.1459 0.6459 0.1766

1 0.2575 0.7575 0.2827

1 0.1441 0.6441 -0.0380

BASISSET

mTZVP

DFT

B973C

END

SHRINK

4 4

END

¿¿¿¿¿¿¿ .r1199
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Chapter 6

Geometry Optimization

Geometry optimization at constant symmetry is invoked by the keyword OPTGEOM in input
block 1 (geometry). OPTGEOM must be the last keyword in geometry input. OPTGEOM
input block admits several options (sub keywords), and terminates with keyword END (or
END[OPT], END[—]: the first three characters only are processed).

crystal allows geometry optimization of systems with any periodicity: molecules, polymers,
slabs, and crystals. Unconstrained relaxation of the structure and different optimizations with
constraints can be carried out. The full symmetry of the system is preserved.

Geometry optimization can be performed in either symmetrized fractional coordinates with
[default] and without cell parameters, or redundant internal coordinates (optional choice, page
166).

OPTGEOM sub keywords can be classified as follow:

1. General sub keywords:

A - Optimization type (page 160)

B - Initial Hessian (page 160)

C - Hessian updating technique (page 158)

D - Convergence criteria (page 157)

E - Step control (page 162)

F - Coordinate system related options (page 163)

G - Optimization procedure control (page 163)

H - Numerical (first) derivatives (page 165)

I - Printing options (page 166)

2. Geometry optimization in redundant coordinates (page 166).

3. Geometry optimization with constraints (page 170).

A - Constant volume optimization (page 171)

B - Fixing lattice deformations (page 171)

C - Linear constraints between atomic coordinates (page 173)

D - Partial optimization of atomic positions (page 174)

E - Fixing internal coordinates (page 174)

4. Geometry optimization with application of an external stress (page 176)

5. Searching a transition state (page 177)
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Default values are supplied for all computational parameters.

By default a full geometry optimization (atomic positions and cell) is performed.
This was not the case with previous versions of the program, where atomic posi-
tions only were optimized by default.

Users can find supplementary information and input examples in the CRYSTAL Tutorials
Project web page at the CRYSTAL web site (http://www.crystal.unito.it/tutorials).

6.1 Geometry optimization strategy

A Quasi-Newton optimization scheme is implemented. Gradients are evaluated every time the
total energy is computed; the second derivative matrix (i.e. Hessian matrix) is built from the
gradients. The default choice for the initial Hessian matrix is obtained from a model Hessian,
as proposed by Schlegel and updated by using the BFGS algorithm[33, 34, 87, 100, 204].

By default the step considered is the Newton step (direction and length) controlled by the
Trust Radius scheme (see ALLOWTRUSTR page 162). NOTRUSTR to remove trust
radius control (CRYSTAL06 default choice).

HF and DFT (pure and hybrid functionals) analytical gradients for atomic positions and cell
parameters, are used for insulators and conductors, both for all-electron and ECP calculations.
Note that for conducting systems analytic first derivatives are not fully implemented when
the keyword SMEAR (page 110) is used. In that case, numerical first derivatives should be
computed (see page 165). For very small value of smearing (around 0.001 hartree) analytical
gradients can be used.

For atomic positions (ATOMONLY option), geometry optimization is performed in sym-
metrized fractional coordinates, in order to exploit the point group symmetry of the lattice.
The keyword PRSYMDIR (input block 1, page 62) may be used to print the so-called sym-
metry allowed directions adopted in the geometry optimization. If there are no symmetry
allowed directions, the program prints a warning message and stops.

To optimize the lattice parameters a set of symmetry preserving cell deformations (see Symme-
try Allowed Elastic Distortions, USESAED, page 71) related to changes of isotropic volume
and of axial ratios is defined. By default, the symmetry allowed deformations are printed in
the output file.

When a full optimization of atom positions and cell parameters is carried out, a conveniently
normalized combined set of symmetrized directions and deformations is adopted.

Optional choice (keyword INTREDUN, page 166) is the geometry optimization in redundant
internal coordinates. In such a case, atomic displacements and cell deformations are implicitly
determined by the internal coordinate system.

6.2 Default setting

6.2.1 Type of optimization

The default geometry optimization type is the relaxation of both the nuclear coordinates and
the lattice parameters. Optional choices: see page 160.

6.2.2 Convergence criteria

A stationary point on the potential energy surface is found when the forces acting on atoms are
numerically zero. Geometry optimization is usually completed when the gradients are below a
given threshold.

In crystal, the optimization convergence is checked on the root-mean-square (RMS) and the
absolute value of the largest component of both the gradients and the estimated displacements.
When these four conditions are all satisfied at a time, optimization is considered complete.
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In some cases (see page. 177), the optimization process stops with a warning message controlled
by the threshold in the energy change between consecutive optimization steps.

Default values are set for all computational parameters, and they may be modified through
keywords. Default choices:

default keyword

RMS on gradient 0.000300 a.u. TOLDEG
largest component of gradient 1.5 * 0.000300 1.5 * TOLDEG
RMS on estimated displacements 0.0012 a.u. TOLDEX
absolute value of largest displacement 1.5 * 0.0012 1.5 * TOLDEX
max number of optimization cycles 100 MAXCYCLE
energy change between optimization steps threshold 10−7a.u. TOLDEE

Optimization convergence criteria are set to different values according to the context where
geometry optimization is performed.

RMS on gradient RMS on displacement
Standard geometry opt 0.0003 0.0012
preopt in frequency calculation 0.00003 0.00012
preopt in EOS 0.00006 0.00012
preopt in elastic constants 0.00006 0.00012

6.2.3 Initial Hessian guess

The initial Hessian is generated by means of a classical model as proposed by Schlegel.

H.B. Schlegel, Theoret. Chim. Acta 66 (1984) 333
J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struct. (Theochem) 398-399 (1997) 55

It adopts a simple valence force field. Empirical rules are used to estimate the diagonal force
constants for a set of redundant internal coordinates (stretches, bends and torsions). Parame-
ters are available from H to At.

Warning - To define bonds the sum of covalent radii (see page 63) is used. For ionic systems
it may be necessary to modify the default values (see RAYCOV, page 63).

6.2.4 Hessian updating technique

BFGS Broyden-Fletcher-Goldfarb-Shanno scheme [33, 34, 87, 100, 204].

Optional choices:

1. Schlegel’s updating scheme [200], (OLDCG, page 161), optimization scheme as in CRYS-
TAL03

2. Powell’s updating scheme (POWELL, page 161)

6.2.5 SCF convergence and guess

The default value for SCF convergence criterion on total energy is set to 10−7 (TOLDEE in
input block 3 to modify it: never reduce accuracy).

After the first step, at each SCF cycle, the density matrix is recovered from the previous
geometry optimization step (implicit GUESSP, page 99 option).

This choice may be modified by inserting the keyword NOGUESS. A superposition of atomic
densities is then adopted on each step as SCF initial guess.

If the SCF solution at a given optimization step does not correspond to real convergence,
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but to an energy stabilization due to the techniques applied to help convergence (LEVSHIFT,
FMIXING, BROYDEN..), the hamiltonian eigenvalues may be unphysical, and there is no
chance to recover the SCF process. In those cases it may be better to use an atomic guess
(keyword NOGUESS).

6.2.6 Output files

The following formatted files are written during geometry optimization, and may be saved for
further processing.

fort.33 Cartesian coordinates of the atoms in the unit cell and total energy for each geometry
optimization step are written to file fort.33 in a simple xyz format (see Appendix D, page
398). This file is suitable to be read by molecular graphics programs (e.g. Molden...) to
display the animation of a geometry optimization run.

fort.34 If optimization is successful, the last geometry in written in file fort.34 (format de-
scribed in Appendix D, page 400).

The file can be read to define the basic geometry input. See EXTERNAL, page 19

opta(c)xxx At each xxx optimization step, the geometry is written in file optaxxx (opti-
mization of atoms coordinates only), or optcxxx (optimization of cell parameters or full
optimization) in the format of ”fort.34” file (see Appendix D, page 400). The file must
be renamed ”fort.34” if used to enter geometry input (keyword EXTERNAL).

The ”history” of the optimization allows restarting from a given step with different
parameters, when the procedure did not converge.

OPTINFO.DAT contains information to restart optimization. (see keyword RESTART in
OPTGEOM input block, page 165).

HESSOPT.DAT The hessian matrix is written, and can be read to define the initial guess
for the Hessian (keyword HESSOPT) in geometry optimization of a system with same
geometry and symmetry (it may have different BS, Hamiltonian, computational param-
eters).

SCFOUT.LOG SCF and optimization process printout is routed to file SCFOUT.LOG after
the first cycle. Keyword ONELOG: full printing on standard output.

6.3 General sub-keywords

A number of optional keywords allow tuning of the optimization procedure.

A - Type of optimization (page 160)

B - Initial Hessian (page 160)

C - Hessian updating technique (page 161)

D - Convergence criteria (page 157)

E - Step control (page 162)

F - Coordinate system related options (page 163)

G - Optimization procedure control (page 163)

H - Numerical first derivatives (page 165)

I - Printing options (page 166)
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6.3.1 Type of optimization

Optional choices:

ATOMONLY Only atomic coordinates are optimized. This was the default before Crys-
tal14

FULLOPTG full optimization, atom coordinates and cell parameters (default in Crys-
tal14). The cell volume may change (see CVOLOPT, page 171, to
optimize at constant volume)

CELLONLY only cell parameters are optimized. Default: the cell volume may change
(see CVOLOPT, page 171, to optimize at constant volume)

ITATOCEL full optimization, iterative procedure optimization: atoms-cell-atoms-cell-
. . . .

INTREDUN full optimization of atomic positions and cell parameters in redundant
internal coordinates (page 166).

6.3.2 Initial Hessian

By default an estimated model Hessian is adopted. The Hessian matrix is stored in file HES-
SOPT.DAT at each optimization step. This may be useful to restart the optimization from a
previous run performed at a lower level of theory (e.g. a smaller basis set). An initial Hessian
can also be obtained as numerical first-derivative (HESSNUM), but this process can be very
expensive.

HESSFREQ initial guess for the hessian - input from file HESSFREQ.DAT obtained
from frequencies calculations (developers only)

HESSIDEN initial guess: identity matrix

HESSOPT external guess (read from file HESSOPT.DAT)

HESSMOD1 initial guess: Lindh’s model Hessian [136]

A model Hessian based on a simple 15-parameter function of the nuclear positions as proposed
by Lindh et al. is used as initial Hessian. Parameters are available for the first three rows of
the periodic table.

R. Lindh, A. Bernhardsson, G. Karlstrom and P.-A. Malmqvist, Chem. Phys. Lett. 241
(1996) 423

HESSMOD2 initial guess: Schlegel’s model Hessian [201, 228] [default]

The initial Hessian is generated by means of a classical model as proposed by Schlegel.
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H.B. Schlegel, Theoret. Chim. Acta 66 (1984) 333
J.M. Wittbrodt and H.B. Schlegel, J. Mol. Struct. (Theochem) 398-399 (1997) 55

It adopts a simple valence force field. Empirical rules are used to estimate the diagonal
force constants for a set of redundant internal coordinates (stretches, bends and torsions).
Parameters are available from H to At.

Warning - To define bonds the sum of covalent radii (see page 63) is used. For ionic systems
it may be necessary to modify the default values (see IONRAD in what follows in order to
use tabulated ionic radii in place of the covalent ones provided by default or RAYCOV, page
63, for customizing the value of covalent radii, page 63).

HESSNUM initial guess: numerical estimate

6.3.3 Tabulated atomic radii

The construction of the set of internal coordinates which is used in the definition of the Schlegel
model Hessian relies on tabulated values for the atomic radii, according to which bonds, angles
and dihedrals are defined. Two different tables can be choosen in input with the following
keywords:

COVRAD The covalent radii table is used in the construction of the internal coor-
dinates. This is the default choice, which is reasonable in most cases but
may lead to a ill defined Schlegel model Hessian in some compact ionic
structures.

IONRAD The ionic radii table is used in the construction of the internal coordinates.
This leads to a better initial Schlegel model Hessian in ionic compounds.

6.3.4 Hessian updating technique

Different Hessian updating schemes are available for minimization:

BFGS Hessian update - Broyden-Fletcher-Goldfarb-Shanno scheme [33, 34, 87,
100, 204] - [default]

OLDCG Hessian updating - old Schlegel updating scheme[200] (CRYSTAL03)
BERNY Synonym

POWELL Hessian update - symmetric Powell scheme [179]

6.3.5 Optimization convergence criteria

These options are available to modify the default values:
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TOLDEE threshold on the energy change between optimization steps
• ∗ IG |∆E| < 10−IG (default: 7)

The value of IG must be larger or equal to the threshold adopted for the SCF convergence.
The value is checked when input block 3, defining the SCF convergence criteria, is processed.

TOLDEG convergence criterion on the RMS of the gradient
• ∗ TG max RMS of the gradient (default: 0.0003)

TOLDEX convergence criterion on the RMS of the displacement
• ∗ TX max RMS of the displacement (default: 0.0012)

6.3.6 Step control

To avoid the predicted step size being too large, two options are available:

Simple scaling
Simple scaling of the displacement vector. Each component is scaled by a factor that makes
the largest component of the displacement vector equal to 0.5 a.u.

Trust Radius [default]
A more sophisticated and accurate technique to control the step size is the trust radius region
scheme. The trust radius limits the step length of the displacement at each cycle, according
to the quadratic form of the surface in the actual region. The default maximum value for
minimization is 0.5.

To run CRYSTAL06 as CRYSTAL09 the keyword ALLOWTRUSTR must be specified along
with BFGS.

To run CRYSTAL09 as CRYSTAL06, the keyword NOTRUSTR must be specified in geom-
etry optimization input

Related keywords are discussed below:

ALLOWTRUSTR activate the trust radius technique to control the step size [0.5 for geometry
optimization; 0.1 for transition state search] [default]

The step at each cycle is computed by means of a Newton-like scheme, in case it exceeds trust
radius it is re-scaled using the scheme proposed by Simmons and Nichols [Simmons, J., and
Nichols, J.: , Int. J. Quantum Chem. Symp. 24, volume 24, 263, (1990)] (see also page 177).

MAXTRADIUS optional
• ∗ TRMAX maximum value allowed for the trust radius

This is useful in transition state optimizations or in minimizations along flat potential surfaces
in order to avoid too large displacements from one point to the next one. Default value:
geometry optimization: 4.0 ; transition states search: 0.3.

NOTRUSTR not using trust radius to limit displacement

TRUSTRADIUS
• ∗ TRADIUS set the initial value for trust radius
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Set the initial value of the trust radius to [TRADIUS]. The trust radius limitates the step
length of the displacement at each cycle. The value is updated at each optimization point by
analysis of the local quadraticity of the potential energy function.
Default: geometry optimization 0.5; transition state search 0.1.

Warning - When the Trust Radius technique is active, the value of the trust radius could
become too small and the geometry optimization process stops with an error message:
”TRUST RADIUS TOO SMALL”.
In this case, we suggest to restart the optimization from the last geometry, written to file
optc(a)xxx, being xxx the optimization cycle number.

6.3.7 Coordinate system related options

Geometry optimization can be performed in fractional (default) or redundant internal coor-
dinates (see INTREDUN). Default fractional coordinates are defined as symmetry allowed
directions (atomic positions) and deformations (cell). The latter are related to changes of
isotropic volume and of axial ratios.

Some options related to the choice of the coordinate systems are also available:

CRYDEF crystallographic-like symmetrized cell deformations, corresponding to
symmetrized strains of the unit-cell edges (consistent with symmetry).
This set of deformations is useful for fixing lattice parameters in con-
strained optimizations in combination with the keyword FIXDEF (page
171) - 3D only.

FRACTION optimization in fractional coordinates

FRACTIOO optimization in normalized fractional coordinates [default when FUL-
LOPTG is requested]

FRACTCOOR third type of symmetrized fractional coordinates (non-orthogonal; the ori-
gin on polar axes must be explicitly fixed by the FIXCOOR option [to be
used with constraints])

RENOSAED renormalize symmetry allowed deformations [default when FULLOPTG
is requested]

6.3.8 Optimization procedure control

EXPDE
• ∗ DE expected energy change used to estimate the initial step [default 10−3 Ha,

if model 1 initial hessian; 10−4 Ha, otherwise]
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FINALRUN action after geometry optimization - integrals classification is based on the
last geometry. See page 176. Note that in the previous versions of
the program the default choice was 0. Now it is 4.

• ∗ ICODE Action type code:
0 the program stops
1 single-point energy calculation
2 single-point energy and gradient calculation
3 single-point energy and gradient calculation - if convergence criteria on

gradients are not satisfied, optimization restarts
4 step 3 is iterated until full stable optimization (default)

FIXDELTE
• ∗ IE 10−ie hartree: threshold on the total energy change for redefining the

geometry to which integral classification is referred - see FIXINDEX,
page 93 - [default -1000, no reclassification]

FIXDELTX
• ∗ DX RMS (bohr) of the displacement for redefining the geometry to which

integral classification is referred - [default: -1, no reclassification]

FIXDEIND the reference geometry for integrals classification does not change during
optimization [default choice]

FITDEGR
• ∗ N degree of polynomial fitting function for linear search:

2 parabolic fit [default]
3 cubic polynomial function
4 constrained quartic fitting

HESEVLIM limits for the allowed region of hessian eigenvalues (hartree)
• ∗ VMIN lower limit [default 0.001]

VMAX upper limit [default 1000.]

ITACCONV
• ∗ DE energy difference threshold for ITATOCEL [default 0.1 * TOLDEE be-

tween 2 optimization cycles]

MAXITACE
• ∗ MAXI max number of iteration cycles in atom/cell iterative optimization [default

100]

MAXCYCLE
• ∗ MAX maximum number of optimization steps [default 100]

N.B. When optimization is restarted, the first restarted optimization cycle number is the last
of the previous run + 1. Set MAXCYCLE value accordingly.

164



NOGUESS SCF guess at each geometry point: superposition of atomic densities at
each SCF calculation (default choice in geometry optimization: GUESSP

NRSTEPS
• ∗ DE number of stored steps to be used in the OLDCG Hessian updating scheme

[default: number of degrees of freedom]

RESTART restart geometry optimization from a previous run.
See page 177

SORT sorting of the previous optimization steps information when the OLDCG
scheme is active [default:nosort]

6.3.9 Numerical first derivatives

The nuclear coordinate gradients of the energy can also be computed numerically. A three-point
numerical derivative formula is adopted. A finite positive (and then negative) displacement
is applied to the desired coordinate and a full SCF calculation is performed. The gradient is
then computed as

gi =
E∆xi − E−∆xi

2 ∆xi

where ∆xi is the finite displacement along the i-coordinate.

Such a computation is very expensive compared to analytical gradients, since the cost is 2 ·N ·t,
where N is the number of coordinates to be optimized and t the cost of the SCF calculation.
Numerical first-derivatives should be avoided whenever possible, but sometimes they are the
only way to obtain gradients (i.e. for conducting systems and the SMEAR option - page 110)
and therefore to optimize the atoms coordinates.

One choice only, NUMGRCEL, NUMGRATO, NUMGRALL, is allowed.

NUMGRALL geometry optimization - numerical atomic and cell gradient

NUMGRATO geometry optimization - numerical atomic gradients

NUMGRCEL geometry optimization - numerical cell gradients

STEPSIZE modify step for numerical gradient [default 0.001 au] (developers only)
• ∗ STEP new stepsize value
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6.3.10 Printing options

ONELOG This causes all output to be sent to the standard log file, instead of to
SCFOUT.LOG

NOXYZ printing of cartesian coordinates at the end of optimization removed

NOSYMMOPS printing of symmetry operators at the end of optimization removed

PRINTFORCES printing atomic gradients

PRINTHESS printing Hessian information

PRINTOPT prints information on optimization process

PRINT verbose printing

2 - Optimization in redundant internal coordinates

INTREDUN geometry optimization in valence internal redundant coordinates

An optimization in redundant internal coordinates is performed when the keyword
INTREDUN is inserted in OPTGEOM input block.

Optional keywords related to geometry optimization in redundant internal coordinates must
follow.

A symmetrized set of internal coordinates (i.e. bonds, angles and torsions) is automatically
defined, which contains much more coordinates than the requisite internal degrees of freedom.

Redundant internal coordinates are generated according to a hierarchical scheme: bond
lengths are firstly identified by using covalent radii. Then, angles are determined on the basis
of the irreducible set of distances and, finally, dihedral angles are defined. Note that to define
bonds the sum of covalent radii (see page 63) is used. For ionic systems the default values can
be automatically set by using the IONRAD directive (see pag. 161), or explicitly setting
them with the RAYCOV keyword (page 63). In case of systems constituted by unconnected
fragments (ie some molecular crystals or adsorption complexes), fragments are automatically
linked to each other by pseudo “bond lengths” between the closest pair of atoms belonging to
each fragment.

There has been substantial controversy in recent years concerning the optimal coordinate
system for optimizations. For molecular systems, it is now well-established that redundant
internal coordinates require fewer optimization steps than Cartesian coordinates. However,
this is not definitely demonstrated for periodic systems. Nevertheless, the use of internal
coordinates can be very useful in several respects: for a chemical intuitive view (e.g. internal
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coordinates can easily be added), for constrained geometry optimization (see below) and for
searching transition states.

By default, optimization of internal redundant coordinates involves both atomic positions and
cell parameters. To avoid optimizing cell parameters the keyword FIXCELL page 170 must
be specified.

Before running a geometry optimization in redundant internal coordinates, the set of coordi-
nates generated automatically by CRYSTAL should be checked for consistency. This can be
done by specifying the keyword TESTREDU.

Optional keywords related to the geometry optimization in redundant internal coordinates are
listed below.

INTLMIXED geometry optimization in selected valence internal mixed with or embed-
ded in a full set of general symmetrized fractional and cell parameters

The optimization is performed in a mixed coordinate system made up of a set of selected
valence internal parameters (bond length, angles and dihedrals) and the full set of symmetry
adapted fractional displacements and elastic distortions. As in the previous case, the coordinate
system is redundant but the number of parameters generated is in general substantially smaller
than in the case of INTREDUN. Therefore, it is convenient for calculations with a large
number of atoms in which the automatic generation of valence internal parameters makes
the dimension of the optimization parameters space huge. It is also useful when the lack of
connectivity of the system causes quasi -linear dependencies reflected in a very high condition
number of the Wilson B-Matrix. The latter fact usually makes the optimization either to
fail or to exhibit an erratic behavior. It is recommended in transition state optimizations
of large systems, in particular when freezing selected valence parameters, SCANREDU, or
PATHFOLLOW/FITTOPATH options.
This option does not generate automatically valence internal coordinates unless the user
explicitly indicate atomic connections through keywords DEFLNGS and DEFANGLS. The
tree is automatically completed generating the necessary lengths, angles or dihedrals. For the
back-transformation to the non-redundant set, the BKTRNSF2 algorithm is considered.
This option is not compatible with DBANGLIST, page 168.

Managing with almost linear angles

Linear or almost linear angles (i.e. close to 180◦) can lead to numerical instabilities in the
computation of the dihedrals. To avoid this problem a common practice is to split the angle in
two ones. Double angles are defined as a couple of angles obtained by projection of the vectors
onto two suitable perpendicular planes. This avoids the indetermination around 180◦. The
threshold value, beyond which the almost linear angle is split, is controlled by the keyword
ANGTODOUBLE.

ANGTODOUBLE minimum value (degrees) beyond which a double angle is defined
• ∗ AL value of the angle (degrees) - default [165◦]

The default value is set to 165◦. This means that all angles larger than 165◦ are automatically
split into two.
This option can be required, for instance, when optimizing zeolitic structures where siloxane
bridges could change a lot during the geometry minimization. In that case, it is better to
reduce the default value to 150◦.
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A list of angles to be converted into two can also be explicitly given by specifying

DBANGLIST list of angles chosen to be converted in double angles - advanced option
• ∗ MU number of angles to convert in double
• ∗ (IN(I),

I=1,MU)
list of the angles

This keyword provides the list of angles chosen to be converted in double angles (i.e. defined
by the angles obtained by projection of the vectors onto two suitable perpendicular planes) in
order to avoid the indetermination around 180 degrees). This option is not compatible with
INTLMIXED, page 167 . The labels used for the angles are those provided by a previous
automatic generation of internal coordinates computed in a test run (TESTREDU keyword).

Double angles have to be defined at the starting of the optimization. If any single angle ap-
proaches 180◦ the program stops with a message. For this reason, it is strongly recommended
foresee before the optimization which are the angles that may evolve to close to 180◦ degree
and protect them making them explicitly double. A less recommendable alternative is to set
an ANGTODOUBLE value very small (< 90◦) so as to make double any eventual tricky
angle. Such a procedure requires less effort to the user but must be used with caution as the
number of angles and dihedrals based on them may explode.

Explicitly defining internal coordinates - bonds and angles

When some relevant internal coordinates are missing (e.g. intermolecular bonds) they can be
explicitly defined by means of two keywords: DEFLNGS and DEFANGLS.

DEFLNGS definition of bond lengths
• ∗ NL number of bonds to be added

insert NL sets of 5 data to define the bond AB II
LA label of the atom A (it must be in the reference cell)
LB label of the atom B
I1, I2, I3 indices of the cell where the atom B is located

DEFANGLS definition of bond angles
• ∗ NL number of angles to be defined

insert NL sets of 9 data to define the angle ÂBC II
LA label of the atom A (it must be in the reference cell)
LB label of the atom B
I1, I2, I3 indices of the cell where the atom B is located
LC label of the atom C
I1, I2, I3 indices of the cell where the atom C is located

Choosing method for back-transformation

By default CRYSTAL employs an iterative method (P. Pulay and G. Fogarasi, “Geometry
optimization in redundant internal coordinates”, J. Chem. Phys. 96, 2856 (1992)) so as
to compute the atomic positions and cell parameters corresponding to the set of redundant
internal coordinates obtained at each optimization point. For those periodic systems in which
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the generated internal coordinates have a high degree of redundancy and/or the displacement
is relatively large (for instance in the starting points of the optimization when geometry is
very far from the target one) such a method may fail for large steps and provide inaccurate
displacements making the whole optimization less efficient. As an alternative you might change
the strategy for back-transformation using the keyword BKTRNSF2

Under such an option, the program performs back-transformations from redundant (internal)
to fractional+cell coordinate systems through an alternative procedure based on the conjugate
gradient (CG) algorithm. The idea of the method is as follows. Given a reference set of
redundant parameters, the best point in terms of atomic positions and lattice parameters is
the one that is the closest as possible to the reference one in the redundant parameter space.
The distance function is defined as a weighted mean square of the differences betwen redundant
parameters of the trial and reference sets. This function is fastly minimized by the CG strategy.

The main drawback is that the new method is slightly more costly in cpu time and memory
space than the default iterative one.

In all tests done, this new scheme for the back-transformation works better than the iterative
procedure originally proposed by Pulay for molecules and extended in Crystal to periodic
systems:

1. It is safer in its convergence; specially when the displacement step in terms of redundant
coordinates is very large and the structure displays a large number of connectivity loops
(this happens in most natural crystals). In such cases the ”old” method fails and the
program performs a rough conversion that is often very poor in accuracy.

2. As concerns the optimization process, the use of this more accurate alterative allows in
most cases to save a few points leading to an overall gain in computational time, even if
the conjugate gradient scheme is a bit more costly than the simple iterative procedure.

An additional advantage of the algorithm is that it allows to set weights to the squared devi-
ations of the redundant parameters used in the deviation function so as to force some of them
to be better approched than the others in the back-transformation procedure. This permits a
more controlled definition of the steps in terms of internal redundant coordinates. The choice
is optative in the MODINTCOOR option, and during the optimization it can be set by
means of the keyword WGHTDREDU.

WGHTDREDU Assign weights for back-transformation

• ∗ NMODI Number of internal coordinates to be given an specific weight
DEFWGTH Default weight for internal coordinates not explicitly defined

• ∗ NRED(I),
WEIGHT(I),
I=1,NMODI Label of coordinate (in the list of internal redundants coordinates pro-

duced in output with directive TESTREDU) and specific weight.

Specific weights may be used to provide priorities when different internal coordinates are in
conflict in the back-transformation, as the corresponding redundant set of values does not
correspond to any real atomic arrangement. This typically occurs for instance when the con-
nectivity graph exhibits a high degree of nested loops.

Modifying geometry before the optimization through internal coordi-
nates
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Geometry modification in terms of internal coordinates. This option allows to modify the
value of any internal coordinate. The keyword is set in the OPTGEOM block (together with
INTREDUN/INTLMIXED and the syntaxis is as follows:

MODINTCOOR Modification of internal coordinates
(ADJUSTGEO)

• ∗ NMODI Number of internal coordinates to be modified
IWGHT > 0 Weight given to the parameters to be modified using BKTRNSF2 as

back-transformation scheme. The min value (1) means the new parameters
will be approached trying to move as less as possible the values of the
remaining ones in the redundant set. The max value is 1000 and means the
new value of the chosen parameters will be as close as possible to the new
provided values while the rest of redundant parameters will accomodate
to allow this.

< 0 Use the old back-transformation; no weight is actually assigned.
• ∗ NRED(I),

VALNEW(I),
I=1,NMODI Label (in the list of internal redundants coordinates produced in output

with directive TESTREDU) and new value of the internal coordinates
to be modified.

Together with TESTREDU it allows to perform geometry modifications in terms of internal
coordinates without performing any optimization. In such a case, a file called “optc000” is
written in the execution directory that contains the modified geometry in external format.
Conveniently renamed, this file can be used with the keyword EXTERNAL (page 19) as
starting geometry for a new calculation.

Other optional keywords

FIXCELL keep cell parameters fixed in internal coordinates optimization

STEPBMAT step used for numerical bmat calculation (developers only)
• ∗ I integer - step = 10I (default 7: step=107)

TESTREDU request test run for checking automatic definition of internal coordinates
.

TOLREDU tolerance used to eliminate redundancies (developers only)
• ∗ I tolerance 10−I (default: 7, 10−7)
.

3 - Geometry optimization with constraints

Along with an unconstrained relaxation of the crystalline structure, options are available to
perform different optimizations with constraints.
In particular:

A - Constant volume optimization (page 171)
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B - Fixing lattice deformations (page 171)

C - Linear constraints between atomic coordinates (page 173)

D - Partial optimization of atomic positions (page 174)

E - Fixing internal coordinates (page 174)

Constraining strategies A-D are compatible with any choice of coordinate system adopted for
the optimization process to perform the optimization process. On the other hand, option E is
only operative together with the choice of a redundant internal coordinate system (INTRE-
DUN page 166).
The examples in the CRYSTAL Tutorial Project web page illustrate the use of the available
keywords for constrained geometry optimizations.

A - Constant volume optimization

CVOLOPT constant volume optimization.

Only active with CELLONLY (cell parameters only optimization), FULLOPTG (atom
coordinates and cell parameters optimization) or INTREDUN (redundant coordinates
optimization).

The volume is kept fixed at the value corresponding to the input unit cell; all cell angles and
ratios between cell edges unconstrained by the point-group symmetry are optimized.
Examples: in the tetragonal symmetry, only the c/a ratio, and in the monoclinic symmetry
the a/b and b/c ratios and the beta angle, respectively, are optimized.

This option is useful for computing E vs V curves point-by-point by relaxing the crystalline
structure at different values of the cell volume. In this case, the keyword FIXINDEX must be
used to obtain a smooth curve. The reference geometry must correspond either to the smallest
volume to be explored, or to the equilibrium structure obtained from a prior optimization run
(FULLOPTG).

Warning: if large changes of the individual unit-cell parameters occur in the optimization
process, the linear strain approximation may not be strictly obeyed and very small volume
variations (of the order of 0.01%) may ensue.

B - Fixing lattice deformations

Linear constraints between unit cell deformations can be set up during optimization by means
of the keyword FIXDEF:

FIXDEF optimization with constrained symmetrized cell deformation - 3D only
• ∗ NFIXC number of constraints relating pairs of cell deformations

insert NFIXC records II
• ∗ LA,LB integer sequence number of the two constrained symmetrized cell defor-

mations.
CA,CB real coefficients multiplying the two cell deformations in the linear com-

bination constraint. If LA=0, the cell deformation denoted by the second
integer (LB) is kept fixed during the optimization (the coefficients in this
case can take any value).

FIXDEF can also be combined with the keyword CRYDEF (p. 163, that sets
crystallographic-like cell deformations (i.e. a, b, c, α, β, γ) to fix lattice parameters. Integer
sequence number given as input refer to the minimal set of lattice parameters:
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1 2 3 4 5 6
cubic a
hexagonal a, c
rhombohedral hexagonal cell a, c

rhombohedral cell a, α
tetragonal a, c
orthorhombic a, b, c
monoclinic a, b, c, β

a, b, c, γ
a, b, c, α

triclinic a, b, c, α, β, γ

Note that the labels of the symmetry allowed deformations must correspond to
the ones printed in the output file.

For instance, the following symmetry-allowed elastic deformations reported in the output cor-
respond to the sequence: 1 a, 2 γ, 3 b, 4 β, 5 α, 6 c.

SYMMETRY ALLOWED ELASTIC DISTORTION 1

1.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000

SYMMETRY ALLOWED ELASTIC DISTORTION 2

0.0000000 0.7071068 0.0000000

0.7071068 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000

SYMMETRY ALLOWED ELASTIC DISTORTION 3

0.0000000 0.0000000 0.0000000

0.0000000 1.0000000 0.0000000

0.0000000 0.0000000 0.0000000

SYMMETRY ALLOWED ELASTIC DISTORTION 4

0.0000000 0.0000000 0.7071068

0.0000000 0.0000000 0.0000000

0.7071068 0.0000000 0.0000000

SYMMETRY ALLOWED ELASTIC DISTORTION 5

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.7071068

0.0000000 0.7071068 0.0000000

SYMMETRY ALLOWED ELASTIC DISTORTION 6

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 0.0000000

0.0000000 0.0000000 1.0000000

As an example, a constrained optimization of the crystalline structure of α-quartz (hexagonal)
with the c unit cell edge kept fixed follows

QUARTZ ALFA STO-3G

CRYSTAL
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0 0 2

154

0 0 16

4.916 5.4054

2

14 0.4697 0. 0.

8 0.4135 0.2669 0.1191

OPTGEOM

FULLOPTG

CRYDEF

FIXDEF

1

0 2 0.0 0.0 : the second lattice parameter, c, is kept fixed

ENDOPT

END

C - Linear constraints between atomic coordinates

Linear constraints between atomic coordinates can be set up during optimization by using the
keyword FIXCOOR.

FIXCOOR optimization with constrained symmetrized coordinates
• ∗ NFIX number of constraints relating pairs of coordinates

insert NFIX records II
• ∗ LA,LB integer sequence number of the two constrained symmetrized coordinates

(sequence numbers are read from the output of PRSYMDIR)
CA,CB real coefficients multiplying the two coordinates in the linear combination

constraint. If LA=0, the coordinate denoted by the second integer (LB)
is kept fixed during the optimization (the coefficients in this case can take
any value).

Note that the labels of the symmetry allowed directions must correspond to the one printed
in the output file (PRSYMDIR keyword for coordinates).

In the following example on α-quartz, two constraints are set up on coordinates

QUARTZ ALFA - Linear constraints between atomic coordinates

CRYSTAL

0 0 2

154

0 0 16

4.916 5.4054

2

14 0.4697 0. 0.

8 0.4135 0.2669 0.1191

OPTGEOM

FULLOPTG

FRACTCOOR

FIXCOOR

2

2 3 1.0 1.0

0 4 0.0 0.0

ENDOPT

END
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1. The x and y fractional coordinates of Oxygen are forced to change by the same amount,
so that their difference remains constant.

2. The z coordinate of Oxygen is kept fixed.

In general, any of the structural parameters can be kept fixed in the optimization process by
the combined use of FIXCOOR and FIXDEF keywords.

D - Partial optimization of atomic positions

FRAGMENT Partial geometry optimization (default: global optimization)
• ∗ NL number of atoms ”free”
• ∗ LB(L),L=1,NL label of the atoms to move

Optimization is limited to an atomic fragment (synonym ATOMFREE). Symmetrized carte-
sian coordinates are generated according to the list of atoms allowed to move. Note that no
advantage is taken in the gradient calculation to reduce the number of atoms, i.e. gradients
are calculated on the whole system. The symmetrized forces are then computed by using the
new set of symmetrized coordinates. See example in section 15.4, page 334.

E - Fixing internal coordinates

Constraints on internal coordinates can be easily imposed during geometry optimization.
The following two options allow users to both define and freeze one or more bond lengths or
angles:

LNGSFROZEN explicitly freezes bond lengths
• ∗ MU number of bond lengths to freeze

insert NL sets of 5 data to define the bond AB II
LA label of the atom A (it must be in the reference cell)
LB label of the atom B
I1, I2, I3 indices of the cell where the atom B is located

ANGSFROZEN definition of bond angles to be frozen
• ∗ NL number of angles to be frozen

insert NL sets of 9 data to define the angle ÂBC II
LA label of the atom A (it must be in the reference cell)
LB label of the atom B
I1, I2, I3 indices of the cell where the atom B is located
LC label of the atom C
I1, I2, I3 indices of the cell where the atom C is located

According to the list of redundant internal coordinates automatically generated by the code,
bond lengths or angles can also be frozen by means of the FREEZINT option:

FREEZINT freeze internal coordinates (active with INTREDUN only):
• ∗ NB first NB bond length are frozen

NA first NA bond angles are frozen
ND first ND dihedral angles are frozen (not active)
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The list of redundant coordinates can be obtained from a prior run, by inserting the keyword
TESTREDU (the program stops after printing internal coordinates).

Note that for a better control over the selected frozen internal coordinates we suggest using
the keywords LNGSFROZEN and ANGSFROZEN. These options reorder the internal
coordinates list so as the frozen parameters to be the first ones in the lengths and angles
entries of the output. The frozen coordinates will appear with the label (T) in the FRZ column.

Constrained optimization combining internal coordinates and fractional coordinates can also
be performed.

For instance, one can keep fixed a bond angle together with the constraint that the x and y
fractional coordinates of a given atom change by the same amount. Such a combination of
constraining strategies must be used with caution, as it may lead to undesired behavior in the
optimization process.

The constraining of internal coordinates is performed with numerical techniques (particularly
in the back-transformation from redundant internal to cell/atomic coordinate systems) and
the fixed values may be affected by some small changes (in general of the order of 10−4 au).
The use of BKTRNSF2 (page 168) may improve the numerical behaviour.

The following example corresponds to a rigid tetrahedral geometry optimization of α-quartz:

QUARTZ ALFA fixing internal coordinates

CRYSTAL

0 0 2

154

0 0 16

4.916 5.4054

2

14 0.4697 0. 0.

8 0.4135 0.2669 0.1191

OPTGEOM

INTREDUN

LGNSFROZEN

2

4 1 0 0 0

5 1 -1 0 0

ANGSFROZEN

4

4 1 0 0 0 7 0 0 0

4 1 0 0 0 5 1 0 0

4 1 0 0 0 8 1 0 0

5 1 -1 0 0 8 0 0 0

ENDOPT

END

The two independent Si-O bond lengths and then the four O-Si-O angles of the SiO4 tetrahe-
dron are frozen in order to relax just the Si-O-Si bridges and the dihedral angles.

FREEZDIH freeze a list of dihedral (active with INTREDUN only):
• ∗ NDH number of dihedrals to be frozen
• ∗ IFR(I),

I=1,NDH)
list of dihedrals to be frozen

The list of dihedrals, to choose the ones to be frozen, is obtained performing a previous run
with the keyword TESTREDU into OPTGEOM input block (the program stops after the
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printing of the internal coordinates, see page 170).

After using FREEZINT (page 174) it turns out that the order of the dihedral angles in the
output changes: the frozen parameters appear at the beginning of the list. All of them are
now labeled as frozen (”FRZ=T”) in the printed list of redundant coordinates.

4 - Geometry optimization with application of an external
stress

Geometry optimization can be done under an hydrostatic pressure (EXTPRESS).

EXTPRESS to apply external, hydrostatic pressure
• ∗ pres pressure in hartree/bohr3

Input example:

EXTPRESS

0.001 hydrostatic pressure of hartree/bohr^3 s applied

The directive should be introduced in any place within the OPTGEOM block.

6.4 Notes on geometry optimization

6.4.1 On the integrals classification during a geometry optimization

Truncation of infinite Coulomb and exchange series, based on the overlap between two atomic
functions (see chapter 17.12), depends on the geometry of a crystal. With default thresholds,
different selection of integrals are evaluated with different geometries. This introduces small
discontinuities in the PES, producing artificial noise in the optimization process. To avoid
noise in interpolation of PES, the FIXINDEX option is always active during optimization.
The adopted selection pattern refers to the starting geometry.

If equilibrium geometry is significantly different from the starting point, reference truncation
pattern may be inappropriate and the use of proper truncation becomes mandatory.

Since both total energy and gradients are affected by the integrals classification, a single-point
energy calculation ought to be run always with the final structure, and integrals classified
according to the new final geometry, to calculate correct total energy and gradients.

If during the final run the convergence test on the forces is not satisfied, optimization has to be
restarted, keeping the integrals classification based on the new geometry. The FINALRUN
option has been implemented to this aim.
The four different options of FINALRUN allow the following actions, after classification of
integrals:

1. single-point energy calculation (correct total energy),

2. single-point energy and gradient calculation (correct total energy and gradients),

3. single-point energy and gradient computation, followed by a new optimization process,
starting from the final geometry of the previous one, (used to classify the integrals), if
the convergence test is not satisfied.

4. step 3 is iterated until full stable optimization

If the starting and final geometry are close, the energy and gradient calculated from the final
geometry, with integral classification based on the initial geometry, are not very different from
the values obtained with correct classification of integrals. In some cases (e.g. optimization of
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the geometry of a surface, with reconstruction) the two geometries are very different, and a
second optimization cycle is almost mandatory (ICODE=4 in FINALRUN input). This is the
default in crystal.

6.4.2 Optimization of flat surfaces

Flat regions of surfaces often behave as non quadratic. This may give rise to erratic opti-
mization paths when using the linear minimization to control the step length. In these cases
it is recommendable using the trust radius strategy set by the keyword ALLOWTRUSTR.
Under this scheme the step is controlled so as to never go out from the quadratically behaved
regions of the surface (the trust regions). Additionally, one can set the maximum trust radius
to a given value MAXTRADIUS [def∞], in order to avoid too large displacements from one
point to the next one.
Additional combined test on gradient and energy are adopted for treating special cases:

1. If the gradient criteria are satisfied (but not the displacement criteria) and the energy
difference between two steps is below a given threshold (see TOLDEE), the optimization
stops with a warning message;

2. If both the gradient and displacements criteria are not satisfied, but the energy does not
change (TOLDEE parameter) for four subsequent steps, the optimization stops with a
warning message.

6.4.3 Restart optimization

Restart of geometry optimization is possible for a job which is abruptly terminated (e.g. number
of steps exceeded, available cpu time exceeded,...).

The optimization restarts from the last complete step of the previous run.
The geometry at each step is written to file optc number of step, and can be read by EXTER-
NAL (see page 19).
If optimization ended successfully, the optimized geometry is written to file fort.34 (EXTER-
NAL format).

When restarting an optimization, information on previous optimization steps is read from file
OPTINFO.DAT. Optimization then proceeds, saving information in the same file at each step.

The SCF guess, read from file fort.20, is the density matrix written in file fort.9 at the end of
SCF of the last successful step of the optimization process.

The same input deck as for the initial geometry optimization must be used when
the RESTART keyword is added.

Visualizing the optimization process

CRYSTAL output is read by the software MOLDRAW:

http://www.moldraw.unito.it to visualize the optimization process.

File fort.33 contains the geometry at each step, in xyz format.

6.5 Searching a transition state

TSOPT transition state search requested [default: false]

Transition state optimization is invoked by the keyword TSOPT in OPTGEOM input block.

The reference to be quoted is:
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C. M. Zicovich-Wilson, M. L. San-Romn, A. Ramrez-Sols,
Mechanism of F− Elimination from Zeolitic D4R Units: A Periodic B3LYP Study on the
Octadecasil Zeolite
J. Phys. Chem. C 114 (2010) 2989-2995.

An example of transition state search is presented in http://www.crystal.unito.it/tutorials

By default the eigenvector that corresponds to the lowest eigenvalue is followed uphill according
to the scheme proposed by Simmons and Nichols [Simmons, J., and Nichols, J.: , Int. J.
Quantum Chem. Symp. 24, volume 24, 263, (1990)].
To adopt other choices for directions to be followed uphill see keywords: MODEFOLLOW,
PATHFOLLOW, FITTOPATH and CHNGTSFOL.

6.5.1 Transition state control keywords

MODEFOLLOW
• ∗ MODEFOL mode to follow

ABS(MODEFOL) is the label of the eigenvector to be followed uphill initially, namely DIR(0).

If MODEFOL < 0, the initial uphill direction, DIR(0), is the opposite to that of the eigenvector
of label ABS(MODEFOL)

In a general optimization step, NSTEP, the current uphill direction DIR(NSTEP) is chosen
as the hessian eigenvector of maximum overlap with the direction chosen in the previous step,
DIR(NSTEP-1). In this scheme the uphill direction is allowed to smoothly change along the
optimization. Some problems might appear when there are quasi-degeneracies between the
Hessian eigenvalue of the uphill direction and other that corresponds to a direction to be fol-
lowed downhill. In such a case the optimization might go in troubles. Using PATHFOLLOW
is a safer way to define the uphill direction and so the reaction path.

PATHFOLLOW only with redundant internal coords
• ∗ NPATHFOL max coord to choose the mode to follow

Only valid together with INTREDUN/INTLMIXED.

The uphill direction is the eigenvector that has maximal absolute contribution of the internal
valence coordinate labeled ABS(NPATHFOL), which is thus supposed to dominate the reaction
path.

If NPATHFOL < 0, the uphill search is such that the value of coordinate ABS(NPATHFOL)
decreases along the reaction coordinate, otherwise the opposite direction is chosen.

At variance with the MODEFOLLOW case, where the reference direction changes from step
to step, here the same strategy is employed in every step of the optimization. This prevents
troubles when near-degeneracies occur (see keyword MODEFOLLOW).

FITTOPATH only with redundant internal coords
• ∗ NPATHFOL2 integer

NPATHWEIGHT integer

Only valid together with INTREDUN/INTLMIXED and PATHFOLLOW

ABS(NPATHFOL2) is the label of a second internal valence coordinate, namely coordinate
(II), that together with the one labeled ABS(NPATHFOL), coordinate (I), mostly contributes
to the reaction coordinate.

Once the eigenvector with maximum contribution of coordinate (I), namely XMAXCONTR, is
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obtained (see PATHFOLLOW keyword), the eigenvectors are once more scanned and those
having a contribution of this coordinate larger in absolute value than XMAXCONTR*(100-
NPATHWEIGHT)/100 selected. If NPATHFOL2 > 0 the previously selected eigenvector with
maximum contribution of coordinate (II) with the same sign of XMAXCNTR is chosen as uphill
direction. Otherwise, the one with maximum contribution having opposite sign is considered.

CHNGTSFOL only with redundant internal coords

Valid together with INTREDUN/INTLMIXED, PATHFOLLOW (FITTOPATH).

The optimization follows uphill the path according to the PATHFOLLOW (+FIT-
TOPATH) scheme while the chosen eigenvector is not the first one in the list ordered by
increasing eigenvalues, i.e. it has not the lowest eigenvalue. Once such a situation reverts,
the scheme changes to MODEFOLLOW in the following steps and the uphill direction is
chosen according to the criterion of maximum overlap with the previous uphill direction (see
MODEFOLLOW keyword).

6.5.2 Scan keywords

SCANATOM
• ∗ NATSCAN (integer): label of the atom to be scanned

TARGET (real array dim 3): last position of the atom in the scan
MSCAN number of steps in which the previous displacement is carried out

Only for P1 structures.

Perform a series of optimizations in which one atom is kept fixed at different contiguous posi-
tions and the remainder of the structure fully or partially relaxed.

Compatible with the optimization of atomic positions (default) and atoms+cell (FUL-
LOPTG).

Not compatible with INTREDUN/INTLMIXED. The atom chosen for scan and any
other one with the only condition that belongs to that part of the system chosen to remain
associated to the center of mass, must be defined as fixed with the FRAGMENT option.

This directive may be used associated with FRAGSCAN. The keyword has the same syntax
as FRAGMENT and defines a set of atoms that after each step of the scan have the same
displacement of the scanned atom, NATSCAN, so as to set the geometry of the starting point
of the next optimization of the sequence.

SCANREDU To be used with INTREDUN/INTLMIXED only
• ∗ IREDSCA (integer): type of valence coordinate to be scanned (1, bond length; 2

angle; 3 dihedral)
ENDSCA (real): last value taken by the chosen coordinate along the scan The initial

value is the current one with the geometry defined for the structure.
MAXSCA number of points considered in the scan

Perform a series of optimizations (scan) in which one (or two) redundant valence internal
coordinate(s) are kept fixed at different values while the remainder are fully relaxed.

To be used only with INTREDUN/INTLMIXED.

The directive SCANREDU must be accompanied with freezing the redundant valence internal
coordinate(s) one wants to scan (see keywords FREEZINT (page 174), FREEZDIH (page
175), ANGSFROZEN (page 174), LNGSFROZEN (page 174).
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According to the order of the coordinates given in the output (see INTREDUN,
TESTREDU) the scan is performed on the last frozen coordinate (indicated in the output
by a ”T”) of type IREDSCA. If SCANREDU is requested twice with the same IREDSCA,
the second time it refers to the last but one frozen coordinate of type IREDSCA.

SCANREDU may be requested at maximum twice so as to carry out a bidimensional scan.

The use of BKTRNSF2 (see pag. 168) may improve the accuracy in the displacements
between two consecutive optimizations of the scan, particularly when they are rather large.
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Chapter 7

Lattice Dynamics - Vibration
Frequencies

7.1 Calculation of Harmonic Vibration Frequencies

The calculation of the vibration harmonic frequencies is invoked by the keyword FREQCALC
in input block 1 (geometry). FREQCALC must be the last keyword in the geometry input
block. FREQCALC admits several options (subkeywords) listed below and terminates with
keyword END (or END[FREQ], END[—]: only the first three characters are processed).
References to be quoted when using this module:

F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, R. Dovesi
The calculation of the vibration frequencies of crystalline compounds and its implementation
in the CRYSTAL code., J. Comput. Chem. 25 (2004) 888-897

C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, R. Dovesi
The calculation of the vibration frequencies of alpha-quartz: the effect of Hamiltonian and
basis set., J. Comput. Chem. 25 (2004) 1873-1881

Besides harmonic vibration frequency calculation at the Γ-point [default] it allows:

1. Calculation of infrared (IR) intensities (INTENS, page 189).

2. Calculation of Raman intensities (INTRAMAN, page 191).

3. Scanning of geometry along selected normal modes (SCANMODE, page 194).

4. Calculation of the infrared spectra (IRSPEC, page 197).

5. Calculation of the Raman spectra (RAMSPEC, page 199).

6. Phonon dispersion at the harmonic level (DISPERSION, page 201).

7. Calculation of the atomic Anisotropic Displacement Parameters (ADP) at any tempera-
ture (ADP, page 203).

8. Calculation of total and projected vibrational density-of-states (PDOS, page 205) and
neutron-weighted PDOS for comparison with Inelastic Neutron Scattering spectra (INS,
page 205).

9. Calculation of the vibrational contribution to Second-Harmonic Generation (SHG) and
Pockels tensors (BETAVIB, page 193).

10. Thermodynamic properties at different temperatures and pressures (see page 187).

The second derivatives of the energy are computed numerically by using the analytical first
derivatives (gradients). Frequencies are obtained by diagonalizing the mass-weighted Hessian
in Cartesian coordinates.
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7.1.1 Symmetry exploitation

The point group symmetry of the lattice is used to reduce the number of SCF+gradient cal-
culations to be performed. At each point, the residual symmetry is exploited for the SCF
calculation.
Second derivatives calculations are done on the irreducible atoms only. The full Hessian ma-
trix is then generated by applying the point group symmetry to the irreducible part. The
mass-weighted Hessian matrix is diagonalized to obtain eigenvalues, which are converted in
frequencies (cm−1), and eigenvectors, i.e. the normal modes.

7.1.2 Equilibrium Geometry

The first step to compute frequencies is the calculation of the wave function at the equilibrium
geometry. The geometry of the system must correspond to a stationary point on the potential
energy surface.
Geometry optimization can be either performed on a previous run (recommended) or controlled
by two sub-keywords of FREQCALC:

NOOPTGEOM do not perform previous optimization in FREQCALC job [default]

PREOPTGEOM perform optimization before starting the vibrational modes calcula-
tion.

insert OPTGEOM keywords (close with END) II

keyword END II

An input block is opened that must finish with keyword END. The numerical conditions for
the optimization are controlled by means of the same keywords as documented in page 156
(keyword OPTGEOM).
The conditions adopted by default in geometry optimization before frequency calculation are
different than those considered for normal optimizations in order to obtain much more accurate
minima numerical second derivatives. This ensures a good accuracy in the computation of the
frequencies and modes. The defaults are:

TOLDEG 0.00003

TOLDEX 0.00012

FINALRUN 4

MAXTRADIUS 0.25

TRUSTRADIUS .TRUE.

If frequency calculation is restarted (keyword RESTART, page 188) the input geometry must
be the final optimized geometry found by PREOPTGEOM.

7.1.3 Default settings

The SCF wave-function starting guess for the calculations of all the displaced geometries nec-
essary to compute the numerical second derivatives of the total energy is the density matrix
obtained at the equilibrium geometry.

The default value for SCF convergence criterion on total energy is set to 10−9 (use the
TOLDEE keyword in input block 3 to modify it).
The default choice for DFT grid, when a DFT Hamiltonian is used, corresponds to XLGRID
(page 129).
The calculation of longitudinal-optical (LO) frequencies and infrared (IR) intensities is not
performed by default. If the INTENS (page 189) keyword is used, intensities are evaluated.
The FREQCALC input block must be closed by the keyword END (or ENDFREQ). All
additional keywords (see below) to be put in between are optional.
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7.1.4 Output files

Here is a list of the files that are written during a frequency calculation, to be saved in order
to restart a calculation:

SCFOUT.LOG The output from the wave function and gradient calculation is printed in
standard output for the reference geometry only. The output for the displaced configu-
rations is then written in file SCFOUT.LOG.

FREQINFO.DAT Formatted. Contains information on the Hessian. Updated at each point,
it is necessary to restart a frequency calculation.

HESSFREQ.DAT Formatted. Contains the Hessian in Cartesian coordinates to be read by
HESSFREQ in geometry optimization input block.

fort.9 Binary. Wave function computed at the equilibrium geometry. Full symmetry exploited
by default. When those data are used to restart, file fort.9 is read as file fort.20 (SCF
guess).

fort.13 Binary. Reducible density matrix at central point. To exploit maximum symmetry in
numerical second derivatives calculations.

fort.28 Binary. Data for restart of IR intensities calculation through Berry phase approach.

fort.80 Binary. Localized Wannier functions, computed only if IR intensities are computed
through Wannier functions.

7.1.5 Optional keywords

This is a list of some possible (optional) subkeywords to be inserted after FREQCALC. This
is just a partial list since the main subkeywords are described into details in the following
sections of this chapter:

• A ANALYSIS Analysis of the vibrational modes

• A CHI2TENS to be used if INTRAMAN is active (pages 189,191). Reads the
second-order anisotropic dielectric tensor for the calculation of the
LO Raman intensities.

• ∗ TENS(1:27) second-order dielectric tensor matrix TENS (3x9 elements, input by
rows: 27 reals (3D)).
The tensor elements can be computed using the CPHF keyword (see
page 225) at THIRD or FOURTH order (page 9.3). The tensor
elements should be inserted in the following order:

xxx xxy xxz

xyx xyy xyz

xzx xzy xzz

yxx yxy yxz

yyx yyy yyz

yzx yzy yzz

zxx zxy zxz

zyx zyy zyz

zzx zzy zzz
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• A COMBMODE
Evaluation of transverse optical combination modes and overtones at
the Γ point. A set of options are available, which are described below.
This keyword opens an input block that must be closed by END.

• A .. Optional sub-keywords
• A END
List of optional sub-keywords
• A IR Only infrared (IR) active combination modes and overtones are dis-

played in the output.
• A RAMAN Only Raman active combination modes and overtones are displayed

in the output.
• A IRRAMAN IR and Raman active combination modes and overtones are displayed

in the output.[default]
• A ALL All vibrational combination modes and overtones are displayed in the

output.
• A FREQ Combination modes and overtones are sorted according to the fre-

quency value. [default]
• A IRREP Combination modes and overtones are sorted according to the IRREP.
• A FREQRANGE Only combination modes and overtones with frequency included

within FMIN and FMAX are displayed in the output.
• ∗ FMIN,FMAX Boundaries of the frequency range. Default: [0., 1.3 νmax].

• A DIELISO to be used if INTENS is active (page 189). Reads the isotropic
diagonal dielectric tensor (dielectric constant) for the calculation of
the LO/TO splitting. The dielectric constant has to be computed on
a previous run with options CPHF (page 225) or SUPERCEL -
FIELD and DIEL (see page 46) applied for each axis of the system.

• ∗ DIEL dielectric constant

• A DIELTENS to be used if INTENS is active (page 189). Reads the anisotropic
dielectric tensor for the calculation of the LO/TO splitting. In some
low-symmetry systems the polarization of LO modes is not deter-
mined by symmetry. In this case, LO frequencies are computed only
if symmetry analysis of the vibrational modes is inactive (see key-
word NOKSYMDISP). If INTRAMAN is active, the keyword
CHI2TENS should also be declared.

• ∗ TENS(1:9) Dielectric tensor matrix TENS (3x3 elements, input by rows: 9 reals
(3D).
The dielectric tensor elements can be obtained from the literature or
computed using the CPHF keyword (see page 225) or the SUPER-
CEL - FIELD keywords (see page 46).

• A ECKART Eckart conditions imposed to project out of the Hessian matrix purely
translational and rotational degrees of freedom (see page 365 for more
details). Note that this option is now active by default. This
was not the case in the previous versions
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• A FRAGMENT Frequency calculation on a moiety of the system

• ∗ NL number of atoms active for frequencies
• ∗ LB(L),L=1,NL label of the active atoms

Frequency calculation can be limited to an atomic fragment, instead of the whole system.
Symmetry is removed. If a fragment contains symmetry related atoms, they must be explicitly
defined. A reduced Hessian is computed, according to the list of atoms belonging to the
fragment. A chemically sound moiety of the system must be considered to avoid random
results.

• A ISOTOPES atomic masses modified
• ∗ NL number of atoms whose atomic mass must be modified
II insert NL records II
• ∗ LB,AMASS label and new atomic mass (amu) of the atom.
II II

When the isotopic mass of one atom symmetry related to others is modified, the symmetry of
the electronic wave function is not modified, as the mass of the atoms is not present in the
single particle electronic Hamiltonian. For instance, if in a methane molecule (point group Td)
we want to substitute H with D, we can redefine the mass of the 1, 2, 3, 4 hydrogen atoms; if
C is the first atom, the corresponding input are:

1 H atom 2 H atoms 3 H atoms 4 H atoms

ISOTOPES ISOTOPES ISOTOPES ISOTOPES

1 2 3 4

2 2.000 2 2.000 2 2.000 2 2.000

3 2.000 3 2.000 3 2.000

4 2.000 4 2.000

5 2.000

If a single D is inserted, the symmetry is reduced, (point group C3v), the three-fold degeneracy
becomes two-fold. When all the four hydrogens are substituted, the three-fold degeneracy is
restored.
If a frequency calculation was performed with standard atomic masses, new frequencies values
with different atomic masses for selected atoms can be computed from the Hessian already
computed, at low computational cost, by inserting the keyword RESTART in FREQCALC
input block, and supplying the file FREQINFO.DAT written by the previous run.
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• A MODES Printing of eigenvectors [default]

• A MULTITASK This keyword allows the simultaneous execution of independent
SCF+G calculations. It is aimed at the exploitation of the large
processor counts available on High Performance Computing facilities.
Allocation of too many processors results in performance degradation
due to the communication overhead between the processors. When
many independent tasks are usually performed sequentially, MULTI-
TASK performs N tasks at the same time, so that an N-fold increase
in the number of allocated processors can be requested, without losing
performance.

• ∗ N Number of tasks. For example if N=8 is requested and the job is
running on a total of NCPU=128 cores, 8 tasks with 16 cores each
will be created. N should be greater than one and smaller than the
total number of cores NCPU (1<N≤NCPU). N should be a divider of
NCPU, so that each task will run on the same amount of processors.

• A NEGLEFRE Reads the number of lowest vibration frequencies to be neglected
in the computation of the thermodynamical properties. By default,
the (rotational)+translational degrees of freedom are automatically
neglected. This keyword allows to neglect further soft vibrations with
low frequencies which may carry numerical issues on the computation
of thermodynamical properties.

• ∗ N Number of frequencies to be neglected

• A NOANALYSIS No analysis of the vibrational modes [default]

• A NOECKART Eckart conditions not imposed to the Hessian.

• A NOINTENS No calculation of the IR intensities [default choice].

• A NOMODES No printing of eigenvectors

• A NORMBORN
Normalize Born tensor to fulfill sum rule

• A NOUSESYMM Symmetry is removed, the space group is set to P1
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• A NUMDERIV
specifies the technique to compute the numerical first-derivatives
h(x)=dg(x)/dx of the gradient g(x)=dE(x)/dx

• ∗ N 1 different quotient formula: h(x)=(g(x+t)-g(x))/t t=0.001 Å
(one displacement for each atom along each cartesian direction)
2 Central-difference formula: h(x)=(g(x+t)-g(x-t))/2t t=0.001 Å
(two displacements for each atom along each cartesian direction)

• A PRESSURE Pressure range for thermodynamic analysis
• ∗ NP,P1,P2 3 reals, NP is the number of intervals in the pressure range P1 to P2

(MPa) [1,0.101325,0.101325]

• A PRINT Extended printing active (Hessian and Hessian eigenvectors)

• A RAMANEXP Takes into account experimental conditions (temperature, incoming
laser) in the calculation of Raman intensities, according to Eq. 7.9
(see page 192).

• ∗ T,FREQ 2 reals, T is the temperature, FREQ is the frequency (in nm) of the
incoming laser.

• A RESTART Restart frequency calculation from a previous run. See page 188.

• A STEPSIZE
Modify the step size of displacement along each cartesian axis

• ∗ STEP step (Å) for numerical derivatives [0.003]

• A TEMPERAT Temperature range for thermodynamic analysis
• ∗ NT,T1,T2 3 reals, NT is the number of interval in the range T1 to T2 tempera-

ture (K) [1,298.0,298.0]

• A TEST[FREQ] Frequency test run

• A USESYMM Maximum space group symmetry used to compute wave function at
each point [default]

Partition of the modes into Building Unit contributions

The external portion of the motion of the b-th Building Unit (BU) in mode i is quantified by
means of

εbi =

(
P(b)ei

)2
Nbi

, (7.1)

where matrix P(b) ≡ P
(b)
Aα,Bβ , with atoms A,B belonging to the b-th BU, is the projector

onto the roto-translational degrees of freedom of the unit taken as an isolated fragment and
Nbi =

∑
A∈b

∑3
α=1 e

2
i,Aα is a normalization factor. Accordingly, the corresponding internal

contribution is given by 1− εbi.
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The contribution of the b-th BU to mode i is computed as

ξbi =

3∑
α=1

∑
A∈b

e2
i,Aα

mA
, (7.2)

where mA is the number of BUs to which atom A belongs. If the mode vector is normalized
Eq. (7.2) ensures that

∑
b ξbi gives the portion of the mode covered by the partition (1 if a full

partition is considered). By adopting such partitions, the internal and external contributions

(per cent) of the b-th BU to mode i are given by Γ
(n)
bi = (1 − εbi) × ξbi × 100 and Γ

(x)
bi =

εbi × ξbi × 100, respectively. In some cases one may be interested in considering the overall
external contribution under a given BU partition. This is given by

Ξi =

∑
b Γ

(x)
bi∑

b ξbi
, (7.3)

where
∑
i Ξi is not 100%, but the percentage of the structure covered by the BUs considered

in the partition.
Though this analysis may be somehow arbitrary, the resulting indices provide a systematic
and clear description of most of the significant features of the vibrational modes of the system
under study.

The keyword BUNITSDECO performs a building unit decomposition of the vibrational
modes. The vibrational modes are decomposed in terms of internal and external motions of
some units defined by input. The latter correspond to rotations and translations of the units
behaving like rigid, while the former to the relative motions of the constitutive atoms.

BUNITSDECO perform a building unit decomposition of the vibrational modes.

• ∗ NBDNGUNIT number of building units irreducible by symmetry considered (the
units symmetry-equivalent are automatically generated)

• ∗ MBDNGUNIT(I),

I=1,NBDNGUNIT

number of atoms of each unit. The sum defines NATOMS, the
total number of atoms considered

• ∗ (LBDNGUNIT(JA,IU),

JA=1,4),IU=1,NATOMS

identification of the atoms: for each atom, the sequence number
and three cell indexes, in the order given in MBDNGUNIT

7.2 Restart a calculation

A frequency calculation for a job abruptly terminated (e.g. machine crash, exceeded the
available cpu time,....). can be restarted exactly from the last point of the previous run.

The same input deck used for the incomplete calculation, with the keyword RESTART in
the FREQCALC input block is submitted. The following files, written by the previous job,
must be present:

FREQINFO.DAT formatted - information on the part of the hessian already computed.

fort.20 binary - wave function at the equilibrium geometry, with no symmetry, as guess for
SCF process (fort.9 saved at the end of single point calculation).

fort.28 (binary) Data for restart of IR intensities calculation through Berry phase approach.

fort.80 (binary) localized Wannier functions (if IR intensities through Wannier cunctions are
computed).

fort.13 binary - Reducible density matrix at central point. To exploit maximum symmetry
in numerical second derivatives calculations.
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IR intensities calculation using Berry phase or Wannier functions must be present in the first
frequency calculation, it can not be inserted in restart only. It is however possible to do so
with CPHF analytical intensities.
The restart option can be used to modify the algorithm used to compute gradients (switch from
different quotient formula to Central-difference formula, keyword NUMDERIV). In this case
the new points only are calculated. The same input deck as for the initial frequency calculation
must be used.
Restart can be used to evaluate frequencies for a system with different isotopes of selected
atoms (keyword RESTART followed by ISOTOPES 185).

7.3 IR Intensities

Calculation of IR intensities is invoked by the keyword INTENS in FREQCALC input
block.

Three different techniques can be adopted:

• IR intensities through Berry phase - keyword INTPOL [default]

• IR intensities through Wannier functions - keyword INTLOC

• IR intensities through CPHF approach - keyword INTCPHF

The first two approaches imply numerical differentiations, while the latter is entirely analytical.
Atomic Born tensors are the key quantities for the calculation of the IR intensities, the oscillator
strengths, the LO/TO splitting and the static dielectric tensor. Such quantities are written in
the external formatted unit BORN.DAT.
In order to compute the LO/TO splitting, the high frequency dielectric tensor must be provided.
See keyword DIELTENS, page 184.

The integrated IR intensity Ip for the p− th mode is computed according to:

Ip =
π

3

NA
c2
· dp · |~Zp|2 (7.4)

where NA is the Avogadro’s number, c is the speed of light, dp is the degeneracy of the mode,
~Zp is the mass-weighted effective mode Born charge vector.
The oscillator strength tensor fp for the p− th mode is computed according to:

fp,ij =
4π

Ω

~Zp,i ~Zp,j
ν2
p

(7.5)

here Ω is the unit cell volume, νp is the mode TO frequency and ~Zp is again the mass-weighted
effective mode Born charge vector.

7.3.1 IR intensities through Berry phase [default]

Calculation of IR intensities through Berry Phase approach, keyword INTPOL, is the default
choice.

This is possible for 3D, 2D, 1D and 0D systems, but only for insulating system.

The Berry phase approach consists in evaluating the atomic Born tensors, that is the derivative
of the dipole moment with respect to the atomic displacements, as polarization differences
between the central and the distorted geometries: the polarization difference is then equal to
the time-integrated transient macroscopic current that flows through the insulating sample
during the vibrations.

The scheme operates on the crystalline-orbital eigenfunctions in the reciprocal space. As a
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consequence of that, the accuracy of IR intensities might be sensitive to the density of the
Monkhorst net.

There are no additional keywords related to this method.

7.3.2 IR intensities through Wannier functions

Calculation of IR intensities through Wannier functions is invoked by the keyword INTLOC
following INTENS in FREQCALC input block.

Many keywords are related to the Wannier functions calculation that should be used by devel-
opers and very experienced users only.

If keyword INTLOC is activated in FREQCALC input block, IR intensities, atomic Born
tensors and LO/TO splitting are evaluated through the Wannier functions, obtained by local-
izing the crystalline orbitals. This is possible for insulators only.

IR intensities calculation through localization is very demanding, in terms of memory alloca-
tion. NOINTENS, default choice, avoids intensity calculation, when not necessary.

As regards the computation of the IR intensities, they are obtained by means of the Wan-
nier Function (WF) approach, in which those functions span the occupied manifold and are
explicitly constructed in real space. They are at time obtained from the eigenvectors of the one-
electron Hamiltonian (Bloch Functions) by numerical integration in reciprocal space through
the definition of a Pack-Monkhorst net. The system must be an insulator. By default the
dipole moment in the non central points are computed with Wannier Functions that are the
projection onto the occupied space of the current point of those obtained by localization at the
central point. If RELOCAL is requested these WFs are relocalized at each point

This procedure leads not to real WFs, but to an approximation contained into a cyclic space.
In the mapping (unfolding) that permits to convert cyclic to real WFs, CRYSTAL exploits the
classification of the lattice vectors made at the very beginning of the SCF calculation that,
obviously, does not involve the infinite space, but just a cluster of a finite number of cells,
ordered by increasing length (i.e. it covers a close to spherical region of the real space).

In all the tested cases, this classification provides sufficient room to represent the matrices
needed in the SCF part within the required accuracy. This is also so in what concerns the
(post-SCF) computation of the WFs, apart from very particular cases in which the primitive
cell is oblong and the corresponding unfolded cyclic cluster associated to the Monkhorst-Pack
net (also very elongated in one direction) does not fit into the real cluster (always close to
spherical shape).

A set of keywords can be used to modify the localization process (see properties input, keyword
LOCALWF, page 285) They are entered after the DIPOMOME keyword. Modification of
default choices is not recommended, it should be restricted to developers only.

The keyword DIPOMOME defines an input block (closed by END) with keywords allowing
modification of the localization process.

To be modified by developers only.
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• A DIPOMOME Calculation of the dipole moment - see Localisation part (properties,
keyword LOCALWF, page 285
To be modified by developers only.

• A END end of the DIPOMOME block.
all keywords are optional II

• A DMACCURA (Optional) Change the final dipole moment tolerance
• ∗ NTOL Value of the new tolerance as TOLWDM=0.1−NTOL

• A RELOCAL (Optional) Relocalize all points in frequency calculations
• A BOYSCTRL see LOCALWF, page 288
• A CAPTURE see LOCALWF, page 291
• A WANDM see LOCALWF, page 295
• A FULLBOYS see LOCALWF, page 295
• A MAXCYCLE see LOCALWF, page 288
• A CYCTOL see LOCALWF, page 286
• A ORTHNDIR see LOCALWF, page 295
• A CLUSPLUS see LOCALWF, page 294
• A PHASETOL see LOCALWF, page 286
• A RESTART see LOCALWF, page 286
• A IGSSBNDS see LOCALWF, page 290
• A IGSSVCTS see LOCALWF, page 290
• A IGSSCTRL see LOCALWF, page 290

7.3.3 IR intensities through CPHF/CPKS

Calculation of IR intensities through Coupled-Perturbed Hartree–Fock/Kohn–Sham approach,
keyword INTCPHF, allows for completely analytical calculation of Born charges and, hence,
IR intensities.

A few optional keywords are available:

• IRREA: reads the tensor of Born charges from file TENS IR.DAT. Note that if a
frequency restart is performed, the tensor is automatically retrieved from file FRE-
QINFO.DAT unless the keyword DOINTCPHF is used (see below).

• IRSPEC: The IR spectrum is produced using Lorentzian broadening and stored in file
IRSPEC.DAT

The INTCPHF keyword opens a CPHF input block, that must be closed by END. Here all
keywords proper to the CPHF keyword (page 225) can be adopted.

all keywords are optional II
• A FMIXING see CPHF, page 225
• A RESTART see CPHF, page 225
• A TOLALPHA see CPHF, page 225
• A MAXCYCLE see CPHF, page 225

Alternatively to the INTCPHF keyword, users can use DOINTCPHF. It has the same
meaning and optional keywords, but in a case of a frequency restart it forces the calculation
of Born (or Raman, see below) tensor instead of reading it from FREQINFO.DAT

7.4 Raman Intensities

The calculation of analytical Raman intensities [142, 143] can be activated through
the INTRAMAN keyword. If the Raman tensor is not already available (on unit
TENS RAMAN.DAT or inside FREQINFO.DAT) it must be computed by inserting the key-
word INTCPHF(page 191). As for IR intensities, INTCPHF opens a CPHF block that
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must be closed by the END keyword. Be careful that the INTRAMAN should be always
used together with the INTENS keyword. A Coupled-Perturbed Hartree–Fock/Kohn–Sham
approach calculation up to fourth-order (CPHF2) will be performed, prior to the calculation
of frequencies. The Raman tensor, after a successful calculation, is written in a formatted unit
named TENS RAMAN.DAT. The same information is stored in the file FREQINFO.DAT
The simplest possible input of the frequency block is, then:

FREQCALC

INTENS

INTRAMAN

INTCPHF

END

END

For an oriented single-crystal the Raman Stokes scattering intensity associated with, for in-
stance, the xy component of the polarizability tensor corresponding to the i-vibrational mode
of frequency ωi may be calculated as:

Iixy ∝
(
αxy
∂Qi

)2

(7.6)

where Qi is the the normal mode coordinate for mode i.
While the intensity of the transverse optical (TO) modes is straightforwardly computed once
the appropriate polarizability derivative is obtained, the corresponding calculation for longitu-

dinal optical (LO) modes requires a correction[128, 219] due to χ
(2)
bcd :

∂αb,c
∂RAa

∣∣∣∣
R0

=
1

V

∂3ETOT

∂RAa ∂Eb∂Ec

∣∣∣∣
E=0,R0

− 2
∑
b′

Z∗b′aA
∑
d′

ε−1
b′,d′χ

(2)
bcd′ (7.7)

In Eq. (7.7) ε−1 is the inverse of the high-frequency (i.e. pure electronic) dielectric tensor.

χ(2) is defined as in Eq. (69) of Ref. [82]. All these quantities (Z∗b′aA, ε−1 and χ
(2)
bcd′) are saved

in FREQINFO.DAT file for restart, since they are obtained as a byproduct of the Raman
intensities calculation. Otherwise, the first and second-order dielectric tensors can be provided
in input through the keywords DIELTENS and CHI2TENS, respectively.
Finally, as commonly done in the reporting of experimental data, the intensities are normalized
to the highest peak, arbitrarily set to 1000.00.
A few optional keywords are available:

• RAMANEXP: In the case the user desires to reproduce experimental conditions, Eq.
7.6 is substituted by

Iixy ∝ C
(
αxy
∂Qi

)2

(7.8)

The prefactor C depends[219] on the laser frequency ωL and the temperature T :

C ∼ (ωL − ωi)4 1 + n(ωi)

30ωi
(7.9)

with the Bose occupancy factor n(ωi) given by

1 + n(ωi) =

[
1− exp

(
− ~ωi
KBT

)]−1

(7.10)

The polycrystalline (powder) spectrum can be computed by averaging over the possible
orientations of the crystallites as described in Eq. (4) and (5) of Ref. [181], which we
used for our implementation.
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• RAMANREA: reads the Raman tensor from file TENS RAMAN.DAT.Note that if
a frequency restart is performed, the tensor is automatically retrieved from file FRE-
QINFO.DAT unless the keyword DOINTCPHF is used (see below)

• NORENORM: Turns off renormalization of the Raman intensity to the highest peak

• RAMSPEC: The Raman spectrum is produced using Lorentzian broadening and stored
in file RAMSPEC.DAT

• TENSONLY: After the calculation of the IR and Raman tensors, and their storage in
files TENS IR.DAT and TENS RAMAN.DAT, the calculation stops

• ROTRAMAN
θ, ϕ, ψ
The Raman tensor is rotated according to the three angles (in degrees) provided
in input. For the meaning of such angles and see the effect of the rotations see
http://www.cryst.ehu.es/cryst/transformtensor.html

Here all keywords proper to the CPHF keyword (page 225) can be adopted.
Note that in the case of a DFT calculation the CPHF defaults are set to FMIXING=FMIXING2=60,
MAXCYCLE=MAXCYCLE2=200.

all keywords are optional II
• A FMIXING2 see CPHF, page 225
• A TOLGAMMA see CPHF, page 225
• A MAXCYCLE2 see CPHF, page 225

Alternatively to the INTCPHF keyword, users can use DOINTCPHF. It has the same
meaning and optional keywords, but in a case of a frequency restart it forces the calculation
of Born and Raman tensor instead of reading it from FREQINFO.DAT

7.4.1 Vibrational contribution to SHG and dc-Pockels tensors

rec variable meaning
• A BETAVIB Activates the calculation of the vibrational contribution to the SHG

and Pockels tensor
∗ BVIB FRQ Wavelength (in nm) of the frequency ω1

The double harmonic vibrational [µα](0,0) (or ionic) contribution to the SHG or Pockels tensors
(see Section about DYNAMIC CPHF on page 228 for the electronic part of the tensor) is
obtained by a simple generalization of the molecular formula [25, 186]:

dvibtuv(−ωσ;ω1, ω2) =
1

2

2π

V

3N−6∑
i=1

P t
−ωσ ,

u
+ω1

, v
+ω2

(
∂µt
∂Qi

)(
∂αuv
∂Qi

)
ω2
i − ω2

σ

(7.11)

where µt and αuv are dipole moment and polarizability components, while ωi and Qi are
phonon frequencies and normal modes of the i-th vibration at the Γ-point. In SHG, ω1 = ω2

and ωσ = 2ω1, while in Pockels, ωσ = −ω1 and ω2 = 0 The operator P t
−ωσ ,

u
+ω1

, v
+ω2

which

permutes the pairs (t/ − ωσ), (u/ + ω1), and (v/ + ω2) has been discussed, for example, by
Bishop[24])
The terms ∂µt

∂Qi
and ∂αuv

∂Qi
are the same tensors needed for the evaluation of infrared and Raman

intensities and are computed as described in Refs. [141] and [144], respectively. As a conse-
quence, this keyword can be activated only if INTENS and INTRAMAN keywords are present
in the same input.
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7.5 Scanning of geometry along selected normal modes

Scanning of geometry along selected normal modes is invoked by the keyword SCANMODE
in FREQCALC input block. Preliminary frequency calculation is required to single out the
selected mode.

rec variable meaning

• ∗ NMO |NMO| number of modes to be scanned.
> 0 SCF calculation at each point along the path - energy is computed
< 0 only the geometry along the path is computed (no SCF calculation)

INI Initial point for the scan
IFI Final point for the scan
STEP Step given as a fraction of the maximum classical displacement, that

corresponds to the 1.0 value
• ∗ N(I),I=1,NMO sequence number of the modes selected.

Let |r0 > be the equilibrium configuration; then the following configurations are explored:
|ri >= |r0 > +i∆|u >, where |u > is the eigenvector of the selected mode, i is a positive or
negative integer, running from INI to IFI, and ∆ is the step. IFI − INI + 1 is the number
of points that will be considered in the INI ∗ STEP − IFI ∗ STEP interval. If the STEP
variable is set to 1.0, the maximum classical displacement is computed. This displacement
corresponds to the point where the potential energy in the harmonic approximation is equal
to the energy of the fundamental vibrational state as follows:

V = Evib0

1

2
kx2 =

1

2
~ω

Where x=|rmax〉 − |r0〉 and the force constant k is given by:

k = ω2µ

The final expression of the maximum classical displacement is therefore:

x =

√
~
ωµ

This option can be useful in two different situations.
Let us consider νi as the frequency of the Qi normal mode:

νi > 0 we want to explore the energy curve along Qi normal mode and check the deviation of
the energy from the harmonic behaviour. See example 1;

νi < 0 the system is in a transition state. We want to explore the Qi normal mode in order to
find a total energy minimum; usually Qi is not total-symmetric, the symmetry of the
structure needs to be reduced. CRYSTAL determines automatically the subgroup of the
original group to which the symmetry of the mode belongs. See example 2.

At each point, the geometry is written in file ”SCANmode number frequencyvalue DISP i∆”
(see below), in a format suitable to be read by the keyword EXTERNAL (geometry input,
page 19).
The geometry of the system then has to be re-optimized in this new subgroup using as a
starting geometry one of those external files (better the one corresponding to the minimum).
Frequencies can then be evaluated in the new minimum and the new set of frequencies should
contain only positive values (apart from the three referring to translations).
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7.5.1 Example 1 - Methane molecule

First run: optimization of the geometry (full input at page 340).

Second run: calculation of the vibrational frequencies of CH4 in the optimized geometry.
The optimized geometry corresponds to a minimum, as all frequencies are positive (modes 1-3,
translational mode; modes 4-6, rotational modes).

MODES EIGV FREQUENCIES IRREP IR RAMAN

(HARTREE**2) (CM**-1) (THZ)

1- 3 -0.1863E-11 -0.2995 -0.0090 (F2 ) A A

4- 6 0.7530E-07 60.2270 1.8056 (F1 ) I I

7- 9 0.4821E-04 1523.8308 45.6833 (F2 ) A A

10- 11 0.6302E-04 1742.3056 52.2330 (E ) I A

12- 12 0.2099E-03 3179.3763 95.3153 (A ) I A

13- 15 0.2223E-03 3272.4193 98.1047 (F2 ) A A

Third run: Scanning of a selected mode.
To explore the 12th normal mode, corresponding to C-H symmetric stretching, the following
lines must be inserted before the end of geometry input (RESTART to read from external file
vibrational modes, computed in 2nd run):

FREQCALC

RESTART

SCANMODE

1 -10 10 0.2

12

END

The potential energy function as well as its harmonic approximation is computed are repre-
sented in the figure. The anharmonicity of C–H stretching is evident.

Figure 7.1: Scanning of the energy along normal mode 12, ν=3179.3763 cm−1, corresponding to
C–H symmetric stretching
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7.5.2 Example 2 - PbCO3

The space group of this carbonate, as it can be found in the literature [ICSD database], is
Pmcn (orthorhombic lattice).

First run: full optimization of the geometry in Pmcn space group (full input at page 340).

Second run: frequency calculation. The output would look as follows:

MODES EIGV FREQUENCIES IRREP IR RAMAN

(HARTREE**2) (CM**-1) (THZ)

1- 1 -0.3212E-07 -39.3362 -1.1793 (AU ) I I

2- 2 -0.1388E-09 -2.5858 -0.0775 (B3U) A I

3- 3 -0.6924E-10 -1.8262 -0.0547 (B2U) A I

4- 4 -0.2405E-11 -0.3404 -0.0102 (B1U) A I

5- 5 0.4141E-07 44.6637 1.3390 (AG ) I A

6- 6 0.4569E-07 46.9137 1.4064 (B3G) I A

7- 7 0.5304E-07 50.5476 1.5154 (B1G) I A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

53- 53 0.4245E-04 1429.9950 42.8702 (AU ) I I

54- 54 0.4338E-04 1445.5993 43.3380 (B1G) I A

55- 55 0.4340E-04 1445.8649 43.3459 (AG ) I A

56- 56 0.4401E-04 1455.9714 43.6489 (B1U) A I

57- 57 0.4408E-04 1457.1539 43.6844 (B3G) I A

58- 58 0.4417E-04 1458.5583 43.7265 (B3U) A I

59- 59 0.4475E-04 1468.2070 44.0157 (B2U) A I

60- 60 0.5007E-04 1553.0286 46.5586 (B2G) I A

Four negative frequencies are present. Modes 2, 3 and 4 are translations, as results from their
small values (< 2 cm−1) and from a visual analysis (program MOLDRAW [157]); mode 1,
frequency -39.3362 cm−1, corresponds to a maximum along the Q1 normal coordinate.

Third run: scanning of the first normal mode. The input lines for the frequency calculation

Figure 7.2: Scanning of the energy along normal mode 1, corresponding to a frequency of -39.3362
cm−1 (L. Valenzano, unpuplished results)

block are now the following:
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FREQCALC

RESTART

SCANMODE

1 -10 10 0.4 scanning of 1 mode, initial point -10, final +10, step 0.4

1

END

where we are asking to perform the scan of 1 mode (mode 1), computing energy in 21 points
in the interval -10/+10 with a step equal to 0.4. Figure 2 shows the energy computed, and the
energy in the harmonic approximation.
The optimized geometry of PbCO3 in Pmcn space group corresponds to a transition state.

Fourth run:
We need to fully re-optimize the geometry of the system with symmetry as a subgroup (P21212,
space group number 19) of the original space group (Pmcn). The geometry, with correct
reduced symmetry, is read (EXTERNAL, page 19) from one of the files written during the scan,
copied as file fort.34. For instance SCAN1 -39.3361 DISP -2.400 (scan of mode 1, frequency
-39.3361 cm−1, displacement -2.4 the classical amplitude).
Please refer to the standard script for running CRYSTAL09 to handle input/output file names.

Fifth run: After full geometry optimization, we are ready to run a new frequency calculation.
The new frequency output looks like (just the first four lines are given):

MODES EIGV FREQUENCIES IRREP IR INTENS RAMAN

(HARTREE**2) (CM**-1) (THZ) (KM/MOL)

1- 1 -0.1504E-09 -2.6917 -0.0807 (B1 ) A ( 0.00) A

2- 2 -0.1414E-09 -2.6097 -0.0782 (B3 ) A ( 0.00) A

3- 3 -0.1690E-11 -0.2853 -0.0086 (B2 ) A ( 0.00) A

4- 4 0.4363E-07 45.8409 1.3743 (A ) I ( 0.00) A

[. . . . . . . . . . . . .]

Only the three expected negative (translational) modes are present, the fourth negative fre-
quency is not present any more. The PbCO3 structure corresponds now to a minimum in the
potential energy surface.

7.6 Calculation of the infrared spectrum

Keyword IRSPEC, inserted in the FREQCALC input block, activates the calculation of
the infrared spectra. Prior calculation of IR intensities is required (keyword INTENS, page
189) and definition of the dielectric tensor matrix (keyword DIELTENS, page 184) or of the
isotropic dielectric constant (keyword DIELISO, page 184).

The keyword IRSPEC defines an input block (closed by END).

The key quantity is the complex dielectric tensor ε(ν), which is computed for each inequivalent
polarization direction on the basis of a classical Drude-Lorentz model:

εii(ν) = ε∞,ii +
∑
p

fp,iiν
2
p

ν2
p − ν2 − iνγp

(7.12)

where ii indicates the polarization direction, ε∞ is the optical dielectric tensor, νp, fp and γp
are the TO frequency, oscillator strength and damping factor for the pth vibrational mode,
respectively. The real and imaginary parts of ε(ν) are computed; the maxima of the latter
function correspond to the TO frequencies. The imaginary part of 1/ε(ν) is computed as well,
whose maxima correspond to the LO frequencies.

The real and imaginary parts of the refractive index n(ν) are obtained for each inequivalent
polarization direction by exploiting the relations:

{Re[nii(ν)]}2 − {Im[nii(ν)]}2 = Re[εii(ν)]

2 ·Re[nii(ν)] · Im[nii(ν)] = Im[εii(ν)] (7.13)
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The reflectance curve R(ν) is computed for each inequivalent polarization direction through:

Rii(ν) =

∣∣∣∣∣∣
√
εii(ν)− sin2(θ)− cos(θ)√
εii(ν)− sin2(θ) + cos(θ)

∣∣∣∣∣∣
2

(7.14)

where θ is the angle between the incident beam and the normal to the crystal surface.

The absorbance spectrum A(ν) is calculated according to four different models:

1. raw superposition of Lorentzian (or Gaussian) peaks; this is the only quantity not requir-
ing the dielectric function, as it only requires the TO frequencies νp and the integrated
intensities Ip computed as described from page 189 on:

Araw,Lor(ν) =
∑
p

Ip
π

γp/2

(ν − νp)2 + γ2
p/4

(7.15)

Araw,Gau(ν) =
∑
p

2

√
ln 2

π

Ip
γp

exp

[
−4 ln 2(ν − νp)2

γ2
p

]
(7.16)

2. classical absorption formula, averaged over the polarization directions 1, 2, and 3 (ac-
cording to Voigt notation, page 360):

Aclas(ν) =
1

3

3∑
ii=1

4π

λρ
Im[nii(ν)] (7.17)

where λ is the wavelength of the incident beam and ρ is the crystal density;

3. Rayleigh approximation of spherical particles [26], averaged over the directions 1,2 and
3:

Asph(ν) =
1

3

3∑
ii=1

2π

λρ
Im

[
εii(ν)− 1

εii(ν) + 2

]
(7.18)

4. Rayleigh approximation of particles as continuous distribution of ellipsoids (CDE) [26],
averaged over the directions 1,2 and 3:

ACDE(ν) =
1

3

3∑
ii=1

2π

λρ
Im

[
2εii(ν)

εii(ν)− 1
log εii(ν)

]
(7.19)

Reflectance spectrum, dielectric function and refractive index are at the moment limited to:

• frequency-independent optical dielectric tensor (CPHF) and frequency-dependent vibra-
tional (IR) contributions

• directions 1, 2 and 3 only (Voigt notation, ε11, ε22, ε33)

Generalization is in progress.

IRSPEC data are written in files IRSPEC.DAT, IRREFR.DAT and IRDIEL.DAT and can
be directly plotted with gnuplot (http://www.gnuplot.info, appendix D, page 402).

Once the vibrational frequencies, IR intensities and dielectric tensor are calculated, the in-
frared spectra can be calculated at almost zero computational time with a RESTART in the
FREQCALC input block (the FREQINFO.DAT file is required):

FREQCALC

RESTART

INTENS

DIELTENS or DIELISO
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[input dielectric tensor or constant]

IRSPEC

[optional keywords for IRSPEC]

END [end IRSPEC]

END [end FREQCALC]

By default, only the absorption and reflectance spectra are generated.

If the dielectric tensor is omitted, only the raw absorption spectrum is computed.

To enable the generation of the dielectric function and refractive index, specific keywords are
required:

rec variable meaning

• REFRIND Activates the generation of the refractive index (same directions than
reflectance spectrum).

• DIELFUN Activates the generation of the dielectric function (same directions
than reflectance spectrum).

There are several keywords which allow to modify the default values.

rec variable meaning

• A LENSTEP
• ∗ X Step size used for the spectra [1 cm−1].
• A NUMSTEP
• ∗ N Number of points used for the spectra [no default]. To be used as an

alternative to LENSTEP.
• A RANGE
• ∗ X1,X2 Frequency range used for the spectra Default: [0., νmax + 400.], where

νmax is the frequency of the highest calculated mode.
• GAUSS Gaussian line shape is adopted for the raw absorbance spectrum,

instead of the Lorentzian one [which is the default].

• A DAMPFAC
• ∗ GAMMA Damping factor (related to peak width) used for the spectra [8.0].

• A ANGLE
• ∗ ALPH Angle of incidence used for the reflectance spectrum (degrees) [10.0].

7.7 Calculation of the Raman spectra

Keyword RAMSPEC, inserted in the FREQCALC input block, activates the calculation
of the Raman spectra. Prior calculation of Raman intensities is required (keyword INTENS
with INTRAMAN option, page 189).

The keyword RAMSPEC defines an input block (closed by END).

The Raman spectra A(ν) are computed for both the cases of polycrystalline powder (total
intensity, parallel polarisation, perpendicular polarisation) and single crystal (xx, xy, xz, yy,
yz, zz polarisations). They are constructed by using the Transverse Optical (TO) modes and
by adopting a pseudo-Voigt functional form:

A(ν) = η · L(ν) + (1− η) ·G(ν) (7.20)
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with:

L(ν) =
∑
p

Ip
π

γp/2

(ν − νp)2 + γ2
p/4

(7.21)

G(ν) =
∑
p

2

√
ln 2

π

Ip
γp

exp

[
−4 ln 2(ν − νp)2

γ2
p

]
(7.22)

where νp and Ip are the computed TO frequencies and Raman intensities, respectively, for each
mode p; γp is the full width at half maximum; η is the Lorentz factor, with values in the range
0− 1. Raman intensities in CRYSTAL are normalized, so that the largest value is set to 1000
(non-normalized intensities can be obtained by inserting the NORENORM sub-keyword).
Note that η values of 1 and 0 correspond to pure Lorentzian and pure Gaussian functional
forms, respectively.

RAMSPEC data are written in file RAMSPEC.DAT and can be directly plotted with gnuplot
(http://www.gnuplot.info, appendix D, page 403).

Once the vibrational frequencies and Raman intensities are calculated, the Raman spectra
can be calculated at almost zero computational cost with a RESTART in the FREQCALC
input block (the FREQINFO.DAT and TENS RAMAN.DAT files are required):
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FREQCALC

RESTART

INTENS

INTRAMAN

RAMANREA

RAMSPEC

[optional keywords for RAMSPEC]

END [end RAMSPEC]

END [end FREQCALC]

There are several keywords which allow to modify the default values.

rec variable meaning

• A LENSTEP
• ∗ X Step size used for the spectra [1 cm−1].
• A NUMSTEP
• ∗ N Number of points used for the spectra [no default]. To be used as an

alternative to LENSTEP.
• A RANGE
• ∗ X1,X2 Frequency range used for the spectra [0., 1.3 νmax], where νmax is the

frequency of the highest calculated mode.
• A VOIGT
• ∗ ETA Lorentz factor, determining mixing between Lorentzian and Gaussian

contributions [1.0].

• A DAMPFAC
• ∗ FWHM Full width at half maximum used for the spectra [8.0].

7.8 Phonon dispersion

The keyword DISPERSION, inserted in the FREQCALC input block, activates the
calculation of vibration frequencies and normal modes on a set of points in reciprocal space,
defined in terms of a direct-space supercell to be generated in input with the SCELPHONO
keyword (page 66).

In the presence of interatomic interactions the static (non-vibrating) crystal assumes an equi-
librium configuration R0 ≡ {. . . , [(R0)a + g] , . . . } that is unambiguously defined by the
equilibrium positions {(R0)a} of the N atoms of the cell (a = 1, . . . , N); the lattice vector

g =
∑3
m=1 l

g
m am identifies the general crystal cell where am are the direct lattice basis vec-

tors: within Born von Kármán periodic boundary conditions the integers lgm run from 0 to
Lm − 1. The parameters { Lm} define the size and shape of a supercell (SC) in direct space
(to be generated with the SCELPHONO keyword).
When nuclear motion (due to Heisenberg principle, finite temperature or other external per-
turbations) is considered, the atomic equilibrium positions become the static average positions
of the atoms displaced by ug

a which define the general configuration R ≡ {. . . , [(R0)a + g +
ug
a] , . . . }.

Let us introduce the L = L1 ×L2 ×L3 Hessian matrices {Hg} whose elements are the second
derivatives of the total energy per cell with respect to the atomic displacements:

Hg
ai,bj =

(
∂2E

∂u0ai∂u
g
bj

)
(7.23)

where atom a in the reference cell is displaced along the i-th Cartesian direction and atom b
in cell g is displaced, along with all its periodic images in the crystal, along the j-th Cartesian
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direction. First derivatives are computed analytically while second derivatives are computed
numerically.
The set of L Hessian matrices {Hg} can be Fourier transformed into a set of dynamical ma-

trices
{
Wk

}
each one associated with a wavevector k =

∑3
n=1 (κn/Ln) bn where bn are the

reciprocal lattice vectors and the integers κn run from 0 to Ln − 1:

Wk =

L∑
g=1

M− 1
2 HgM− 1

2 exp(ık · g) , (7.24)

where M is the diagonal matrix of the nuclear masses. The diagonalization of the dynamical
matrices

(Uk)†Wk Uk = Λk with (Uk)†Uk = I . (7.25)

provides with the vibration frequencies νki =
√
λki (from the eigenvalues) and the normal modes

(from the columns of Uk):

qk = M
1
2 (Uk)†uk with uk =

1√
L

L∑
g=1

ug exp(ık · g) .

To each k-point in the first Brillouin zone, 3N oscillators (i.e. phonons) are associated which
are labeled by a phonon band index i (i = 1, . . . ,3N).
In principle, equation (7.24) can be used to compute, and then diagonalize according to equa-
tion (7.25), the dynamical matrices of just the L k-points defined above. However, if the
energy second derivatives {Hg} vanish within the supercell (SC) defined by the keyword
SCELPHONO then such an expression can be used to construct the dynamical matrices
of a denser set of k-points represented by three parameters {L′m ≥ Lm}, with m = 1, . . . , D
(where D is the dimensionality of the system: 1, 2, 3 for 1D, 2D, 3D periodic systems). The
quantum contributions to the second derivatives of the total energy usually vanish within a
SC of radius ≈ 10-15 Å. Such an interpolation technique, can be easily activated with the
INTERPHESS keyword (to be inserted after DISPERSION) and can be quite effective in
the case of a fully covalent crystal without long-range electrostatic contribution to the total
energy.
On the contrary, when such electrostatic contributions become relevant (as in ionic crystals),
they have to be explicitly accounted for with appropriate corrections (see the WANG key-
word below). In this case one should use a SC large enough to contain all relevant quantum
contributions and the two keywords INTERPHESS and WANG.
Phonon bands and phonon density of states can be computed with sub-keywords BANDS
and PDOS, respectively.
A detailed description of these options follows:

• A NOKSYMDISP The dynamical matrices
{
Wk

}
in reciprocal space are not factorized

according to the irreducible representations of the Space Group when
diagonalized. Phonons are not labeled according to symmetry.
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• A BANDS Phonon bands calculation for plotting purposes. Phonon bands are
sampled along given directions in reciprocal space. Data is stored
in files fort.25 (Crgra format) and PHONBANDS.DAT (xmgrace for-
mat). Note: BANDS implies NOKSYMDISP.

• ∗ ISS Shrinking factor in terms of which the coordinates of the extremes of
the segments are expressed.

NSUB Total number of k points along each of the lines in the path.
∗ NLINE Number of lines in reciprocal space to be explored.

if ISS > 0 then
add NLINE records

• ∗ I1,I2,I3 Integers that define the starting point of the line (I1/ISS b1+I2/ISS
b2+I3/ISS b3), with b1,b2,b3 reciprocal lattice vectors.

J1,J2,J3 Integers that define the final point of the line (J1/ISS b1+J2/ISS
b2+J3/ISS b3) with b1,b2,b3 reciprocal lattice vectors.

if ISS = 0 then
add NLINE records

• ∗ LABELA Label of the starting point of the line (see tables 13.1 and 13.2 below
for a legend).

LABELB Label of the final point of the line (see tables 13.1 and 13.2 below for
a legend).

• A INTERPHESS Activates the Hessian Fourier interpolation that permits the calcula-
tion of vibration frequencies on a denser set of points in reciprocal
space. This option has to be used only if the starting supercell (SC) is
sufficiently large (radius ≈ 10-15 Å) so that any quantum contribution
to the energy second derivatives vanishes within it. This keyword has
to be combined with the keyword WANG if long-range electrostatic
contributions to the energy exist (ionic crystals).

• ∗ L′m m = 1, . . . , D where D is the dimensionality of the system: 1, 2, 3 for 1D, 2D, 3D
periodic systems. These three integers are the expansion parameters
of the starting SC.

∗ IPRINT 0 Output printings disabled for each k-point.
1 Output printings active for each k-point.

• A WANG For 3D systems only. Used in combination with INTERPHESS,
BANDS and PDOS when dealing with polar materials, activates
the correction to the dynamical matrices to take into account the
long range Coulomb interactions. The mixed-space approach as pro-
posed by Wang and coworkers [222] is implemented. Born tensor
charges are read from the external file BORN.DAT which is obtained
by performing a Γ only vibrational frequencies calculation with IR
intensities active (see INTENS subkeyword, page 189).

• ∗ TENS(1:9) Dielectric tensor matrix TENS (3x3 elements, input by rows: 9 reals
(3D). Can be obtained with a CPHF calculation (see page 225).

7.9 Anisotropic Displacement Parameters (ADP)

The keyword ADP, inserted in the FREQCALC block, allows to compute the anisotropic
displacement parameters (ADP) as 3×3 tensors UA associated to each atom A of the cell.
Such tensors can be used for computing Debye-Waller thermal factors and obtaining dynamic
structure factors (see the XFAC keyword). Each 3× 3 atomic tensor UA can be diagonalized
as UAEA = eAEA where eA is the diagonal matrix of the eigenvalues. If the three eigenvalues
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are positive, then the surfaces of constant probability are ellipsoids enclosing some definite
probability for atomic displacement. The lengths of the principal axes of the ellipsoids are
proportional to the eigenvalues e1, e2 and e3 of UA which are usually expressed in 10−4 Å2 .
The orientation of the ellipsoid with respect to the reference Cartesian frame is given by the
eigenvectors EA.
Let us consider the set of L (number of cells in the cyclic crystal) 3n × 3n (with n number of
atoms per cell) Hessian matrices H(g) whose elements are the second derivatives of the energy
E with respect to the atomic displacements u:

HA0i,A′gi′(g) =
∂2E

∂uA0i∂uA′gi′

where g labels a crystal cell and i a Cartesian component of u. The usual way of dealing with
lattice dynamics is considering the set of L 3n × 3n dynamical matrices D(k) defined as the
(mass-weighted) Fourier transform of the H(g):

D(k) =
L∑
g

M− 1
2 H(g)M− 1

2 eik·g

where M is a 3n × 3n real symmetric (diagonal) matrix with the nuclear masses on the
diagonal. To each k, 3n oscillators (phonons) are associated whose label is s = 1, . . . , 3n and
whose frequencies and eigenvectors are obtained by diagonalizing D(k):

D(k)W(k) = Ω(k)W(k) with W†(k)W(k) = I

To each phonon k ≡ (ks), an atomic displacement vector uk can be associated. Let us introduce

the frequency-scaled normal coordinate proper of each phonon k: ξk = Ω
1
4 (k)W†(k)M

1
2 uk.

The Boltzman probability density function p({ξk} ;T ) for the nuclei, at a given temperature
T can be expressed as the product of independent probabilities, associated to the different
phonons p({ξk} ;T ) =

∏
k p(ξk;T ). Let us introduce the so-called Gaussian approximation

that consists in expressing such probabilities as Gaussian functions with standard deviations
σk,T (kB is Boltzman’s constant):

p(ξk;T ) ≈ G(ξk;σk,T ) with (σk,T )2 = |ξk〉〈ξk| =

[
1

e
ωk
kBT − 1

+
1

2

]

Within such an approximation, p({ξk} ;T ) = e−
∑

k〈uk|U(k;T )−1|uk〉 with

U(k;T ) = M− 1
2 W(k)Ω−

1
4 (k)Ξ(T )Ω−

1
4 (k)W†(k)M− 1

2

where Ξ(T ) is a 3n × 3n diagonal matrix with (σk,T )2 as diagonal elements, so that we can
define the total mean square displacement tensors U(g;T ) = 1/L

∑
k U(k;T )e−ik·g. The 3×3

diagonal blocks of U(g = 0;T ) are the ADPs UA.
The default temperature at which the ADPs are computed is 298.15 K. Different temperatures
can be defined with the keyword TEMPERAT. The ADPs are saved (in atomic units) in the
external formatted unit ADP.DAT that can be used by the keyword XFAC of Properties
for computing Debye-Waller thermal factors for dynamic structure factors.

Users of this option are kindly requested to cite the following paper [73]:

A. Erba, M. Ferrabone, R. Orlando and R. Dovesi, J. Comput. Chem., 34, 346 (2013). Accurate
dynamical structure factors from ab initio lattice dynamics: The case of crystalline silicon.

rec variable value meaning
• ∗ NTYP 0 Recommended algorithm for the computation of the ADPs

NNEGL Number of additional modes at the Γ-point to be neglected (others than
rotations+translations that are already neglected) in the computation
of the ADPs
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7.10 Phonon Density-of-State (and Inelastic Neutron
Scattering Spectra)

Knowledge of the vibration frequencies of a system also allows to compute the phonon density-
of-states (PDOS) and to simulate the results of inelastic neutron scattering (INS) experiments.
The total PDOS g(ω) is defined by the equation:

g(ω) =
1

VBZ

∫
BZ

3N∑
p=1

δ(ωkp − ω)dk , (7.26)

where ωkp is the vibration frequency of a phonon with wave-vector k, of branch p, and VBZ

is the volume of the Brillouin zone, and the integration is performed over it. From equation
(7.26), the PDOS is normalized to 3N , being N the number of atoms per cell (

∫
g(ω)dω = 3N).

The total PDOS can be partitioned into atomic contributions g(ω) =
∑
a ga(ω)xa where the

sum runs over the atomic species of the system, xa is the fraction of atomic species a with
respect to N , and

ga(ω) =
1

nk

∑
p,k

|ep,k;a|2δ(ωkp − ω) , (7.27)

where ep,k are the eigenvectors of the dynamical matrices Wk defined in equation (7.24) and
the integral in equation (7.26) has been replaced by the sum over the sampled points within
the FBZ.
From atomic projected PDOS, a neutron-weighted phonon density-of-states (NW-PDOS) may
be defined, which can be compared to the outcomes of INS experiments:

gNW(ω) = C
∑
a

σa
Ma

ga(ω)xa , (7.28)

where C is a normalization factor such that
∫
gNW(ω)dω = 3N , and the weight of each atomic

species a is given by the ratio of the atomic scattering cross-section σa and the atomic mass Ma

[156, 137]. Depending on whether the inelastic scattering is coherent or incoherent, different
cross-sections have to be considered, which are tabulated and available on-line [203, 122].
The phonon density-of-state can be computed also from a Γ-only calculation but the cell on
which the vibration frequencies are computed should be large in that case.

Users of this module are kindly asked to cite the following reference:
J. Baima, M. Ferrabone, R. Orlando, A. Erba and R. Dovesi, Phys. Chem. Minerals, 43,
137-149 (2016)

• A PDOS Phonon density-of-states is computed.
• ∗ NUMA Maximum frequency considered (value in cm−1).

NBIN Number of intervals in which the frequency range 0 < ω < NUMAX is
partitioned for the representation of the PDOS [recommended value
> 50].

∗ LPRO 0 No projected atomic DOS.
1 Projected atomic DOS enabled.
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• A INS Neutron-weighted phonon density-of-states is computed, which can
be compared with Inelastic neutron scattering spectra (INS)

• ∗ NUMA Maximum frequency considered (value in cm−1).
NBIN Number of intervals in which the frequency range 0 < ω < NUMAX is

partitioned for the representation of the PDOS [recommended value
> 50].

∗ NWTYPE 0 Coherent cross-section.
1 Incoherent cross-section.
2 Coherent + Incoherent cross-section.

Input examples are as follows:

FREQCALC

DISPERSI [optional: to run a phonon dispersion calculation rather than a Gamma-only one]

PDOS

2500 250 [Range: 0-2500 cm^-1 subdivided into 250 intervals for histogram representation]

1 [Atomic partitioning of the PDOS active]

END

Another one

FREQCALC

DISPERSI [optional: to run a phonon dispersion calculation rather than a Gamma-only one]

INS

3000 300 [Range: 0-3000 cm^-1 subdivided into 300 intervals for histogram representation]

2 [Coherent + Incoherent cross-section in neutron-weighting]

END

7.11 Anharmonic calculation of frequencies of X-H (X-D)
bond stretching

Anharmonic calculation of frequencies of X-H, or X-D, bond stretching (where H and D stand
for hydrogen and deuterium and X for any element) is invoked by the keyword ANHARM
that has to be inserted outside from the FREQCALC block (a FREQCALC run is not
needed at all for this purpose).

rec variable meaning

• ∗ LB label of the atom to be displaced (it must have atomic number 1, Hydrogen
or Deuterium. The first neighbour (NA) of the LB atom is identified. LB
moves along the (NA-LB) direction.

• A END End of ANHARM input block

This keyword allows the calculation of the anharmonic X-Y stretching. The selected X-Y
bond is considered as an independent oscillator. This condition is fulfilled when H or D are
involved. It can be used for X-H (or X-D) only.

S. Tosoni, F. Pascale, P. Ugliengo, R. Orlando, V.R. Saunders and R. Dovesi,
”Vibrational spectrum of brucite, Mg(OH)(2): a periodic ab initio quantum mechanical
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calculation including OH anharmonicity”
Chem. Phys. Lett. 396, 308-315 (2004)].

Frequencies are calculated as follows:
i) the X-H distance is varied around the equilibrium value, d0 [default: d0+ (-0.2, -0.16, -0.06,
0.00, 0.16, 0.24, 0.3 Å)], all other geometrical features being constant (only H moves);
ii) the total potential energy is calculated for each value of the X-H distance [default 7 points];
iii) a polynomial curve of sixth degree is used to best fit the energy points; the root mean
square error is well below 10−6 hartree;
iv) the corresponding nuclear Schrödinger equation is solved numerically following the method
proposed in reference [135]. See P. Ugliengo, ”ANHARM, a program to solve the mono
dimensional nuclear Schrödinger equation”, Torino, 1989.

The anharmonicity constant and the harmonic XH stretching frequency are computed from
the first vibrational transitions ω01 and ω02, as:

ωexe = (2ω01 − ω02) /2

ωe = ω01 + 2ωexe

Stretching of the X-H bond may reduce the symmetry (default). If keyword KEEPSYMM is
inserted, all equivalent X-H bonds will be stretched, to maintain the symmetry. For example,
in CH4 (point group Td), KEEPSYMM forces the four CH bonds to stretch in phase; otherwise
only the selected C-H bond is stretched, and the symmetry reduced (point group C3v).

Optional keywords of ANHARM input block

ISOTOPES atomic mass of selected atoms modified
• ∗ NL number of selected atoms
II insert NL records II
• ∗ LB,AMASS label and new atomic mass (amu) of the atom.
II II

KEEPSYMM all atoms symmetry equivalent to the selected one are displaced

NOGUESS scf guess at each geometry point: superposition of atomic densities at each
scf calculation

POINTS26 26 points: dX−H range: d0 -0.2 ÷ d0 +0.3 with a step of 0.02 Å.

PRINT extended printing

PRINTALL printing for programmers

TEST[ANHA] Preliminary test to check if the neighbour(s) of the selected atom is cor-
rectly identified and the X-Y direction properly set. No energy calculations
is performed.
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It has been verified that calculations with 7 points provides very similar results to the ones
obtained with 26 points. In the following table, results for POINTS=7 and 26 are reported for
three systems. All values are in cm−1.

system NPOINTS 26 NPOINTS 7
W01 4358.6 4359.0

HF (molecule) W02 8607.3 8608.1
We 4468.6 4468.8
WeXe 55.0 54.9
W01 3325.3 3325.8

Be(OH)2 (bulk) W02 6406.3 6407.4
We 3569.5 3569.9
WeXe 122.1 122.1
W01 3637.2 3637.5

Ca(OH)2 (bulk) W02 7111.4 7111.9
We 3800.3 3800.7
WeXe 81.5 81.6
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Chapter 8

Harmonic and Quasi-Harmonic
Thermodynamics

Within the frame of standard quantum-chemical methods, temperature can be modeled by
explicitly treating the lattice dynamics. To do so, a harmonic approximation (HA) to the
lattice potential is commonly adopted, which proves extremely effective in predicting vibration
properties (such as Infrared and Raman spectroscopic features, for instance) of a variety of
materials, particularly so when very light atoms are not involved.
However, when the lattice dynamics of a crystal is solved within the purely HA, vibration
frequencies are described as independent of interatomic distances and the corresponding vi-
brational contribution to the internal energy of the crystal turns out to be independent of
volume. It follows that, within such an assumption, a variety of physical properties would be
wrongly described: thermal expansion would be null, elastic constants would not depend on
temperature, constant-pressure and constant-volume specific heats would coincide with each
other, thermal conductivity would be infinite as well as phonon lifetimes, etc.
A simple and powerful approach for correcting most of the above mentioned deficiencies of the
HA is represented by the so-called Quasi-Harmonic Approximation (QHA), which introduces
the missing volume dependence of phonon frequencies by retaining the harmonic expression for
the Helmholtz free energy. This approach allows for the natural combination of temperature
and pressure effects. Depending on the temperature and pressure ranges to be explored, the
lattice dynamics has to be solved at few volumes in the expansion and compression regime,
respectively.
Harmonic vibration frequencies and harmonic thermodynamic functions are computed by using
the FREQCALC keyword since the Crystal03 version of the program.
A fully-automated algorithm has been implemented in the Crystal17 program for computing
a wealth of quasi-harmonic thermal properties of solids, which is activated by use of the keyword
QHA (to be inserted at the end of the geometry input block), which opens a sub-block where
optional keywords can be inserted and that must be closed by a keyword END. Default values
are set for all computational parameters so that the simplest input reads as:

Title

Geometry input block

QHA # Keyword to perform a Quasi-harmonic calculation

[Optional sub-keywords]

END # End of the Quasi-harmonic input block

END # End of the Geometry input block

Basis set block

...

A direct-space approach is used in CRYSTAL for sampling phonon-dispersion, which requires
supercells to be used. While harmonic thermodynamic properties generally require large su-
percells to be used for their convergence, quasi-harmonic properties show a much faster con-
vergence. However, in some cases (particularly when small cell systems are studied), also
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quasi-harmonic properties must be computed on supercells of the original primitive one, to
make sure of their convergence, by use of the keyword SCELPHONO to be inserted right
before the QHA one:

Title

Geometry input block

SCELPHONO # Keyword to build a supercell

2 0 0 # supercell expansion matrix

0 2 0 # supercell expansion matrix

0 0 2 # supercell expansion matrix

QHA # Keyword to perform a Quasi-harmonic calculation

[Optional sub-keywords]

END # End of the Quasi-harmonic input block

END # End of the Geometry input block

Basis set block

...

In the example above, an isotropic 2×2×2 supercell is considered. With a quasi-harmonic
calculation, a wealth of quasi-harmonic physical quantities are computed:

• Isotropic and anisotropic thermal expansion coefficients;

• P-V-T equation-of-state;

• Temperature-dependent elastic bulk modulus (both isothermal and adiabatic);

• Difference between constant-pressure and constant-volume specific heats;

• Combined effect of pressure and temperature on structural, thermodynamic and average
elastic properties;

• Grüneisen parameters;

References to be cited when using this module:

A. Erba, J. Chem. Phys., 141, 124115 (2014)
A. Erba, M. Shahrokhi, R. Moradian and R. Dovesi, J. Chem. Phys., 142, 044114 (2015)
A. Erba, J. Maul, M. De la Pierre and R. Dovesi, J. Chem. Phys., 142, 204502 (2015)
A. Erba, J. Maul, R. Demichelis and R. Dovesi, Phys. Chem. Chem. Phys., 17,11670-11677
(2015)

8.1 A Few Theoretical Remarks

8.1.1 Phonon Dispersion

The calculation of the harmonic thermodynamic properties of crystals requires the knowledge
of phonon modes over the complete first Brillouin zone (FBZ) of the system; phonons at points
different from Γ can be obtained by building a supercell (SC) of the original unit cell, following
a direct-space approach.
Given the usual reciprocity between direct and reciprocal spaces, the size of the adopted SC
(within the direct space approach) corresponds to the sampling of the FBZ. Use of the primitive
cell would allow for the description of Γ modes only while a 3 × 3 × 3 SC would correspond
to a 3× 3× 3 mesh of k-points in the FBZ, for instance. Increasing the size of the SC simply
corresponds to increasing the sampling of the phonon dispersion in the FBZ in reciprocal space.
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8.1.2 Harmonic Lattice Dynamics

To each k-point in the first Brillouin zone, 3M harmonic oscillators (i.e. phonons) are associ-
ated, which are labeled by a phonon band index p (p = 1, . . . , 3M) and whose energy levels
are given by the usual harmonic expression:

εp,km =

(
m+

1

2

)
ωkp , (8.1)

where m is an integer, ωkp = 2πνkp and M is the number of atoms per primitive cell. The
overall vibrational canonical partition function of a crystal, Qvib(T ), at a given temperature
T , can be expressed as follows:

Qvib(T ) =
∏
k

3M∏
p=1

∞∑
m=0

exp

[
− εp,km
kB T

]
, (8.2)

where kB is Boltzmann’s constant. According to standard statistical mechanics, thermody-
namic properties of crystalline materials such as entropy, S(T ), and thermal contribution to
the internal energy, E(T ), can be expressed as:

S(T ) = kBT

(
∂ log(Qvib)

∂T

)
+ kB log(Qvib) , (8.3)

E(T ) = kBT
2

(
∂ log(Qvib)

∂T

)
. (8.4)

From the above expression for E(T ), the constant-volume specific heat, CV (T ), can also be
computed according to CV (T ) = ∂E(T )/∂T . By casting equation (8.2) into equations (8.3)
and (8.4) one gets the following harmonic expressions:

S(T ) = kB
∑
kp

 ~ωkp

kBT

(
e

~ωkp
kBT − 1

) − log(1− e−
~ωkp
kBT )

 (8.5)

E(T ) =
∑
kp

~ωkp

[
1

2
+

1

e
~ωkp
kBT − 1

]
(8.6)

CV (T ) =
∑
kp

(~ωkp)
2

kBT 2

e
~ωkp
kBT(

e
~ωkp
kBT − 1

)2 (8.7)

An explicit harmonic expression of Helmholtz’s free energy, F (T ), can also be derived (see
below).

8.1.3 Quasi-harmonic Quantities

The limitations of the HA are well-known: zero thermal expansion, temperature independence
of elastic constants and bulk modulus, equality of constant-pressure and constant-volume spe-
cific heats, infinite thermal conductivity and phonon lifetimes, etc. The simplest way for
correcting most of the above mentioned deficiencies of the HA is represented by the QHA, ac-
cording to which the Helmholtz free energy of a crystal is written retaining the same harmonic
expression but introducing an explicit dependence of vibration phonon frequencies on volume:

FQHA(T, V ) = U0(V ) + FQHAvib (T, V ) , (8.8)

where U0(V ) is the zero-temperature internal energy of the crystal without any vibrational
contribution (a quantity commonly accessible to standard ab initio simulations via volume-
constrained geometry optimizations) and the vibrational part reads:

FQHAvib (T, V ) =EZP0 (V ) + kBT
∑
kp

[
ln

(
1− e−

~ωkp(V )

kBT

)]
, (8.9)
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where EZP0 (V ) =
∑

kp ~ωkp(V )/2 is the zero-point energy of the system. The equilibrium

volume at a given temperature T , V (T ), is obtained by minimizing FQHA(V ;T ) with respect
to volume V , keeping T as a fixed parameter. A volumetric thermal expansion coefficient
αV (T ) can be defined as:

αV (T ) =
1

V (T )

(
∂V (T )

∂T

)
P=0

. (8.10)

For cubic crystals, a linear thermal expansion coefficient αl(T ) is commonly considered
which is simply αl(T ) = αV (T )/3. Directional thermal expansion coefficients αx(T ) =
1/x(T )[∂x(T )/∂T ] can also be computed where x can be the a, b or c lattice parameter.
The anisotropy of the thermal expansion is obtained by optimizing the lattice parameters as a
function of the purely internal energy E at different volumes. A more accurate optimization of
the lattice parameters with respect to the free energy F could be considered, which, however,
would require a much larger set of calculations to be performed.
The temperature-dependent isothermal bulk modulus of the system, KT (T ), can be obtained
as an isothermal second derivative of equation (8.8) with respect to the volume:

KT (T ) = V (T )

(
∂2FQHA(V ;T )

∂V 2

)
T

. (8.11)

Some experimental techniques for measuring the bulk modulus of a crystal involve elastic
waves and are characterized by very short time-scales that prevent the system from reaching
a thermal equilibrium; in these cases, an adiabatic bulk modulus, KS , is measured. Adiabatic
and isothermal bulk moduli do coincide with each other at zero temperature only, KS always
being larger than KT at any finite temperature. The QHA also offers a way to compute the
adiabatic bulk modulus from the isothermal one, given that:

KS = KT +
α2
V V TK

2
T

CV
, (8.12)

where the dependence of all quantities on temperature is omitted for clarity sake.
One of the powerful advantages of the QHA is that of allowing for a natural combination of
pressure and temperature effects on structural and elastic properties of materials. By differ-
entiating equation (8.9) with respect to the volume and changing sign, the thermal pressure is
obtained:

P (V ;T ) = −∂F
QHA(V ;T )

∂V
. (8.13)

The description of the isothermal bulk modulus of the system at simultaneous high-
temperatures and high-pressures, KT (P, T ), can be obtained as an isothermal second derivative
of equation (8.9) with respect to the volume and by exploiting relation (8.13):

KT (P, T ) = V (P, T )

(
∂2FQHA(V (P, T );T )

∂V (P, T )2

)
T

. (8.14)

Let us finally recall that the QHA allows for computing the difference between constant-pressure
and constant-volume specific heats as follows:

CP (T )− CV (T ) = α2
V (T )K(T )V (T )T . (8.15)

8.1.4 Grüneisen Simplified Model

Grüneisen formalism assumes a linear dependence of vibration phonon frequencies on volume,
in the vicinity of the zero temperature equilibrium volume V0. The key quantity is here
represented by the dimensionless mode Grüneisen parameter, which for each phonon reads:

γkj = − V0

ωkj(V0)

(
∂ωkj(V )

∂V

)
V=V0

. (8.16)
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An overall thermal Grüneisen parameter, γ(T ) can be defined as the weighted average of the
various mode Grüneisen parameters in terms of the corresponding mode contribution to the
specific heat:

γ(T ) =
∑
kj

γkj CV,kj(T )

CV,kj(T )
. (8.17)

Within Grüneisen approach, the volumetric thermal expansion is given by:

αgruV (T ) =
1

KV0

∑
kj

γkj CV,kj(T ) . (8.18)

8.2 The Automated Algorithm: Some Computational
Parameters

A fully-automated algorithm for computing quasi-harmonic thermal properties of solids has
been implemented in the Crystal program, which relies on the direct fitting of individual
phonon frequencies, ωkp(V ), versus volume. Once phonon frequencies are known continuously
as a function of volume, all other properties can indeed be analytically derived through the
expressions reported above. In order to uniquely determine the continuity of phonon frequencies
among different volumes, correctly accounting for possible crossings, scalar products of the
corresponding normal modes are performed. The definition of both the explored volume range
and the number of considered volumes has been devised so as to make it as black-box as
possible.
Here, this fully-automated computational procedure is briefly sketched and the main compu-
tational parameters one can play with are introduced:

• The starting geometrical structure of the system must be the zero-temperature, zero-
pressure one. One can either start from a previously fully-optimized structure or use the
PREOPTGEOM sub-keyword, within the QHA input block to activate an accurate
initial optimization as concerns both lattice parameters and atomic positions. The zero-
temperature, zero-pressure equilibrium volume V0 is determined (note that zero-point
motion is neglected at this stage);

• A volume range is defined from a -s% compression to a +2s% expansion with respect
to V0, where NV equidistant volumes are considered (possible values for NV are 4, 7
and 13, corresponding to equidistances of s%, s/2% and s/4%, respectively). At each
volume, the structure is fully relaxed via a volume-constrained geometry optimization
and phonon frequencies are computed. By default, the step s is set to 3% and NV to
4, which means that vibration frequencies are actually computed at 4 volumes covering
a volume range from a −3% compression to a +6% expansion. The step amplitude s
can be modified with the STEP sub-keyword and the number of considered volumes for
frequency calculation NV with the POINTS sub-keyword as:

Title

Geometry input block

QHA # Keyword to perform a Quasi-harmonic calculation

STEP # Keyword to change volume step

3.5 # New step [3.5%]

POINTS # Keyword to change number of volumes

7 # New number of volumes

END # End of the Quasi-harmonic input block

END # End of the Geometry input block

Basis set block

...

This is a graphical representation of the standard definition of the volume interval and number
of volumes where vibration frequencies are actually computed:
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Figure 8.1: Definition of volume step and number

It is recommended to use the above standard definition for the explored volume range. However,
if different volume ranges have to be explored (for instance more oriented towards compression
than expansion), the sub-keyword VRANGE can be used, which allows for a more customized
definition (the syntax is the same as for the same option in the EOS, equation-of-state, block);

• Once all volumes have been considered, purely electronic internal energies as a function
of volume are fitted to various equations-of-state. The third-order Birch-Murnaghan is
the one to be used for subsequent thermodynamic purposes. The continuity of phonon
frequencies on volume is determined before individually fitting them as a function of
volume with polynomial functions of different orders, up to third order (a second-order
polynomial fit is used as a default). For each phonon mode p, a coefficient of determina-
tion R2

p is computed, which measures the goodness-of-fit (the closer R2 to 1, the better

the fitting). An average index over all modes R
2

is also defined which gives an overall
measure of the regularity of all computed frequencies on volume. If low values of R2

p

are found for some modes, warnings will be printed in the output as one can not expect
a good quasi-harmonic description from irregular vibration frequencies as a function of
volume;

• From fitted frequencies, at any considered temperature T the Helmholtz free energy is
evaluated through equations (8.8) and (8.9) at several volumes, minimized for deter-
mining the corresponding equilibrium volume V (T ) and fitted for getting K(T ) from
its second derivative. By fitting V (T ) data to a polynomial function and by taking its
temperature derivative, the thermal expansion coefficient αV (T ) of equation (8.10) can
then be computed numerically.

All computed thermal properties are evaluated at a series of temperature values to be defined
by means of the TEMPERAT sub-keyword (by default 50 temperatures would otherwise
be considered from 10 K to 300 K). Given that some properties are obtained as numerical
derivatives with respect to temperature (as the thermal expansion coefficient), at least 50
temperature values must be considered. The desired set of temperatures can be modified as:

Title

Geometry input block

QHA # Keyword to perform a Quasi-harmonic calculation

TEMPERAT # Keyword to change temperature range

100 10 2000 # 100 temperature values from 10 K to 2000 K

END # End of the Quasi-harmonic input block

END # End of the Geometry input block

Basis set block

...
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8.2.1 Optional Keywords

This is a list of some possible (optional) sub-keywords to be inserted after QHA. This is just
a partial list since the main sub-keywords have been described above.

• A RESTART Activates a restart from a previous incomplete run. The file
EOSINFO.DAT from the previous run must be provided.

• A RESTART2 Activates a restart from a previous complete run. The file
EOSINFO.DAT from the previous run must be provided. Useful when
the temperature range needs to be changed, which can be done a pos-
teriori at almost no additional cost.

• A NEGLEFRE
• ∗ NFREQ Number of frequencies to be neglected
• ∗ FREQ(1:NFREQ) List of frequencies to be neglected

8.3 QHA: A Guided Tour of the Output

In order to illustrate how to prepare an Input file for the calculation of quasi-harmonic prop-
erties with Crystal and how to extract the corresponding information from the Output file,
let us consider the simple crystal of Al2O3 corundum. The geometry block of the Input file
reads as follows:

CORUNDUM

CRYSTAL

0 0 0

167

4.82860168 13.11488905

2

13 3.333333333333E-01 -3.333333333333E-01 1.955179055198E-02

8 -3.617448850731E-01 -3.333333333333E-01 -8.333333333333E-02

SCELPHONO

1 -1 0

0 1 -1

1 1 1

QHA

TEMPERAT

100 10 1200

END

END

...

The keyword QHA must be inserted at the end of the geometry input block and in turn opens
a sub-block that must be terminated with an END keyword. Note that the structure given
in input is assumed to be fully optimized. If not, one can perform a preliminary geometry
optimization by inserting the PREOPTGEOM keyword after QHA. The calculation in this
case is performed on the conventional super-cell.

8.3.1 The Equation-of-State

At 4 (by default) volumes (the equilibrium one, a compressed one and two expanded ones) the
structure of the system is relaxed by means of volume-constrained geometry optimizations. At
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each optimized structure, phonon vibration frequencies are computed. Once the four vibration
frequency calculations have been performed, the actual quasi-harmonic elaboration starts.
The internal energy of the system as a function of volume is first fitted to various equations of
state and the corresponding information reported in the output (no thermal contributions are
included at this stage, not even zero-point terms). See the EOS Tutorial for more details on
this part:

EQUATION OF STATE VOL(A^3) E(AU) BM(GPa) BM PRIME

-------------------------------------------------------------------------------

MURNAGHAN 1944 264.8935 -4263.44395040 230.70 4.08

BIRCH-MURNAGHAN 1947 264.8959 -4263.44395044 230.78 4.02

POIRIER-TARANTOLA 1998 264.8978 -4263.44395047 230.83 3.98

VINET 1987 264.8968 -4263.44395046 230.81 4.00

POLYNOMIAL FITTING VOL(A^3) E(AU) BM(GPa)

-------------------------------------------------------------------------------

THIRD ORDER POLYNOMIAL 264.9108 -4263.44395072 231.21

For each EOS, the athermal P-V equation-of-state is given (at 0 K, with no zero-point term).
This is the Birch-Murnaghan third-order one, for instance:

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

THERMODYNAMIC FUNCTIONS OBTAINED AT 0 K WITH EOS: BIRCH-MURNAGHAN 1947

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

V = VOLUME, P = PRESSURE, E = ENERGY, G = GIBBS FREE ENERGY, B = BULK MODULUS

V (A^3) P (GPa) E (a.u.) G (a.u.) B (GPa)

256.87 7.56 -4263.43717037 -4262.99197328 260.73

257.88 6.54 -4263.43880796 -4263.05211322 256.74

258.89 5.54 -4263.44021102 -4263.11133295 252.82

259.91 4.56 -4263.44138406 -4263.16964689 248.95

260.92 3.60 -4263.44233147 -4263.22706920 245.14

261.93 2.65 -4263.44305757 -4263.28361377 241.40

262.95 1.73 -4263.44356658 -4263.33929423 237.71

263.96 0.82 -4263.44386265 -4263.39412397 234.08

264.97 -0.07 -4263.44394982 -4263.44811612 230.50

265.99 -0.94 -4263.44383209 -4263.50128358 226.98

267.00 -1.80 -4263.44351335 -4263.55363902 223.51

268.01 -2.64 -4263.44299741 -4263.60519485 220.10

269.03 -3.46 -4263.44228803 -4263.65596329 216.74

270.04 -4.27 -4263.44138888 -4263.70595632 213.43

271.05 -5.06 -4263.44030355 -4263.75518571 210.17

272.07 -5.84 -4263.43903558 -4263.80366301 206.96

273.08 -6.61 -4263.43758843 -4263.85139958 203.80

274.10 -7.36 -4263.43596549 -4263.89840657 200.68

275.11 -8.09 -4263.43417008 -4263.94469491 197.61

276.12 -8.81 -4263.43220547 -4263.99027538 194.59

277.14 -9.52 -4263.43007487 -4264.03515853 191.61

278.15 -10.21 -4263.42778140 -4264.07935474 188.68

279.16 -10.89 -4263.42532814 -4264.12287421 185.79

280.18 -11.56 -4263.42271812 -4264.16572696 182.94

281.19 -12.22 -4263.41995429 -4264.20792284 180.14
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8.3.2 Phonon Modes Continuity on Volume

The QHA results are printed after the following header:

*******************************************************************************

*******************************************************************************

*******************************************************************************

QUASI-HARMONIC APPROXIMATION

A. Erba (2014)

Please do cite the following references when using this module:

A. Erba, J. Chem. Phys., 141, 124115 (2014)

A. Erba, M. Shahrokhi, R. Moradian, R. Dovesi, J. Chem. Phys., 142, 044114 (2015)

A. Erba, J. Maul, M. De la Pierre, R. Dovesi, J. Chem. Phys., 142, 204502 (2015)

A. Erba, J. Maul, M. Itou, R. Dovesi, Y. Sakurai, Phys. Rev. Lett., 115, 117402 (2015)

*******************************************************************************

*******************************************************************************

*******************************************************************************

As a first step, the continuity of phonon modes on volume is established by computing scalar
products of the corresponding eigenvectors. The evolution of each vibration frequency on
volume is reported. If the program fails at establishing the required continuity, warnings are
printed:

ESTABLISHING CONTINUITY OF NORMAL MODES ON VOLUME

ANALYSIS OF NORMAL MODE SCALAR PRODUCTS:

WHEN TWO OR MORE SCALAR PRODUCTS ARE CLOSER THAN 0.4 THEY ARE REPORTED

AS THEY MAY CAUSE A MISMATCH.

OTHERWISE, THE CONTINUITY IS CONSIDERED AS SAFE

FOUND CONTINUITY OF FREQUENCIES WITH VOLUME:

FREQUENCY # 1

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 0.0000 4

264.8122 0.0000 4

272.9187 0.0000 4

281.1886 0.0000 4

FREQUENCY # 2

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 0.0000 3

264.8122 0.0000 3

272.9187 0.0000 3

281.1886 0.0000 3
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FREQUENCY # 3

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 0.0000 3

264.8122 0.0000 3

272.9187 0.0000 3

281.1886 0.0000 3

FREQUENCY # 4

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 154.0503 3

264.8122 146.8375 3

272.9187 139.3457 3

281.1886 131.6465 3

FREQUENCY # 5

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 154.0503 3

264.8122 146.8375 3

272.9187 139.3457 3

281.1886 131.6465 3

FREQUENCY # 6

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 154.0503 1

264.8122 146.8375 1

272.9187 139.3457 1

281.1886 131.6465 1

FREQUENCY # 7

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 154.0503 1

264.8122 146.8375 1

272.9187 139.3457 1

281.1886 131.6465 1

FREQUENCY # 8

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 264.1931 4

264.8122 256.7193 4

272.9187 249.7118 4

281.1886 242.5474 4

FREQUENCY # 9

VOL (A^3) FREQ (cm^-1) IRREP

256.8676 264.1931 2

264.8122 256.7193 2

272.9187 249.7118 2

281.1886 242.5474 2

...
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Each frequency is then fitted as a function of volume with different polynomial functions and
a coefficient of determination is computed to measure the goodness-of-fit (the closer to 1, the
better). If low values of this parameter are obtained, warnings are printed in the output.

FITTING FREQUENCIES VERSUS VOLUME FOR MAX. NUMBER OF POINTS

THE COEFFICIENT OF DETERMINATION R^2 IS REPORTED

FOR DIFFERENT POLYNOMIAL FITTING ORDERS.

ONLY ONE FREQ PER MODE IS REPORTED.

FREQ # R^2 LINEAR R^2 QUADRATIC R^2 CUBIC

4 0.999968 0.999999 1.000000

6 0.999968 0.999999 1.000000

8 0.999580 0.999921 1.000000

9 0.999580 0.999921 1.000000

10 0.999960 0.999998 1.000000

12 0.999960 0.999998 1.000000

14 0.997897 0.999994 1.000000

15 0.997897 0.999994 1.000000

16 0.999307 1.000000 1.000000

17 0.999916 0.999997 1.000000

19 0.999208 0.999990 1.000000

20 0.999208 0.999990 1.000000

21 0.997294 0.999999 1.000000

22 0.999971 0.999998 1.000000

24 0.999790 0.999994 1.000000

26 0.999790 0.999994 1.000000

28 0.998933 0.999980 1.000000

....

....

84 0.999068 0.999992 1.000000

85 0.997886 0.999999 1.000000

87 0.998882 1.000000 1.000000

88 0.998882 1.000000 1.000000

89 0.998838 0.999979 1.000000

90 0.998838 0.999979 1.000000

AVERAGE 0.998794 0.999971 1.000000

In this case, excellent coefficients of determination are obtained (to second order; to third
order they are ideal just because we fit over 4 points), which means that vibration frequencies
are varying very regularly with volume, a necessary prerequisite to a good quasi-harmonic
description of the system.

8.3.3 Grüneisen Model

Some thermal properties are then printed as obtained from the simplified Grüneisen model.
The thermal expansion coefficient, the overall Grüneisen parameter, and the difference between
constant-pressure and constant-volume specific heat are reported as a function of temperature:

*******************************************************************************

THERMAL PROPERTIES FROM GRUNEISEN PARAMETERS

*******************************************************************************

NUMBER OF POINTS: 4

ORDER OF POLYNOMIALS: 2
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T (K) ALPHA (1/K) GRUNEISEN Cp-Cv (J/mol*K)

10.00 0.44781E-12 1.662 0.0000

22.02 0.94330E-08 1.661 0.0000

34.04 0.12057E-06 1.650 0.0000

46.06 0.37164E-06 1.622 0.0002

58.08 0.73774E-06 1.582 0.0012

70.10 0.12272E-05 1.540 0.0039

82.12 0.18530E-05 1.502 0.0104

94.14 0.26122E-05 1.473 0.0236

106.16 0.34862E-05 1.450 0.0475

118.18 0.44475E-05 1.433 0.0860

130.20 0.54659E-05 1.419 0.1432

142.22 0.65134E-05 1.409 0.2221

154.24 0.75658E-05 1.401 0.3249

166.26 0.86042E-05 1.395 0.4530

178.28 0.96141E-05 1.389 0.6065

190.30 0.10585E-04 1.385 0.7848

202.32 0.11512E-04 1.381 0.9867

214.34 0.12389E-04 1.378 1.2108

226.36 0.13216E-04 1.376 1.4550

238.38 0.13992E-04 1.373 1.7175

250.40 0.14718E-04 1.371 1.9963

262.42 0.15396E-04 1.370 2.2894

274.44 0.16029E-04 1.368 2.5951

286.46 0.16618E-04 1.367 2.9115

298.48 0.17167E-04 1.366 3.2373

310.51 0.17677E-04 1.364 3.5710

...

...

8.3.4 Main Results: Thermal Properties from Helmholtz Free Energy

Then, the main results of the quasi-harmonic calculation are reported: thermal properties as
derived from the Helmholtz free energy. Several properties are reported as a function of tem-
perature: volume (V), isothermal bulk modulus (Bt), thermal expansion coefficient (ALPHA),
difference between constant-pressure and constant-volume specific heats (Cp-Cv), adiabatic
bulk modulus (Bs), difference between constant-pressure and constant-volume entropy (Sp-
Sv):

*******************************************************************************

THERMAL PROPERTIES FROM HELMHOLTZ FREE ENERGY

*******************************************************************************

ZERO-POINT ENERGY INCLUDED

NUMBER OF POINTS: 4

ORDER OF POLYNOMIALS: 2
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T (K) V (Ang^3) Bt (GPa) ALPHA (1/K) Cp-Cv (J/mol*K) Bs (GPa) Sp-Sv (J/mol*K)

10.00 267.4132 225.407 0.00000E+00 0.000 225.407 0.000

22.02 267.4132 225.406 0.24715E-07 0.000 225.407 0.004

34.04 267.4132 225.405 0.24684E-06 0.000 225.411 0.046

46.06 267.4148 225.395 0.49375E-06 0.000 225.405 0.139

58.08 267.4164 225.378 0.93795E-06 0.002 225.402 0.274

70.10 267.4196 225.350 0.13823E-05 0.005 225.387 0.456

82.12 267.4259 225.300 0.20736E-05 0.013 225.364 0.689

94.14 267.4323 225.241 0.29126E-05 0.029 225.341 0.972

106.16 267.4434 225.155 0.37520E-05 0.054 225.292 1.302

118.18 267.4577 225.046 0.47896E-05 0.098 225.240 1.670

130.20 267.4736 224.923 0.58747E-05 0.163 225.181 2.064

142.22 267.4942 224.774 0.69609E-05 0.250 225.104 2.479

154.24 267.5197 224.602 0.81466E-05 0.370 225.020 2.906

166.26 267.5467 224.419 0.92323E-05 0.512 224.926 3.338

178.28 267.5784 224.216 0.10268E-04 0.679 224.814 3.772

190.30 267.6134 223.998 0.11354E-04 0.886 224.703 4.206

202.32 267.6515 223.769 0.12242E-04 1.094 224.567 4.636

214.34 267.6928 223.527 0.13178E-04 1.341 224.433 5.061

226.36 267.7357 223.281 0.14064E-04 1.612 224.298 5.479

238.38 267.7834 223.018 0.14950E-04 1.916 224.158 5.895

250.40 267.8327 222.751 0.15788E-04 2.242 224.016 6.304

262.42 267.8851 222.475 0.16524E-04 2.572 223.858 6.709

274.44 267.9391 222.194 0.17164E-04 2.899 223.688 7.107

286.46 267.9963 221.905 0.17849E-04 3.269 223.526 7.503

...

...

Directional thermal expansion coefficients are then reported, as well as the a, b and c lattice
parameters as a function of temperature:

*******************************************************************************

LINEAR THERMAL EXPANSION OF CONVENTIONAL LATTICE PARAMETERS

*******************************************************************************

T (K) a (Ang) ALPHA_a (1/K) b (Ang) ALPHA_b (1/K) c (Ang) ALPHA_c (1/K)

10.00 4.8438 0.00000E+00 4.8438 0.00000E+00 13.1605 0.00000E+00

22.02 4.8438 0.79935E-08 4.8438 0.79935E-08 13.1605 0.87281E-08

34.04 4.8438 0.79835E-07 4.8438 0.79835E-07 13.1605 0.87171E-07

46.06 4.8439 0.15969E-06 4.8439 0.15969E-06 13.1605 0.17436E-06

58.08 4.8439 0.30336E-06 4.8439 0.30336E-06 13.1605 0.33123E-06

70.10 4.8439 0.44709E-06 4.8439 0.44709E-06 13.1606 0.48816E-06

82.12 4.8439 0.67066E-06 4.8439 0.67066E-06 13.1607 0.73223E-06

94.14 4.8440 0.94204E-06 4.8440 0.94204E-06 13.1608 0.10285E-05

106.16 4.8440 0.12136E-05 4.8440 0.12136E-05 13.1610 0.13248E-05

118.18 4.8441 0.15492E-05 4.8441 0.15492E-05 13.1613 0.16912E-05

130.20 4.8442 0.19002E-05 4.8442 0.19002E-05 13.1615 0.20742E-05

142.22 4.8443 0.22517E-05 4.8443 0.22517E-05 13.1619 0.24575E-05

154.24 4.8445 0.26353E-05 4.8445 0.26353E-05 13.1623 0.28759E-05

166.26 4.8446 0.29867E-05 4.8446 0.29867E-05 13.1628 0.32588E-05

178.28 4.8448 0.33218E-05 4.8448 0.33218E-05 13.1634 0.36240E-05

190.30 4.8450 0.36734E-05 4.8450 0.36734E-05 13.1640 0.40069E-05

202.32 4.8452 0.39610E-05 4.8452 0.39610E-05 13.1646 0.43198E-05

214.34 4.8455 0.42640E-05 4.8455 0.42640E-05 13.1653 0.46493E-05
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226.36 4.8457 0.45512E-05 4.8457 0.45512E-05 13.1661 0.49614E-05

238.38 4.8460 0.48382E-05 4.8460 0.48382E-05 13.1669 0.52732E-05

250.40 4.8463 0.51098E-05 4.8463 0.51098E-05 13.1678 0.55679E-05

262.42 4.8466 0.53486E-05 4.8466 0.53486E-05 13.1687 0.58267E-05

274.44 4.8469 0.55561E-05 4.8469 0.55561E-05 13.1696 0.60514E-05

286.46 4.8473 0.57785E-05 4.8473 0.57785E-05 13.1706 0.62921E-05

298.48 4.8476 0.59855E-05 4.8476 0.59855E-05 13.1716 0.65159E-05

...

...

8.3.5 Thermal Pressure: The P-V-T Equation-of-State

While previous properties refer to zero pressure, from now on pressure will be included. The
P-V-T EOS is explicitly given (for each T, the corresponding P-V relation is reported):

*******************************************************************************

PRESSURE-VOLUME-TEMPERATURE RELATION

*******************************************************************************

T (K) V (Ang^3) P (GPa) F (Ha/cell) G (Ha/cell)

10.00 256.868 9.828 -0.4263336025683E+04 -0.4262756991487E+04

10.00 257.706 8.973 -0.4263337833759E+04 -0.4262807436702E+04

10.00 258.545 8.132 -0.4263339478696E+04 -0.4262857251925E+04

10.00 259.384 7.303 -0.4263340963054E+04 -0.4262906445377E+04

10.00 260.222 6.488 -0.4263342289350E+04 -0.4262955025140E+04

10.00 261.061 5.686 -0.4263343460057E+04 -0.4263002999190E+04

10.00 261.900 4.896 -0.4263344477610E+04 -0.4263050375359E+04

10.00 262.738 4.118 -0.4263345344399E+04 -0.4263097161377E+04

10.00 263.577 3.353 -0.4263346062779E+04 -0.4263143364837E+04

10.00 264.416 2.599 -0.4263346635064E+04 -0.4263188993224E+04

10.00 265.254 1.857 -0.4263347063528E+04 -0.4263234053927E+04

10.00 266.093 1.127 -0.4263347350410E+04 -0.4263278554182E+04

10.00 266.931 0.408 -0.4263347497912E+04 -0.4263322501161E+04

...

...

22.02 256.868 9.828 -0.4263336025695E+04 -0.4262756991317E+04

22.02 257.706 8.973 -0.4263337833771E+04 -0.4262807436523E+04

22.02 258.545 8.132 -0.4263339478709E+04 -0.4262857251732E+04

22.02 259.384 7.303 -0.4263340963068E+04 -0.4262906445182E+04

22.02 260.222 6.488 -0.4263342289364E+04 -0.4262955024933E+04

22.02 261.061 5.686 -0.4263343460072E+04 -0.4263002998975E+04

22.02 261.900 4.896 -0.4263344477626E+04 -0.4263050375125E+04

22.02 262.738 4.118 -0.4263345344416E+04 -0.4263097161136E+04

22.02 263.577 3.353 -0.4263346062797E+04 -0.4263143364578E+04

22.02 264.416 2.599 -0.4263346635082E+04 -0.4263188992958E+04

22.02 265.254 1.857 -0.4263347063548E+04 -0.4263234053632E+04

22.02 266.093 1.127 -0.4263347350431E+04 -0.4263278553875E+04

22.02 266.931 0.408 -0.4263347497933E+04 -0.4263322500838E+04

...

...

34.04 256.868 9.828 -0.4263336026331E+04 -0.4262756985744E+04

34.04 257.706 8.973 -0.4263337834427E+04 -0.4262807430739E+04

34.04 258.545 8.132 -0.4263339479387E+04 -0.4262857245733E+04
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34.04 259.384 7.304 -0.4263340963767E+04 -0.4262906438954E+04

34.04 260.222 6.488 -0.4263342290087E+04 -0.4262955018473E+04

34.04 261.061 5.686 -0.4263343460818E+04 -0.4263002992271E+04

34.04 261.900 4.896 -0.4263344478396E+04 -0.4263050368173E+04

34.04 262.738 4.118 -0.4263345345211E+04 -0.4263097153918E+04

34.04 263.577 3.353 -0.4263346063618E+04 -0.4263143357091E+04

34.04 264.416 2.599 -0.4263346635930E+04 -0.4263188985184E+04

34.04 265.254 1.858 -0.4263347064423E+04 -0.4263234045569E+04

34.04 266.093 1.127 -0.4263347351335E+04 -0.4263278545503E+04

34.04 266.931 0.408 -0.4263347498868E+04 -0.4263322492144E+04

...

...

...

...

...

...

After that, for various values of pressure, some thermal properties are reported (volume, ther-
mal expansion coefficient and isothermal bulk modulus):

*******************************************************************************

THERMAL PROPERTIES FROM HELMHOLTZ FREE ENERGY AT P = 4.37

*******************************************************************************

T (K) V (Ang^3) ALPHA (1/K) B (GPa)

10.00 262.467 0.23273E-07 242.677

22.02 262.467 0.29239E-07 242.677

34.04 262.468 0.17305E-06 242.675

46.06 262.468 0.39004E-06 242.668

58.08 262.470 0.72023E-06 242.653

70.10 262.473 0.11652E-05 242.628

82.12 262.477 0.17278E-05 242.589

94.14 262.483 0.24072E-05 242.533

106.16 262.492 0.31923E-05 242.459

118.18 262.503 0.40635E-05 242.365

130.20 262.517 0.49970E-05 242.251

142.22 262.535 0.59686E-05 242.116

154.24 262.555 0.69562E-05 241.963

166.26 262.579 0.79417E-05 241.792

178.28 262.605 0.89103E-05 241.606

190.30 262.635 0.98513E-05 241.404

202.32 262.668 0.10757E-04 241.190

214.34 262.703 0.11623E-04 240.964

226.36 262.741 0.12445E-04 240.727

238.38 262.782 0.13224E-04 240.481

250.40 262.825 0.13959E-04 240.227

262.42 262.870 0.14650E-04 239.966

274.44 262.917 0.15300E-04 239.698

286.46 262.967 0.15910E-04 239.424

298.48 263.018 0.16483E-04 239.145

...

...
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Chapter 9

Dielectric Properties up to
Fourth Order via the Coupled
Perturbed HF/KS Method

9.1 Response to an Electric Field - Theoretical Frame-
work of the Coupled-Perturbed Treatment

The total energy E of a crystal in a constant static electric field ε can be expressed as

E(ε) = E(0)−
∑
t

µtεt −
1

2!

∑
tu

αtuεtεu+

− 1

3!

∑
tuv

βtuvεtεuεv −
1

4!

∑
tuvw

γtuvwεtεuεvεw + . . . (9.1)

with E(0) the field-free energy and µ,α,β,γ . . . the total energy derivative tensors of or-
der 1, 2, 3, 4 . . . with respect to the electric field (Cartesian components indicated by Roman
subscripts t, u, v, w):

µt = − ∂E

∂εt

∣∣∣∣
0

(9.2)

αtu = − ∂2E

∂εt∂εu

∣∣∣∣
0

(9.3)

βtuv = − ∂3E

∂εt∂εu∂εv

∣∣∣∣
0

(9.4)

γtuvw = − ∂4E

∂εt∂εu∂εv∂εw

∣∣∣∣
0

(9.5)

As for the corresponding physical properties, µ represents the dipole moment, α the polariz-
ability, β the first hyperpolarizability and γ the second hyperpolarizability.
By default, the perturbative series 9.1 is truncated at the second order and only the second
energy derivatives αtu are calculated (the dipole moment µt is ill-defined in the reciprocal
space) using the expression

αtu = − 4

nk

BZ∑
~k

<

{∑
µν

occ∑
a

virt∑
p

C
~k∗
aµΩ

~k,t
µνC

~k
νpU

~k,u
pa

}
(9.6)

where nk is the number of ~k points in the first Brillouin Zone (BZ) and the indices a (b, c . . . )
and p (q, r . . . ) run over the occupied and virtual crystalline orbitals, respectively.
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U
~k,u is the unknown anti-Hermitian off-diagonal-block matrix that linearly transforms the

unperturbed eigenvectors C
~k under the effect of the electric field perturbation represented by

the matrix Ωk:

Ck,u
µi ≡

∂Ck
µi

∂εu

∣∣∣∣∣
0

=

all∑
j

Ck
µjU

k,u
ji (9.7)

The off-diagonal blocks Uk,u
ap are defined as

Uk,u
ap =

∑
µν

Ck∗
aµFk,u

µν C
k
νp

Ek
p − Ek

a

(9.8)

and are functions of both the energy gap
(
Ek
p − Ek

a

)
, and the perturbed Fock matrix,

Fk,u
µν ≡

∂Fk
µν

∂εu
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0
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e−ık
′·g′
∑
a

(
Ck′,u∗
aλ Ck′

ρa + Ck′∗
aλ Ck′,u

ρa

)
×

×
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g′′

[(
µ0νg

∣∣∣λg′ρg′′ )− 1

2

(
µ0λg

′
∣∣∣νgρg′′ )] (9.9)

Hence, according to Eq. (9.7), a Self-Consistent Coupled-Perturbed procedure (SC-CP) is to
be carried out. For details about the CPHF/KS method and its implementation see Refs.
[83, 84, 85, 185].

9.2 Coupled-Perturbed HF/KS Calculation of Dielectric
Properties up to Second Order

The CPHF keyword activates the calculation of the the polarizability ( and optionally the
first and second order hyper-polarizabilities – see below) via the Coupled Perturbed HF/KS
method. CPHF (or CPKS) must be the last keyword in the geometry input block:

. . . geometry input . . . .

CPHF

END ! close CPHF input block

END ! close geometry input block

The density functionals that are currently available for CPHF calculations are:

CORRELAT Correlation Potential (default: no correlation).
LYP GGA. Lee-Yang-Parr [133]
PBE GGA. Perdew-Burke-Ernzerhof [160]
PBESOL GGA. PBE functional revised for solids [162]
PWLSD LSD. Perdew-Wang parameterization of the Ceperley-Alder free electron

gas correlation results [163]
PWGGA GGA. Perdew-Wang [161]
VWN LSD. Vosko-Wilk-Nusair parameterization of the Ceperley-Alder free elec-

tron gas correlation results [221]
EXCHANGE Exchange potential (default: Hartree-Fock exchange).

BECKE GGA. Becke [18]
LDA LSD. Dirac-Slater [53]
PBE GGA. Perdew-Becke-Ernzerhof [160]
PBESOL GGA. PBE functional revised for solids [162]
PWGGA GGA. Perdew-Wang [161]
SOGGA second order GGA. [238]
WCGGA GGA - Wu-Cohen [229]

All combinations of the above mentioned exchange-correlation functionals are allowed as well
as corresponding standalone keywords as: SVWN, BLYP, PBEXC, SOGGAXC, ...
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HYBRID Hybrid method
Global hybrids

B3PW Becke’s 3 parameter functional [19] combined with the non-local correla-
tion PWGGA [159, 164, 165, 163]

B3LYP Becke’s 3 parameter functional [19] combined with the non-local correla-
tion LYP

PBE0 Adamo and Barone [6]
PBESOL0 Same than PBE0 but with PBEsol instead of PBE
B1WC see [22]
WC1LYP see [51]
B97H see [51]

Range-separated hybrids
RSHXLDA see [2, 123]
wB97 see [124, 5]
wB97X see [124, 5]
LC-BLYP see [110, 231]
CAM-B3LYP see [214]
SC-BLYP see [110, 231]

Users of this module are kindly requested to cite the following papers:

M. Ferrero, M. Rérat, R. Orlando and R. Dovesi
Coupled perturbed Hartree-Fock for periodic systems: the role of symmetry and related
computational aspects
J. Chem. Phys. 128, Art.N. 014100 (2008)

M. Ferrero, M. Rérat, R. Orlando and R. Dovesi
The calculation of static polarizabilities in 1-3D periodic compounds. The implementation in
the CRYSTAL code
J. Comput. Chem. 29, 1450–1459 (2008)

M. Ferrero, M. Rérat, B. Kirtman and R. Dovesi
Calculation of first and second static hyper-polarizabilities of 1-3D periodic compounds.
Implementation in the CRYSTAL code
J. Chem. Phys. 129, Art.N. 244110 (2008)

9.2.1 Tools for tuning convergence and accuracy in the Coupled-
Perturbed iterations

Starting from Crystal17, the DIIS accelerator is activated by default in the SC-CP iterations.
This improves considerably stability with respect to previous implementations. However, diffi-
cult situations might arise, in which the user might want to act in order to achieve convergence.
Convergence of the SC-CP cycle might be helped and/or tuned using the following optional
keywords within the CPHF input block:
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rec variable meaning
• A DIIS activates DIIS convergence accelerator for mixing Fock/KS matrix

derivatives [default] (page 86)
• A NODIIS deactivates DIIS convergence accelerator (page 86)
• A DIISALLK DIIS is performed over all k-points of the Brillouin zone
• A HISTDIIS Limits DIIS mixing to the most recent NCY C cycles
• ∗ NCYC maximum number of previous cycles to be kept
• A PRTDIIS Activates detailed printing for the DIIS procedure
• A ANDERSON mixing of Fock/KS matrix derivatives (page 83)
• A BROYDEN mixing of Fock/KS matrix derivatives (page 85)
∗ W0 W0 parameter in Anderson’s paper [125]
∗ IMIX percent of Fock/KS derivative matrices mixing
∗ ISTART SC-CP iteration after which Broyden method is active (minimum 2)

• A FMIXING mixing of Fock/KS matrix derivatives from iterations n and n− 1
∗ IPMIX percentage of cycle n− 1 [IPMIX=0, no mixing]

• A MAXCYCLE modify the maximum number of SC-CP iterations
∗ NMAX maximum number of iterations [default: 100]

• A SELEDIR set the maximum number of iterations along each cartesian direction
• ∗ NX, NY, NZ maximum number of SC-CP iterations along x, y, z
• A TOLALPHA threshold on α variation between two SC-CP iterations
∗ ITOL |∆α| < 10−ITOL [default: 3]

The keyword TOLALPHA tunes the desired accuracy to be achieved in the SC-CP iterative
procedure.
The DIIS procedure requires the storage of error matrices for each cycle of the history. By
default the information of all the previous iterations is kept, which can result in a significant
occupation of disk space if the procedure goes on for several (50, 100) cycles. The maximum
number of cycles to be used as an history can be set by the HISTDIIS keyword.

By default DIIS evaluates errors only in the gamma-point of the Brillouin zone. DIISALLK
activates the DIIS procedure in all k-points with a resulting better accuracy – in principle
at least – at the price of significantly increased memory/storage requirements. From the
experience gathered so far, the default (gamma-point) DIIS proved to work well in most – if
not all – cases.

9.2.2 Dynamic (Frequency-dependent) CPHF/KS

The CPHF/KS procedure described above refers to the response to a static field. If a dynamic
polarizability response is desired, that is, dependent on the frequency of the oscillating field,
the DYNAMIC keyword has to be inserted in the CPHF block:

rec variable meaning
• A DYNAMIC Solution of frequency-dependent SC-CP equations for a series of fre-

quencies
∗ NSTEPS Number of frequency steps from FRQ to FRQ2

if NSTEPS = 1 insert II
∗ FRQ Wavelength (in nm)

else if NSTEPS > 1 insert II
∗ FRQ Starting wavelength (in nm)
∗ FRQ2 Final wavelength (in nm)

• A DAMPING Sets a damping factor (peak broadening) related to the finite lifetime
of excited states

∗ DAMPFAC Value of the damping factor in Hartree. Values between 0.001 and
0.003 are suggested (≈ 0.03 - 0.1 eV)

If the damping factor is not set, no imaginary part of the polarizability will be observed.
Due to technical reasons, the use of the DYNAMIC keyword in CPHF is restricted, in CRYS-
TAL17, to the use of non-hybrid functionals. The program will issue an error and stop if
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Hartree-Fock or a hybrid functional (such as B3LYP or PBE0) is chosen for the calculation
and the DYNAMIC keyword is active.

9.2.3 Static first hyperpolarizability

The CPHF calculation can also be extended up to the third perturbative order by including
the optional keyword:

rec variable meaning
• A THIRD computes energy derivatives up to the third order

THIRD provides third order energy derivatives (see Eq. 9.4) calculated through the (2n+ 1)
scheme:

βtuv = − 2

nk

∑
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<
∑
a

∑
p

Pt,u,v×
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Uk,t∗
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k
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bµFk,v
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k
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+ ı
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]}
(9.10)

The operator P permutes the indices of derivation. The derivative ∂Uk,v
pa /∂ku depends on the

derivative of the coefficients Ck
µi with respect to k, that is

∂Ck
µi

∂ku
=

all∑
j

Ck
µjQ

k,u
ji (9.11)

similarly to Eq. (9.7). When i 6= j, the expression for matrix Qk,u elements is

Qk,u
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]
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i

(9.12)

A threshold value (10−6, by default) is defined below which eigenvalues are considered degen-
erate. Users can change this threshold using the keyword TOLUDIK as follows:

rec variable meaning
• A TOLUDIK minimum allowed difference between non-degenerate unperturbed

eigenvalues
• ∗ ITOLU |Ek

j − Ek
i | = 10−ITOLU [default: 6]

9.2.4 Dynamic first–hyperpolarizability tensors - Pockels and
Second-Harmonic Generation

If the keyword DYNAMIC is present in input together with THIRD, a frequency-dependent
field is considered for the third order tensor. The general expression for the first hyperpolar-
izability of closed-shell periodic systems in the presence of frequency-dependent fields may be
written as:

βtuv(−ωσ;ω1,ω2
) = − 2

nk
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 (9.13)
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where i, j and a, b run over occupied and virtual crystalline orbitals (CO), respectively, and
t, u, v indicate directions of the field. ωσ = ω1 + ω2 and K−ωσ ;ω1,ω2

depend on the non linear
optical process[155] (K0,0,0 = 1, K−2ω,ω,ω = 1/2, K−ω,0,ω = 2, K0,ω,−ω = 1/2, Kω,−2ω,ω = 1,
and K−ωσ,ω1,ω2 = 1 if neither ωσ, nor ω1 nor ω2 are null).
The two situations are considered in the code for each frequency ω:

• Second Harmonic Generation (SHG): ω1 = ω2 = ω and ωσ = −2ω

• dc-Pockels (dc-P): ω1 = ω, ω2 = 0 and ωσ = −ω

Warning: In the current version of the code the calculation of dynamic hyperpolarizability
is implemented only for pure (GGA, LDA) functionals, while it is not possible within hybrid
functionals (e.g. PBE0, B3LYP, HSE) or Hartree-Fock.
A vibrational contribution to dc-Pockels and SHG tensors can be computed via the BETAVIB
keyword – see the frequency calculation section of this manual.

9.3 Fourth-Order CPHF/KS – second hyperpolarizabil-
ity calculation

Calculation of the second hyperpolarizability tensor γ is performed only if required:

rec variable meaning
• A FOURTH computes energy derivatives up to fourth order

The keyword FOURTH activates a second Self-Consistent Coupled-Perturbed procedure (SC-
CP2) to provide matrix Uk,uv such that
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∂2Ck
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∂εu∂εv
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0
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ji (9.14)

By means of Uk,uv, both derivatives (9.4) and (9.5) are defined:
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in the n+ 1 formulation (equivalent to Eq. 9.10), and

γtuvw = − 1
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The off-diagonal blocks of matrix Uk,uv,
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depend on themselves through the second derivative of the Fock matrix
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and therefore, must be determined iteratively.

9.3.1 Tuning and control of the CPHF2 iterative procedure

Convergence of the SC-CP2 cycle is controlled with the following optional keywords:

rec variable meaning
• A DIIS2 activates DIIS convergence accelerator for mixing Fock/KS matrix

2nd derivatives
default

(page 86)
• A NODIIS deactivates DIIS convergence accelerator (page 86)
• A DIIS2ALLK DIIS is performed over all k-points of the Brillouin zone
• A HISTDIIS2 Limits DIIS mixing to the most recent NCY C cycles
• ∗ NCYC maximum number of previous cycles to be kept
• A PRTDIIS2 Activates detailed printing for the DIIS2 procedure
• A ANDERSON2 mixing of Fock/KS matrix 2nd derivatives (page 83)
• A BROYDEN2 mixing of Fock/KS matrix 2nd derivatives (page 85)
∗ W02 W0 parameter in Anderson’s paper [125]
∗ IMIX2 percentage of Fock/KS second derivative matrices mixing
∗ ISTART2 SC-CP2 iteration after which Broyden method is activated (minimum

2)
• A FMIXING2 mixing of Fock/KS matrix second derivatives from SC-CP2 iterations

n and n− 1
∗ IPMIX2 percentage of cycle n− 1 [IPMIX2=0, no mixing]

• A MAXCYCLE2 modify the maximum number of SC-CP2 iterations
∗ NMAX2 maximum number of iterations [default: 100]

• A SELEDIR2 set the maximum number of SC-CP2 iterations along each couple of
cartesian indices

• ∗ NXX, NXY, NXZ,
NYY, NYZ, NZZ

maximum number of SC-CP2 iterations along mixed directions
xx, xy, xz, yy, yz, zz

• A TOLGAMMA threshold on Uk,tu variation between two SC-CP2 iterations
∗ ITOL2 |∆Uk,tu| = 10−ITOL2 [default: 3]

Also in the case of CPHF2, DIIS is the default since CRYSTAL17. The meaning of optional
DIIS keywords is the same as discussed for the first-oder CPHF case.
Dynamic (frequency-dependent) second hyperpolarizability is not yet implemented.

9.4 Restart of first– or second– order CPHF

RESTART
A static CPHF/KS run can be restarted from a previous run (even an incomplete run)
by using the RESTART keyword. This works for both the first– and second–order
perturbed iterative procedures. Every CPHF/KS run writes the necessary information
for a restart to file fort.31. This file must be provided as file fort.32 before running the
new calculation with the RESTART keyword. GUESSP (SCF guess from density matrix
of a previous run, input block 3, page 99) is not applied by default, but its use is recommended.

In the case of a DYNAMIC calculation, restart will not be possible.
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Chapter 10

Tools for Studying Solid
Solutions

The theoretical modeling of disordered systems and solid solutions relies on obtaining average
properties over a number of configurations, namely distributions of different species (atoms or
vacancies) at a given set of atomic positions. Symmetry plays a key role in this context as
shown in the following reference papers:

S. Mustapha, Ph. D’Arco, M. De La Pierre, Y. Noel, M. Ferrabone and R. Dovesi
On the use of symmetry in configurational analysis for the simulation of disordered solids
J. Phys.: Condens. Matter 25, 105401 (2013)

Ph. D’Arco, S. Mustapha, M. Ferrabone, Y. Noel, M. De La Pierre and R. Dovesi
Symmetry and random sampling of symmetry independent configurations for the simulation of
disordered solids
J. Phys.: Condens. Matter 25, 355401 (2013)

See also http://www.crystal.unito.it ⇒ tutorials ⇒ Disordered systems and solid
solutions

Consider, for example, a structure (any dimension) of symmetry group G, characterized by one
irreducible crystallographic position d of multiplicity |D|. Such a |D|d position (in Wyckoff’s
notation) is occupied by the atomic species A. Suppose that a different atomic species X can
replace A in any proportion on d. Then, |D|+ 1 compositions are possible:

A|D|−αXα , α = 0 . . . |D| (10.1)

For each composition, there exist

|Sα| =
(
|D|
α

)
=

|D|!
α!(|D| − α)!

(10.2)

different possibilities to place atoms A and X , that are different configurations. Overall, we
expect a total number of |S| = |2||D| configurations for |D|+1 compositions. Figure 10.1 shows
the set of configurations for two atomic species (A and X ) distributed over four positions.
As the group of symmetry G acts on the whole set of configurations (S), the latter is partitioned
in |∆(S)| classes of equivalence, each one being a symmetry-independent class (SIC). Two
configurations belong to the same SIC if there exists at least one element of G that transforms
one configuration into the other. Figure 10.2 shows the partitioning of the configurations under
the action of C4v group.
All the configurations of a given class are degenerate and share the same properties (composi-
tion, symmetry group. . . ). Therefore, in order to fully characterize the system, it is sufficient
to determine:

• the number of SIC,

231



Composition |Sα| |S| = 16 Configurations

0/4 1

1/3 4

2/2 6

3/1 4

4/0 1

Figure 10.1: Possible configurations for 2 atomic species sitting on 4 positions. The two
species are represented by red and blue circles. Configurations are ordered per composition.
The number of configurations (|Sα|) per composition is indicated.

• the number of configurations per SIC;

• one representative configuration for each SIC.

Such analysis is performed by the CRYSTAL alternative options CONFCNT (232) and CON-
FRAND (234). In order to study supercell configurations, the keyword SCELCONF (66) is
to be coupled with the above mentioned options.

10.1 Counting and Enumerating Configurations

The keyword CONFCNT must be inserted in the geometry input block. It allows to calculate
the number of classes as a function of the composition and provides a representative for each
class.
In the present implementation:

• the number of different atomic species is restricted to two (A and X );

• substitutions might take place on one or more crystallographic irreducible sites; for each
irreducible site, all the symmetry equivalent positions are involved.

The minimal CONFCNT input is as follows:

rec variable meaning
• A CONFCNT
• ∗ NIS number of irreducible sites
• ∗ IAT(I),I=1,NIS atomic label of each irreducible site
• A END end of the CONFCNT sub-block

This yields the number of SIC over the full range of (NIS+1) compositions corresponding
to NIS irreducible crystallographic positions. For each SIC, a representative configuration is
given, along with its multiplicity and the number of symmetry operators of its group (being
a subgroup of the group of the original cell). The representative configurations are printed in
lexicographic order. By default, the replacing species is labeled as ’XX’.
The following optional keywords may be adopted for tuning CONFCNT calculations:
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1 2

34

C4v

Comp. Multiplicity Representatives |Gs|

0/4 1 8

1/3 4 2

2/2
4 2

2 4

3/1 4 2

4/0 1 8

|G|/|Gs|

Figure 10.2: The six symmetry independent classes of configurations resulting of the action of
the C4v

group on the set of 2-color configurations on 4 positions. The number of configurations per
class or multiplicity is indicated. The number of symmetry operators in the group of each
configuration is given (|Gs|). The multiplicty of each class equals |G|/|Gs|.

rec variable meaning
• A ATOMB identifies the species X
• ∗ NATB atomic number of X (default ’XX’)
• A ONLYCOMP selects certain compositions
• ∗ NC number of compositions to be considered
• ∗ TC(I),I=1,NC number of atoms X in composition I
• A CONFPRT prints information about the configurations
• ∗ IP1 integer 0÷ 2

0 - number of SIC only
1 - listing in compact form
2 - extended output [default]

Further options exist for counting and enumerating two-body interactions.
Two-body interactions are presented as:

label At.1 – label At.2 [I J L]

At.1 is supposed to be in the reference cell [0 0 0] but At.2 can be in another cell whose
position is given by [I J L]. Interactions are presented adding the so-called empty and one-body
terms, that are related to the cluster expansion formalism. These two terms are configuration
independent; they depend only on chemistry.

rec variable meaning
• A INTPRT prints information about the interactions
• ∗ IP2 integer 0÷ 2

0 - no information printed [default]
1 - condensed output (symmetry-independent interactions)
2 - extended output (full set of interactions)

• A INTMAXDIST defines the distance cut-off for 2-body interactions
• ∗ RLIM distance in Å[default 6Å]
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10.2 Uniform Random Sampling of Symmetry Indepen-
dent Configurations

When the number of classes is too large, a symmetry adapted Monte Carlo uniform at random
sampling of the symmetry independent classes may be performed. In this case, the key-
word CONFRAND must be inserted in the geometry input block and terminated by END.
CONFRAND switches on a symmetry-adapted sampling of the SIC at a given composition
IX (equivalent to α in equations (10.1) and (10.2)):

rec variable meaning
• A CONFRAND
• ∗ NIS number of irreducible sites
• ∗ IAT(I),I=1,NIS atomic label of each irreducible site
• ∗ IX number of positions occupied by the 2nd species
• A END end of the CONFRAND sub-block

A file named CONFIGURATIONS.DAT is generated (see RUNCONFS at page 235) con-
taining the following information:

• structure and symmetry of the aristotype supercell (written the same way as in a regular
unit fort.34);

• number of equivalent crystallographic sites involved for substitutions (|D|) and number
of substitutions (IX);

• labels of the atoms involved for substitutions;

• number of SIC found;

• list of the configurations. Each configuration is identified by its multiplicity and its rank.

For example:

. . . fort.34 . . . .

8 4 ! 8 sites, 4 substitutions

1 2 3 4 5 6 7 8 ! labels of the involved sites

4 ! 4 SIC found:

1 8 1 ! label, multip, rank

2 8 2 ! " " "

3 48 6 ! " " "

4 6 60 ! " " "

For each configuration found by sampling the SIC space, the corresponding canonical config-
uration (that is the equivalent configuration of minimum rank) is detected as well. One may
consider only canonical configurations (and thus save the canonical rank in file CONFIGURA-
TIONS.DAT) by entering the keyword CANONIC within the CONFRAND block.
By default, the SIC space is sampled entirely and uniformly at random. The user may limit
either the number of tries or the number of SIC to be searched by exploiting the UNIFORM
option (see below). Further optional keywords, namely SYMONLY and SYASYM, manage
a tuned probability distribution according to whether the SIC are symmetric (that is having
symmetry operators other than the identity) or not. SYMONLY, in particular, sets to 0 the
probability of asymmetric SIC. Then, by using a large number of tries NTC, all the simmetric
SIC might be found at no significant computational cost. Few runs are enough to establish the
exact number of symmetric SIC, the less the larger the total number of SIC.
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rec variable meaning
• A UNIFORM uniform at random selection
• ∗ NTC integer number

NTC > 0 number of tries to be performed
NTC < 0 number of SIC to be searched; (maximum number of
tries set to 10×NTC)

rec variable meaning
• A SYMONLY search for symmetric SIC only
• ∗ NTC NTC > 0 number of tries to be performed

NTC < 0 number of SIC to be found
• A SYASYM search for symmetric SIC first; then for any SIC
• ∗ NTCS,NTCA > 0, NTCS tries on symmetric SIC and NTCA tries on any other

SIC
< 0, search NTCS symmetric SIC and NTCA other the SIC

N.B. In case you are interested in studying supercell configurations, the keyword SCELCONF
(66) must be used, and it must be inserted before the CONFRAND sub-block.

10.3 Calculations on Predefined Configurations

The keyword RUNCONFS must be inserted in the geometry input block. It opens the
following minimal input sub-block:

rec variable meaning
• A RUNCONFS
• A ATOMSUBS identify the species involved for substitutions
• ∗ IZA IZB atomic numbers
• A END
By default, once specified the two elements involved for substitutions, RUNCONFS builds
a set of configurations from the list of ranks written in file CONFIGURATIONS.DAT (234)
and performs single point calculations. Geometry optimizations are also allowed, and may be
activated with the keyword OPTGEOM (for the relative options see page 156).
The basis set complete with the functions for atom IZB must be given in input after the SCF
block: the keyword BASE opens a new input block where a standard basis set must be inserted
(Section 3.2).
Independent calculations on different configurations might be carried on simultaneously ex-
ploiting the option

rec variable meaning
• A MULTITASK perform multiple tasks simultaneously
• ∗ N number of tasks
Further optional keywords are:

rec variable meaning
• A SYMORDER sort SIC from file CONFIGURATIONS.DAT in order of increas-

ing multiplicity
• A INICO select the first configuration to be considered
• ∗ IB 1st configuration label
• A IFICO select the last configuration to be considered
• ∗ IE last configuration label

The order of execution follows that of the list of configurations written in file CONFIGURA-
TIONS.DAT unless the option SYMORDER is introduced which rearranges the SIC in order
of increasing multiplicity (that is with a decreasing number of symmetry operators).
The options INICO and IFICO allow to perform ”multi-step” calculations by consecutively
selecting different subsets of configurations from file CONFIGURATIONS.DAT or from the list
rearranged by SYMORDER. This possibility might be useful not only to manage wall-time
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queues, but also to restart RUNCONFS from the configuration closest to the point where it
eventually failed.

10.4 Exploring the Neighborhood of a Configuration

The keyword CONFNEIG allows to explore the potential energy surface around one partic-
ular SIC. The minimal input sub-block is the following:

rec variable meaning
• A CONFNEIG search for neighboring configurations
• ∗ IRANK rank of the SIC of interest
• A END

The only requirement is reading a unit CONFIGURATIONS.DAT with the same aristotype
structure. Therefore, it necessary to perform a CONFRAND preliminarly (see 234). Then,
CONFNEIG writes a file named CONFNEIGHBORS.DAT, which contains a list of canoni-
cal configurations generated from the specified SIC (i.e., IRANK), by exchange of a couple of
atoms of different colors. The unit CONFNEIGHBORS.DAT has the same file format as CON-
FIGURATIONS.DAT. So, it can be read by the option RUNCONFS for running calculations
on the configurations listed therein (235).
Suppose you have already run calculations on a certain number of SICs among those found by
CONFRAND in the first place. You may want to exclude these SICs from the subsequent
listing performed by CONFNEIG, in order to avoid making duplicate calculations. The
optional keyword RANKLIST (to be inserted in the CONFNEIG sub-block) serves the
purpose, when the list of SICs to be avoided is provided in a file named RANK.LST. The
structure of RANK.LST must be the following:

rec variable meaning
• ∗ NRNK number of SICs listed

add NRNK records
• ∗ IRNK rank of each SIC
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Chapter 11

Equations of State

The program can perform an automated scan over the volume in order to compute energy E
vs. volume V curves that are then fitted to various Equations of State (EOS) as Murnaghan’s,
third-order isothermal Birch-Murnaghan’s, “universal” logarithmic Poirier-Tarantola’s and ex-
ponential Vinet’s, in order to compute equilibrium properties such as bulk modulus B0 and its
first derivative with respect to the pressure B′0 and volume/pressure dependence of the energy,
enthalpy and bulk modulus. For each volume, a full V -constrained geometry optimization is
performed. This option is activated by inserting the keyword EOS at the end of the Geometry
input block, which opens a sub-block that must be closed with a keyword END:

. . . geometry input . . . .

EOS

[Optional keywords]

END close EOS input block

END close Geometry input block

Users of this module are kindly asked to cite the following reference:

A. Erba, A. Mahmoud, D. Belmonte and R. Dovesi, J. Chem. Phys., 140, 124703 (2014)

A volume range and a number of volumes NV can be defined in input (default values are
used otherwise) with the RANGE sub-keyword. The initial geometry is assumed to be fully
optimized; if not, the PREOPTGEOM sub-keyword must be used to perform a preliminary
optimization of both lattice parameters and atomic positions. For each considered volume Vi, a
Vi-constrained optimization is performed (in fractional coordinates only) and the corresponding
minimum energy Ei determined. The set of NV data points {Vi, Ei} is fitted to the various
EOSs implemented. The fitted energy, enthalpy and bulk modulus are printed at the end
of the calculation, for each EOS, as a function of volume and pressure at various points.
These volume/pressure ranges can be defined with sub-keywords VRANGE and PRANGE,
respectively. Typically, this kind of final information analysis can be performed with a complete
restart of the calculation, using the RESTART2 sub-keyword. A partial restart from a
previous incomplete run can be activated with the sub-keyword RESTART. These two restart
options require the external restart file EOSINFO.DAT.

11.1 A few theoretical remarks

The equilibrium bulk modulus B0 of a crystal can be defined as follows:

B0 = −V
(
∂P

∂V

)
T

. (11.1)
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A dimensionless parameter B′0 can then be defined as its first derivative with respect to the
pressure, at constant temperature T :

B′0 =

(
∂B0

∂P

)
T

. (11.2)

Let us recall that the pressure P may be written as a function of the volume V as:

P (V ) = −
(
∂E

∂V

)
S

. (11.3)

According to equation (11.3) we can redefine the bulk modulus in equation (11.1) as the second
energy derivative with respect to the volume:

B(V ) = V

(
∂2E

∂V 2

)
T,S

. (11.4)

We can now define the enthalpy H (coinciding with Gibbs’ free energy G at T = 0 K) as a
function of the volume V simply as:

H(V ) = E(V ) + P (V )× V . (11.5)

Several E(V ) equations of state have been proposed. We have implemented four among them.

1. In 1944, Murnaghan proposed his famous equation of state:

E(V ) = E0 +
B0V

B′0

[(
V0

V

)B′0 1

B′0 − 1
+ 1

]
− B0V0

B′0 − 1
, (11.6)

where V0 and E0 are the equilibrium volume and energy, at zero pressure. Application
of equation (11.3) to equation (11.6), gives P (V ) Murnaghan’s EOS:

P (V ) =
B0

B′0

[(
V0

V

)B′0
− 1

]
. (11.7)

2. The third-order Birch-Murnaghan isothermal equation of state, published in 1947, reads
like:

E(V ) = E0 +
9V0B0

16


[(

V0

V

) 2
3

− 1

]3

B′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

] . (11.8)

Again, according to equation (11.3), we can get P (V ) third-order Birch-Murnaghan’s
EOS:

P (V ) =
3B0

2

[(
V0

V

) 7
3

−
(
V0

V

) 5
3

]{
1 +

3

4
(B′0 − 4)

[(
V0

V

) 2
3

− 1

]}
. (11.9)

3. The third-order “universal” Poirier-Tarantola logarithmic equation of state, proposed in
1998, is:

E(V ) = E0 +
B0V0

2

[
ln

(
V0

V

)]2

+
B0V0

6

[
ln

(
V0

V

)]3

(B′0 − 2) , (11.10)

while P (V ) Poirier-Tarantola’s EOS is:

P (V ) = B0
V0

V

[
ln

(
V0

V

)
+

(B′0 − 2)

2

[
ln

(
V0

V

)]2
]
. (11.11)
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4. The exponential Vinet’s equation of state, published in 1987, reads:

E(V ) = E0 +
2B0V0

(B′0 − 1)
2

{
2−

[
5 + 3

(
V

V0

) 1
3

(B′0 − 1)− 3B′0

]
×

× exp

[
−3

2
(B′0 − 1)

[(
V

V0

) 1
3

− 1

]]}
(11.12)

According to equation (11.3), we get P (V ) Vinet’s EOS:

P (V ) = 3B0

(
V

V0

)− 2
3

[
1−

(
V

V0

) 1
3

]
exp

[
−3

2
(B′0 − 1)

[(
V

V0

) 1
3

− 1

]]
. (11.13)

11.2 Keywords, options and defaults

Users of this module are kindly asked to cite the following reference:

A. Erba, A. Mahmoud, D. Belmonte and R. Dovesi, J. Chem. Phys., 140, 124703 (2014)

A default value is chosen for all computational parameters. The SCF energy convergence
threshold is set to 10−8. Optional keywords are (in any order):

rec variable meaning

• A RANGE keyword to specify the range of volumes and number of points in the
E(V ) curve where optimizations have to be performed.

∗ VOL1 minimum (compression) variation of the initial volume [default =
0.92]

∗ VOL2 maximum (expansion) variation of the initial volume [default = 1.08]
∗ NPOINTS number NV of points in the selected range [default = 10]

The interval is specified as the minimum (compression) and maximum (expansion) variation of
the volume of the initial geometry. The set of volumes is then defined according to the number
of points in the selected range. For instance, to set the default values:

EOS

RANGE

0.92 1.08 10

END

that corresponds to 10 points between 0.92×Veq and 1.08×Veq, where Veq is the volume of
the equilibrium geometry given as input (assumed to be the fully optimized structure) or as
obtained after a preliminary geometry optimization. Note that the equilibrium values V0 and
E0 are always included in the final data for fitting (i.e. 11 points are used for fitting in the
example above).
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rec variable meaning

• A VRANGE Defines the volume range and the number of points where fitted
values of pressure, energy, enthalpy and bulk modulus are printed
at the end of the calculation. This keyword is for output purposes
only.

∗ VMIN minimum volume
∗ VMAX maximum volume
∗ NVOL number of points in the selected range

• A PRANGE Defines the pressure range and the number of points where fitted
values of volume, energy, enthalpy and bulk modulus are printed
at the end of the calculation. This keyword is for output purposes
only.

∗ PMIN minimum pressure
∗ PMAX maximum pressure
∗ NPRE number of points in the selected range

• A PRINT This option turns on a higher level of diagnostic printing and will
generally not be necessary for the typical user. Fitting of the E(V)
points is also performed for increasing set of points from 4 to the
maximum number of points. (default is minimal printing)

rec variable meaning

• A RESTART Allows for partial restart from a previous incomplete run, using file
EOSINFO.DAT.

• A RESTART2 Allows for complete restart from a previous complete run, using file
EOSINFO.DAT. This option can be used when one wants to explore
different ranges of volume/pressure at the end of the calculation,
using keywords VRANGE and PRANGE (see example below).

• A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions
is performed before starting the E(V ) curve calculation.

Geometry optimization is performed at convergence criteria tighter than the ones given in
OPTGEOM. Some values can be modified by inserting the following keywords:

• A TOLDEG EOS default [0.0003] - see OPTGEOM, page 162
• A TOLDEX EOS default [0.00062] - see OPTGEOM, page 162
• A TOLDEE EOS default [8] - see OPTGEOM, page 162
• A MAXCYCLE see OPTGEOM, page 164
• A NOTRUSTR see OPTGEOM, page 162
• A TRUSTRADIUS see OPTGEOM, page 162
• A MAXTRADIUS see OPTGEOM, page 162

11.3 Output Information

Let us consider the case of α-quartz, with the following input:

EOS

RANGE

0.90 1.05 10

PRANGE

-5 10 20

END
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At the end of the calculation, the 11 volume/energy data points obtained after the geometry
optimizations are sorted and printed as follows:

SORTING VOLUMES/ENERGIES

VOLUME (A^3) ENERGY (a.u.)

105.093052 -1.319745599801E+03

106.955671 -1.319747774744E+03

108.858269 -1.319749524843E+03

110.762118 -1.319750838191E+03

112.687177 -1.319751759039E+03

114.634069 -1.319752307968E+03

116.602831 -1.319752502563E+03

116.803375 -1.319752503067E+03

118.593687 -1.319752358314E+03

120.606573 -1.319751889709E+03

122.641225 -1.319751107890E+03

The following table is then reported with the fitted values of the minimum volume, energy,
bulk modulus B0 and its first derivative B′0:

+++++++ FITTING USING ALL POINTS +++++++

EQUATION OF STATE VOL(A^3) E(AU) BM(GPA) BM PRIME

-------------------------------------------------------------------------------

MURNAGHAN 1944 116.7247 -1319.75250331 43.81 3.78

BIRCH-MURNAGHAN 1947 116.7202 -1319.75250331 43.83 3.88

POIRIER-TARANTOLA 1998 116.7172 -1319.75250341 43.85 3.95

VINET 1987 116.7186 -1319.75250334 43.84 3.92

Additionally, for each EOS, the following fitted data are reported (for instance Vinet’s ones) in
the pressure range (from -5 GPa to 10 GPa in this case) defined by input with the PRANGE
sub-keyword (the VRANGE sub-keyword could be used instead for defining an explored
volume range):

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

THERMODYNAMIC FUNCTIONS OBTAINED WITH EOS: VINET 1987

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

V = VOLUME, P = PRESSURE, E = ENERGY, G = GIBBS FREE ENERGY, B = BULK MODULUS

V (A^3) P (GPa) E (a.u.) G (a.u.) B (GPa)

136.37 -5.00 -1319.73967343 -1319.89603452 21.96

131.93 -4.21 -1319.74437012 -1319.87175596 25.86

128.22 -3.42 -1319.74762603 -1319.84821045 29.53

125.02 -2.63 -1319.74985141 -1319.82528837 33.03

122.21 -1.84 -1319.75129893 -1319.80290843 36.40

119.70 -1.05 -1319.75213646 -1319.78100994 39.65

117.43 -0.26 -1319.75248193 -1319.75954364 42.81

115.35 0.53 -1319.75242166 -1319.73847018 45.89

113.45 1.32 -1319.75202088 -1319.71775646 48.90

111.68 2.11 -1319.75133026 -1319.69737458 51.86

110.04 2.90 -1319.75038992 -1319.67730070 54.75

108.51 3.69 -1319.74923235 -1319.65751494 57.61

107.06 4.47 -1319.74788404 -1319.63799827 60.41

105.71 5.26 -1319.74636708 -1319.61873479 63.18
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104.42 6.05 -1319.74470011 -1319.59971153 65.91

103.20 6.84 -1319.74289869 -1319.58091375 68.61

102.04 7.63 -1319.74097644 -1319.56233179 71.28

100.94 8.42 -1319.73894489 -1319.54395405 73.91

99.89 9.21 -1319.73681430 -1319.52577266 76.53

98.88 10.00 -1319.73459329 -1319.50777698 79.11
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Chapter 12

Calculation of Elastic,
Piezoelectric and Photoelastic
Tensors

The program can compute elastic, piezoelectric and photoelastic (elasto-optic) tensors
with a fully-automated procedure by means of keywords ELASTCON, PIEZOCON (or
PIEZOCP) and PHOTOELA, to be inserted at the end of the Geometry input block. Elas-
tic and piezoelectric constants can be computed at once with the ELAPIEZO keyword. Each
of these keywords opens a block which must be terminated with an END keyword.

12.1 A few theoretical remarks

The elements of the elastic tensor, for 3D systems, are usually defined as:

Cvu =
1

V

∂2E

∂ηv∂ηu

∣∣∣∣
0

, (12.1)

where η is the rank-2 symmetric tensor of pure strain and Voigt’s notation is used according
to which v, u = 1, . . . , 6 (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz, 6 = xy). Since volume V
is not uniquely defined for 1D and 2D systems, it is here omitted (length or surface could be
used instead) and all the elements involving non-periodic directions (y, z for 1D and z for 2D
systems) are null by definition. As a consequence, for 1D and 2D systems, elastic constants
are expressed in energy units (hartree). Second derivatives in equation (12.1) are computed as
first numerical derivatives of analytical energy gradients in the present implementation.

In the linear regime, direct e and converse d piezoelectric tensors describe the polarization P
induced by strain η and the strain induced by an external electric field E at constant electric
field and stress, respectively:

direct effect P = e η at constant field (12.2)

converse effect η = dTE at constant stress (12.3)

Our approach consists in directly computing the intensity of polarization induced by strain
(again, since the volume is not defined for 1D and 2D systems, in those cases the polarization
reduces to a dipole moment). The Cartesian components of the polarization can then be
expressed as follows in terms of the strain tensor components:

Pi =
∑
v

eivηv so that eiv =

(
∂Pi
∂ηv

)
E

. (12.4)

In the above expression, i = 1, . . . , 3; η is the pure strain tensor, the derivative is taken
at constant electric field and Voigt’s notation is used. In Crystal the polarization can be
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computed either via localized Wannier functions or via the Berry phase (BP) approach. The
latter scheme is used in the present automated implementation according to which direct
piezoelectric constants can be written as follows in terms of numerical first derivatives of the
BP ϕl with respect to the strain:

eiv =
|e|

2πV

∑
l

ali
∂ϕl
∂ηv

, (12.5)

where ali is the i-th Cartesian component of the l-th direct lattice basis vector al. Again, for
1D and 2D systems, the volume is omitted, the polarization reduces to a dipole moment and
the piezoelectric constants are reported in units of |e| × bohr.
An alternative approach has recently been implemented for the analytical evaluation of the
direct piezoelectric tensor of 3D crystals, based on the CPHF/KS scheme. This strategy is
adopted when use of the keyword PIEZOCP is made.
A simple direct connection exists between direct e and converse d piezoelectric tensors:

e = dC and d = e S , (12.6)

where C is the fourth rank elastic tensor of energy second derivatives with respect to pairs of
deformations and S = C−1 is the fourth rank compliance tensor.

Photoelastic constants are the elements of the fourth rank photoelastic (Pockels) tensor and
are defined as:

pijkl =
∂∆ε−1

ij

∂ηkl
, (12.7)

where ∆ε−1 is the difference of the inverse dielectric tensor between strained and unstrained
configurations. Given the stress-strain relation, the fourth-rank piezo-optic tensor π (whose
elements are the stress-optical coefficients πvu) can be obtained from the photo-elastic p and
elastic C ones as:

π = p S and p = π C . (12.8)

At variance with the elastic C and compliance S tensors, p and π are not symmetric (i.e.
in general pvu 6= puv and πvu 6= πuv). It follows that the number of symmetry-independent
components to be determined for the stress-optical and strain-optical tensors is generally larger
than for the elastic tensors.

The derivatives in the right-hand-sides of equations (12.1), (12.5) and (12.7) are computed
numerically by applying finite strains to the crystal lattice. For each strain, Ns configurations
are defined according to a strain step δ. By default, Ns = 3, corresponding to one “expanded”,
one unstrained and one “contracted” configuration, and δ = 0.01 for elastic and δ = 0.015 for
piezoelectric and photoelastic constants. Parameter Ns can be modified with the sub-keyword
NUMDERIV while δ can be modified with sub-keyword STEPSIZE.
We recall that elastic, piezoelectric and photoelastic constants can be decomposed into purely
electronic “clamped-ion” and nuclear “internal-strain” contributions; the latter, computed by
default, measures the effect of relaxation of the relative positions of atoms induced by the
strain and can be computed by optimizing the atomic positions within the crystal cell. If one
wants to compute “clamped-ion” constants can use the sub-keyword CLAMPION.
The input geometry is assumed to be optimized; nevertheless, the user can ask this mod-
ule to perform a pre-optimization of the structure by means of the PREOPTGEOM sub-
keyword; convergence tolerances on gradient and displacement can be modified by means of
the TOLDEG and TOLDEX sub-keywords.
For elastic, piezoelectric and photoelastic constants a flexible restart option has been prepared
which can be activated with the RESTART sub-keyword and which uses an external format-
ted file called ELASINFO.DAT. Detailed printings (recommended) can be activated with the
PRINT sub-keyword.

12.2 The algorithm

We present here the fully automated procedure for the calculation of the elastic, piezoelectric
and photoelastic constants as implemented in Crystal:
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1. The starting geometrical structure of the crystal is accurately optimized as concerns both
lattice parameters and atomic positions;

2. A single-point self-consistent-field (SCF) calculation is performed on the optimized ref-
erence structure. Energy gradients, Berry phase or dielectric tensor (via a CPHF/KS
scheme) are also computed;

3. A symmetry analysis is performed in order to find the minimal set of strains, out of a
maximum of six, which have to be explicitly applied in order to get all the independent
constants. The symmetry features of third and fourth rank tensors is printed in the
following way:

| 1 A 1 F 1 C . 1 B . |

| 1 A 1 C . -1 B . |

| 1 E . . . |

| 1 D . -1 B |

| 1 D . |

| & |

4. For each irreducible strain, the deformation is applied to the structure and the residual
symmetry determined. Ns strained configurations are defined according to a strain step
δ;

5. For each strained configuration, the atomic positions are relaxed with an optimization
(default option) or not depending on whether one wants to go beyond the “clamped-ion”
approximation or not. An SCF calculation is then performed with gradient, Berry phase
or dielectric tensor calculation;

6. After the loop over the Ns strained configurations, the energy gradients, Berry phases
or dielectric tensors are fitted with singular-value-decomposition routines and their first
derivatives determined numerically; Elastic, piezoelectric or photoelastic constants are
finally computed and printed.

12.3 Second-order Elastic Constants

A fully-automated procedure for calculating the second-order elastic constants for an arbitrary
crystal is activated by specifying the keyword ELASTCON in input block 1 (geometry).
ELASTCON must be the last keyword in geometry input:

. . . geometry input . . . .

ELASTCON

END close ELASTCON input block

END close geometry input block

Note that the user must be confident that the input structure is already well optimized. At
the beginning of the run, the forces at the central point are calculated and if they exceed 10−4,
then a warning is printed suggesting re-optimization.

Users of this option are kindly requested to cite the following papers[167, 75]:

W.F. Perger, J. Criswell, B. Civalleri and R. Dovesi, Comp. Phys. Comm., 180, 1753-1759
(2009). Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL
code

A. Erba, A. Mahmoud, R. Orlando and R. Dovesi, Phys. Chem. Minerals, 41, 151-160 (2014).
Elastic properties of six silicate garnet end-members from accurate ab initio simulations.

Users of this option for 1D and 2D systems are kindly requested to cite the fol-
lowing paper[72]:

A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat and R. Dovesi, J. Chem. Phys., 138,
054906 (2013). The vibration properties of the (n,0) Boron Nitride nanotubes from ab initio
quantum chemical simulations.
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Keywords, options, and defaults

A default value is chosen for all computational parameters. SCF energy convergence threshold
is set to 10−8. To modify it, see keyword TOLDEE in input block 3, page 114.

Default choices can be modified by optional keywords (in any order):

rec variable meaning

• A NUMDERIV This sets the number of points for the numerical second derivative
∗ INUM number of points including the central (zero displacement) one

[default = 3]
• A STEPSIZE This gives the size of the displacement to be used for the calculation

of the numerical second derivative.
∗ STEP size of the strain step along a given deformation [default = 0.01]

• A DEFORM Specific deformations are asked for
∗ DEF(I), I=1,6 Six integers have to be provided, each one associated to a given

deformation (xx, yy, zz, yz, xz, xy) that tell the program which
deformations have to be considered as active. Put 1 for active and 0
for inactive. By default, the program performs a symmetry analysis
and finds which deformations are necessary.

rec variable meaning
• A CLAMPION This option activates the computation of “clamped-ion” con-

stants.
• A PRINT This option turns on a higher level of diagnostic printing [default

minimal printing].
• A RESTART Allows restart using file ELASINFO.DAT from a previous in-

complete run.
• A RESTART2 Allows a full restart using file ELASINFO.DAT from a previous

complete run.
• A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions

is performed before starting elastic constant calculation.
• A SEISMDIR Defines additional directions along which seismic wave velocities

are computed.
∗ NDIR Number of additional directions

Insert NDIR records II

∗ DX,DY,DZ Cartesian components of each additional direction
II

Geometry optimization is performed at convergence criteria tighter than the ones given in
OPTGEOM. Some values can be modified by inserting the following keywords:

• A TOLDEG ELASTCON default [0.0003] - see OPTGEOM, page 162
• A TOLDEX ELASTCON default [0.00062] - see OPTGEOM, page 162
• A TOLDEE ELASTCON default [8] - see OPTGEOM, page 162
• A MAXCYCLE see OPTGEOM, page 164
• A NOTRUSTR see OPTGEOM, page 162
• A TRUSTRADIUS see OPTGEOM, page 162
• A MAXTRADIUS see OPTGEOM, page 162
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Input Example:

. . . geometry input . . . .

ELASTCON

NUMDERIV modify default choice of n. points [3]

5

STEPSIZE modify step size for numerical gradient [0.01]

0.02

PRINT extended printing

END end of ELASTCON input

END geometry input

The information on the computed elastic constants is printed at the end of the output with
the following format:

SYMMETRIZED ELASTIC CONSTANTS FOR HEXAGONAL CASE, IN GPa

| 89.130 13.792 20.473 0.000 12.584 0.000 |

| 89.130 20.473 0.000 -12.584 0.000 |

| 113.498 0.000 0.000 0.000 |

| 58.682 0.000 -12.584 |

| 58.682 0.000 |

| 37.669 |

Compliance tensor is also printed as:

ELASTIC MODULI (COMPLIANCE TENSOR), IN TPa^-1

| 12.382521 -1.915287 -1.888081 0.000000 -3.066002 0.000000 |

| 12.382521 -1.888081 0.000000 3.066002 0.000000 |

| 9.491835 0.000000 0.000000 0.000000 |

| 18.355822 0.000000 6.132004 |

| 18.355822 0.000000 |

| 28.595616 |

According to the elastic continuum theory, the three acoustic wave velocities of a crystal, along
any general direction represented by unit wave-vector q̂, are related to the elastic constants by
Christoffel’s equation which can be given an eigenvalues/eigenvectors form, as follows:

Aq̂U = V2U with Aq̂
kl =

1

ρ
q̂iCiklj q̂j , (12.9)

where ρ is the crystal density, i, j, k, l = x, y, z represent Cartesian directions, q̂i is the i-th
element of the unit vector q̂, V is a 3×3 diagonal matrix whose three elements give the acoustic
velocities and U = (û1,û2,û3) is the eigenvectors 3×3 matrix where each column represents
the polarization û of the corresponding eigenvalue. The three acoustic wave velocities, also
referred to as seismic velocities, can be labeled as longitudinal vp, slow transverse vs1 and fast
transverse vs2, depending on the polarization direction û with respect to wave-vector q̂.
The seismic wave velocities are computed by default along some Cartesian directions and
printed as follows (note that slow and fast transverse wave velocities are sorted according to
their values; crossing are possible which should be carefully checked):

SEISMIC VELOCITIES BY CHRISTOFFEL EQUATION (km/s)

WAVE VECTOR Vp Vs1 Vs2

[ 0.000 0.000 1.000] 9.237 5.068 5.068

[ 0.000 1.000 0.000] 9.237 5.068 5.068

[ 1.000 0.000 0.000] 9.237 5.068 5.068
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[ 1.000 1.000 0.000] 9.166 5.195 5.068

[ 1.000 0.000 1.000] 9.166 5.195 5.068

[ 0.000 1.000 1.000] 9.166 5.195 5.068

[ 1.000 1.000 1.000] 9.142 5.153 5.153

User-defined Cartesian directions can be added by means of the SEISMDIR sub-keyword,
along which the seismic wave velocities are computed and printed (typically, this can be done
a posteriori with a complete restart using the RESTART2 sub-keyword).

A more complete analysis of directional elastic wave velocities can be performed via the AWE-
SoMe program (by D. Munoz-Santiburcio, A. Hernandez-Laguna and J.I. Soto, Comp. Phys.
Commun., 192, 272-277 (2015)), which has been merged with CRYSTAL17. By inserting
the AWESOME keyword, the full analysis of phase and group velocities is enabled, which
generates a series of output files specifically designed to be read by Gnuplot scripts to get 2D
and 3D representations of directional seismic wave velocities and related quantities (Gnuplot
scripts are available on our on-line tutorial):

. . . geometry input . . . .

ELASTCON

AWESOME

END end of ELASTCON input

END geometry input

12.3.1 Elastic Tensor under Pressure

Reference to be cited when using this module:
A. Erba, A. Mahmoud, D. Belmonte and R. Dovesi, J. Chem. Phys., 140, 124703 (2014).

The calculation of elastic constants under pressure is a task of great geophysical interest. In
the absence of any finite pre-stress, elastic constants can be defined as second energy density
derivatives with respect to pairs of infinitesimal Eulerian strains:

Cijkl =
1

V0

(
∂2E

∂εij∂εkl

)
ε=0

. (12.10)

The constants above do represent the link between stress and strain via the Hooke’s law. In the
limit of zero temperature, typical of ab initio simulations, they are also referred to as athermal
elastic constants.
If a finite pre-stress σpre is applied in the form of a hydrostatic pressure P (σpreij = Pδij), within
the frame of finite Eulerian strain, the relevant elastic stiffness constants are transformed as:

Bijkl = Cijkl +
P

2
(2δijδkl − δilδjk − δikδjl) , (12.11)

provided that V0 in equation 12.10 becomes the equilibrium volume V (P ) at pressure P . In
the present fully automated implementation of the calculation of the stiffness tensor B (and
of S = B−1, the compliance tensor) under pressure, V (P ) is obtained from the analytical
stress tensor. An option also exists for using the V (P ) relation obtained from a previous EOS
calculation.
Since both ε and δ are symmetric tensors, we can rewrite the previous equality as:

Bvu = Cvu +


0 P P 0 0 0
P 0 P 0 0 0
P P 0 0 0 0
0 0 0 −P

2 0 0
0 0 0 0 −P

2 0
0 0 0 0 0 −P

2

 , (12.12)

where Voigt’s notation has been used.
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So, in order to obtain the elastic constants at a given pressure, one basically needs to perform
an elastic calculation at the volume corresponding to the desired pressure, V (P ), and then
correct the computed constants according to equation 12.12. This is automatically done by
the program if the following keywords are used:

. . . geometry input . . . .

ELASTCON

PREOPTGEOM A constant-pressure pre-optimization is performed

PRESSURE Activates the calculation under pressure

5 Set the value (in GPa) of the pressure

END end of ELASTCON input

END geometry input

In this way, a pressure-constrained pre-geometry optimization is performed. The elastic con-
stants are evaluated starting from the optimized structure.

If one already knows which is the equilibrium structure corresponding to a given pressure (from
a previous EOS run, for instance), there is no need to perform a geometry optimization before
the elastic constants evaluation. In this case, one should give the optimized structure in input,
which refers to a given pressure, and then use the following keywords:

. . . geometry input . . . .

ELASTCON

PRESSEOS Activates the calculation under pressure

5 Set the value (in GPa) of the pressure corresponding to the given structure

END end of ELASTCON input

END geometry input

12.3.2 Nuclear-relaxation Term from Internal-strain Tensor

References to be cited for this option:
A. Erba, Phys. Chem. Chem. Phys., 18, 13984-13992 (2016)
A. Erba, D. Caglioti, C. M. Zicovich-Wilson and R. Dovesi, J. Comput. Chem., 38, 257-264
(2017)

Strain-induced response properties of solids can be formally decomposed into a purely elec-
tronic “clamped-nuclei” term and a nuclear-relaxation term due to the rearrangement of atomic
positions upon strain. The evaluation of the latter is generally much more computationally ex-
pensive than that of the former. In principle, two alternative approaches can be used to account
for nuclear-relaxation effects: i) performing numerical geometry optimizations to relax atomic
positions at actual strained lattice configurations, or ii) evaluating in a more analytical fashion
the “internal-strain” tensor of energy second-derivatives with respect to atomic displacements
and lattice deformations, as combined with the interatomic force constant Hessian matrix.
Given that geometry optimizations at strained configurations are rather slowly-converging nu-
merical procedures requiring particularly tight convergence criteria, the second approach is to
be preferred as it ensures higher accuracy and requires less severe computational parameters
to be used.
As a matter of fact, in previous versions of the Crystal program, only the first numerical
strategy was available. In Crystal17, the second approach has been implemented for the
elastic and piezoelectric tensors, which relies on the calculation of the “internal-strain” tensor
by fully-exploiting its point-symmetry features. Beside being more robust, the new strategy
has also been documented to be more computationally efficient for most crystalline systems.
The elements of the force-response internal-strain tensor are second-energy derivatives with
respect to an atomic displacement and to a lattice distortion:

Λai,v =
∂2E

∂uai∂ηv

∣∣∣∣
E
, (12.13)
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where uai are Cartesian components of the displacement vector ua of atom a (i=x, y, z). A
displacement-response internal-strain tensor Γ, which describes first-order atomic displace-
ments as induced by a first-order strain, can be defined as:

Γai,v = − ∂uai
∂ηv

∣∣∣∣
E

=
∑
bj

(H−1)ai,bjΛbj,v , (12.14)

where H is the interatomic force-constant Hessian matrix of energy second derivatives with
respect to pairs of periodicity-preserving atomic displacements:

Hai,bj =
∂2E

∂uai∂ubj

∣∣∣∣
E,η

. (12.15)

When mass-weighted and diagonalized, the force-constant matrix of Eq. (12.15) provides
vibration frequencies of Brillouin zone-center phonon modes. The H−1 matrix in Eq. (12.14)
has to be considered a pseudoinverse of H where translational degrees of freedom are projected
out, as discussed in detail elsewhere.
The nuclear-relaxation contribution to elastic constants can be expressed in terms of the
internal-strain tensor Λ (or Γ):

Cnuc
vw = − 1

V0

∑
ai

Λai,vΓai,w , (12.16)

In the current fully-automated implementation into the Crystal program, the elements Λai,v
of the force-response internal-strain tensor are here computed as finite differences of analytical
lattice gradients with respect to atomic Cartesian displacements, by means of a generalized
“Pulay’s force method” originally proposed for interatomic force constants.

To activate this option (recommended) use the following keywords:

. . . geometry input . . . .

ELASTCON

NUCHESS Activates use of Hessian matrices for nuclear term

HESSNUM2 Use of a 2-points formula in the evaluation of the Hessian matrices

END end of ELASTCON input

END geometry input

The keyword MODEPART activates the partition of the nuclear-relaxation term into nor-
mal modes. The keyword HESSSTEP allows to redefine the step (in Å) for the numerical
evaluation of the Hessian matrices:

. . . geometry input . . . .

ELASTCON

NUCHESS Activates use of Hessian matrices for nuclear term

HESSNUM2 Use of a 2-points formula in the evaluation of the Hessian matrices

MODEPART

HESSSTEP

0.005

END end of ELASTCON input

END geometry input

Internal Diagnostics

In order to monitor the quality of the calculation as it proceeds, the total energy after opti-
mization is stored. The recommended use of the ELASTCON option assumes that the user
supplies an input file from a previously optimized geometry (and not experimental lattice con-
stants and atomic positions, for example). Therefore, in principle, as the various deformations
are made, the optimized total energy for each of the deformed geometries should be higher
than the energy at the undeformed, equilibrium, geometry. The code monitors each optimized
total energy for each deformed geometry and if any deformation lowers the total energy from
the equilibrium value, a warning is printed for the user to verify that the input file was really
from a previously optimized geometry.
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12.4 First-order Piezoelectric Constants

A fully-automated procedure for calculating the first-order piezoelectric constants for an arbi-
trary crystal is activated by specifying the keyword PIEZOCON in input block 1 (geometry).
PIEZOCON must be the last keyword in geometry input:

. . . geometry input . . . .

PIEZOCON

END close PIEZOCON input block

END close geometry input block

Note that the user must be confident that the input structure is already well optimized. At
the beginning of the run, the forces at the central point are calculated and if they exceed 10−4,
then a warning is printed suggesting re-optimization.

Users of this option are kindly requested to cite the following papers[152, 71]:

Y. Noel and C. M. Zicovich-Wilson and B. Civalleri and Ph. D’Arco and R. Dovesi, Phys. Rev.
B, 65, 014111 (2001). Polarization properties of ZnO and BeO: An ab initio study through the
Berry phase and Wannier functions approaches.

A. Erba, Kh. E. El-Kelany, M. Ferrero, I. Baraille and M. Rérat, Phys. Rev. B, 88, 035102
(2013). Piezoelectricity of SrTiO3: An ab initio description.

Users of this option for 1D and 2D systems are kindly requested to cite the fol-
lowing paper[72]:

A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat and R. Dovesi, J. Chem. Phys., 138,
054906 (2013). The vibration properties of the (n,0) Boron Nitride nanotubes from ab initio
quantum chemical simulations.

Keywords, options, and defaults

A default value is chosen for all computational parameters. SCF energy convergence threshold
is set to 10−8. To modify it, see keyword TOLDEE in input block 3, page 114.

Default choices can be modified by optional keywords (in any order):

rec variable meaning

• A NUMDERIV This sets the number of points for the numerical second derivative
∗ INUM number of points including the central (zero displacement) one

[default = 3]
• A STEPSIZE This gives the size of the displacement to be used for the calculation

of the numerical second derivative.
∗ STEP size of the strain step along a given deformation [default = 0.015]

• A DEFORM Specific deformations are asked for
∗ DEF(I), I=1,6 Six integers have to be provided, each one associated to a given

deformation (xx, yy, zz, yz, xz, xy) that tell the program which
deformations have to be considered as active. Put 1 for active and 0
for inactive. By default, the program performs a symmetry analysis
and finds which deformations are necessary.
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rec variable meaning
• A CLAMPION This option activates the computation of “clamped-ion” con-

stants.
• A PRINT This option turns on a higher level of diagnostic printing [default

minimal printing]
• A RESTART Allows restart using file ELASINFO.DAT from a previous in-

complete run.
• A RESTART2 Allows a full restart using file ELASINFO.DAT from a previous

complete run.
• A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions

is performed before starting elastic constant calculation.

Geometry optimization is performed at convergence criteria tighter than the ones given in
OPTGEOM. Some values can be modified by inserting the following keywords:

• A TOLDEG PIEZOCON default [0.0003] - see OPTGEOM, page 162
• A TOLDEX PIEZOCON default [0.00062] - see OPTGEOM, page 162
• A TOLDEE PIEZOCON default [8] - see OPTGEOM, page 162
• A MAXCYCLE see OPTGEOM, page 164
• A NOTRUSTR see OPTGEOM, page 162
• A TRUSTRADIUS see OPTGEOM, page 162
• A MAXTRADIUS see OPTGEOM, page 162

Input Example:

. . . geometry input . . . .

PIEZOCON

NUMDERIV modify default choice of n. points [3]

5

STEPSIZE modify step size for numerical gradient [0.015]

0.02

CLAMPION activates "clamped-ion" approximation

PRINT extended printing

END end of PIEZOCON input

END geometry input

The computed piezoelectric tensor is printed as follows at the end of the output:

PIEZOELECTRIC CONSTANTS FOR HEXAGONAL CASE, IN C/m^2

| 0.000 0.000 0.000 0.000 -0.090 0.000 |

| 0.000 0.000 0.000 -0.090 0.000 0.000 |

| -0.187 -0.187 0.282 0.000 0.000 0.000 |

12.5 Piezoelectricity through CPHF/KS Approach

References to be cited when using this module:
J. Baima, A. Erba, L. Maschio, C.M. Zicovich-Wilson, R. Dovesi and B. Kirtman, Z. Phys.
Chem., 230, 719-736 (2016)
A. Erba, Phys. Chem. Chem. Phys., 18, 13984-13992 (2016)

While the PIEZOCON keyword allows to compute the direct piezoelectric tensor through
the numerical Berry phase approach, the PIEZOCP keyword allows to compute it via an
analytical approach based on the CPHF/KS scheme. In this way, not just the electronic term
is computed analytically, but also the nuclear-relaxation contribution is evaluated from the
internal-strain tensor rather than from numerical geometry optimizations of atomic coordinates

252



at strained configurations:

enuc
kv = − 1

V0

∑
ai

Z∗k,aiΓai,v , (12.17)

where the Z∗ tensor in Eq. (12.17) contains the Born dynamical effective charges:

Z∗k,ai =
∂2E

∂Ek∂uai

∣∣∣∣
η

. (12.18)

. . . geometry input . . . .

PIEZOCP Activates the analytical calculation of the piezoelectric tensor

HESSNUM2 Use of a 2-point formula for the evaluation of the Hessian matrices

TOLALPHA Set the tolerance on the convergence of the CPHF process

2

END end of PIEZOCP input

END geometry input

12.6 Elastic and Piezoelectric Constants

A fully-automated procedure for calculating the second-order elastic constants and the first-
order piezoelectric (direct and converse) constants for an arbitrary crystal is activated by
specifying the keyword ELAPIEZO in input block 1 (geometry).
ELAPIEZO must be the last keyword in geometry input:

. . . geometry input . . . .

ELAPIEZO

END close ELAPIEZO input block

END close geometry input block

Note that the user must be confident that the input structure is already well optimized. At
the beginning of the run, the forces at the central point are calculated and if they exceed 10−4,
then a warning is printed suggesting re-optimization.

Users of this option are kindly requested to cite the following papers[152, 71]:

Y. Noel and C. M. Zicovich-Wilson and B. Civalleri and Ph. D’Arco and R. Dovesi, Phys. Rev.
B, 65, 014111 (2001). Polarization properties of ZnO and BeO: An ab initio study through the
Berry phase and Wannier functions approaches.

A. Erba, Kh. E. El-Kelany, M. Ferrero, I. Baraille and M. Rérat, Phys. Rev. B, 88, 035102
(2013). Piezoelectricity of SrTiO3: An ab initio description.

Users of this option for 1D and 2D systems are kindly requested to cite the fol-
lowing paper[72]:

A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat and R. Dovesi, J. Chem. Phys., 138,
054906 (2013). The vibration properties of the (n,0) Boron Nitride nanotubes from ab initio
quantum chemical simulations.

Keywords, options, and defaults

A default value is chosen for all computational parameters. SCF energy convergence threshold
is set to 10−8. To modify it, see keyword TOLDEE in input block 3, page 114.

Default choices can be modified by optional keywords (in any order):
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rec variable meaning

• A NUMDERIV This sets the number of points for the numerical second derivative
∗ INUM number of points including the central (zero displacement) one

[default = 3]
• A STEPSIZE This gives the size of the displacement to be used for the calculation

of the numerical second derivative.
∗ STEP size of the strain step along a given deformation [default = 0.015]

• A DEFORM Specific deformations are asked for
∗ DEF(I), I=1,6 Six integers have to be provided, each one associated to a given

deformation (xx, yy, zz, yz, xz, xy) that tell the program which
deformations have to be considered as active. Put 1 for active and 0
for inactive. By default, the program performs a symmetry analysis
and finds which deformations are necessary.

rec variable meaning
• A CLAMPION This option activates the computation of “clamped-ion” con-

stants.
• A PRINT This option turns on a higher level of diagnostic printing [default

minimal printing]
• A RESTART Allows restart using file ELASINFO.DAT from a previous in-

complete run.
• A RESTART2 Allows a full restart using file ELASINFO.DAT from a previous

complete run.
• A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions

is performed before starting elastic constant calculation.

Geometry optimization is performed at convergence criteria tighter than the ones given in
OPTGEOM. Some values can be modified by inserting the following keywords:

• A TOLDEG ELAPIEZO default [0.0003] - see OPTGEOM, page 162
• A TOLDEX ELAPIEZO default [0.00062] - see OPTGEOM, page 162
• A TOLDEE ELAPIEZO default [8] - see OPTGEOM, page 162
• A MAXCYCLE see OPTGEOM, page 164
• A NOTRUSTR see OPTGEOM, page 162
• A TRUSTRADIUS see OPTGEOM, page 162
• A MAXTRADIUS see OPTGEOM, page 162

Input Example:

. . . geometry input . . . .

ELAPIEZO

NUMDERIV modify default choice of n. points [3]

5

STEPSIZE modify step size for numerical gradient [0.015]

0.02

CLAMPION activates "clamped-ion" approximation

PRINT extended printing

END end of ELAPIEZO input

END geometry input

Elastic and piezoelectric tensors are printed at the end of the output (see keywords ELAST-
CON and PIEZOCON above). Moreover, piezoelectric strain tensor (converse piezoelectric
tensor) is printed:
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PIEZOELECTRIC STRAIN (CONVERSE) CONSTANTS (pC/N = pm/V)

| 0.000 0.000 0.000 0.000 -14.351 0.000 |

| 0.000 0.000 0.000 -14.351 0.000 0.000 |

| -0.256 -0.256 2.859 0.000 0.000 0.000 |

12.7 Photoelastic Constants

A fully-automated procedure for calculating the photoelastic and piezo-optic constants for an
arbitrary crystal is activated by specifying the keyword PHOTOELA in input block 1 (geom-
etry). Dielectric tensor is computed via a CPHF/KS procedure. The electronic contribution
is evaluated in the limit of infinite frequency ω →∞. Dielectric tensor at finite frequency can
be computed with sub-keyword DYNAMIC.
PHOTOELA must be the last keyword in geometry input:

. . . geometry input . . . .

PHOTOELA

END close PHOTOELA input block

END close geometry input block

Note that the user must be confident that the input structure is already well optimized. At
the beginning of the run, the forces at the central point are calculated and if they exceed 10−4,
then a warning is printed suggesting re-optimization.

Users of this option are kindly requested to cite the following papers[70]:

A. Erba and R. Dovesi, Phys. Rev. B, 88, 045121 (2013). Photoelasticity of crystals from
theoretical simulations.
A. Erba, M.T. Ruggiero, T. M. Korter and R. Dovesi, J. Chem. Phys., 143, 144504 (2015).
Piezo-Optic Tensor of Crystals from Quantum-Mechanical Calculations

Keywords, options, and defaults

A default value is chosen for all computational parameters. SCF energy convergence threshold
is set to 10−8. To modify it, see keyword TOLDEE in input block 3, page 114.

Default choices can be modified by optional keywords (in any order). There are some specific
sub-keywords controlling CPHF/KS parameters:
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rec variable meaning

• A TOLALPHA threshold on energy first derivative change between CPHF/KS cy-
cles

∗ ITOL |∆E| < 10−ITOL [default: 4]
• A FMIXING permits to mix the Fock/KS matrix derivatives

between CPHF/KS cycles n and n− 1
∗ IPMIX percentage of cycle n−1 [IPMIX=0, no mixing; default IPMIX=60]

• A DYNAMIC Activates the computation of frequency-dependent polarizabilities
and dielectric constants.

ILAMBD wave-length of radiation (expressed in nm).
• A ANDERSON Convergence accelerator. Mixing of Fock/KS matrix derivatives

(page 83)
• A BROYDEN Convergence accelerator. Mixing of Fock/KS matrix derivatives

(page 85)
∗ W0 W0 parameter in Anderson’s paper [125]
∗ IMIX Percentage of Fock/KS derivative matrices mixing
∗ ISTART Iteration after which Broyden method is activated (minimum 2)

• A NUMDERIV This sets the number of points for the numerical second derivative
∗ INUM number of points including the central (zero displacement) one

[default = 3]
• A STEPSIZE This gives the size of the displacement to be used for the calculation

of the numerical second derivative.
∗ STEP size of the strain step along a given deformation [default = 0.015]

• A DEFORM Specific deformations are asked for
∗ DEF(I), I=1,6 Six integers have to be provided, each one associated to a given

deformation (xx, yy, zz, yz, xz, xy) that tell the program which
deformations have to be considered as active. Put 1 for active and 0
for inactive. By default, the program performs a symmetry analysis
and finds which deformations are necessary.

rec variable meaning
• A CLAMPION This option activates the computation of “clamped-ion” con-

stants.
• A PRINT This option turns on a higher level of diagnostic printing [default

minimal printing]
• A PREOPTGEOM A preliminary geometry optimization of cell and atomic positions

is performed before starting elastic constant calculation.
• A RESTART Allows restart using file ELASINFO.DAT from a previous in-

complete run.
• A RESTART2 Allows a full restart using file ELASINFO.DAT from a previous

complete run.

Geometry optimization is performed at convergence criteria tighter than the ones given in
OPTGEOM. Some values can be modified by inserting the following keywords:

• A TOLDEG PHOTOELA default [0.0003] - see OPTGEOM, page 162
• A TOLDEX PHOTOELA default [0.00062] - see OPTGEOM, page 162
• A TOLDEE PHOTOELA default [8] - see OPTGEOM, page 162
• A MAXCYCLE see OPTGEOM, page 164
• A NOTRUSTR see OPTGEOM, page 162
• A TRUSTRADIUS see OPTGEOM, page 162
• A MAXTRADIUS see OPTGEOM, page 162
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Input Example:

. . . geometry input . . . .

PHOTOELA

NUMDERIV modify default choice of n. points [3]

5

STEPSIZE modify step size for numerical gradient [0.015]

0.02

CLAMPION activates "clamped-ion" approximation

PRINT extended printing

END end of PHOTOELA input

END geometry input

The elasto-optic (Pockels) tensor is printed at the end of the output:

ELASTO-OPTIC (PHOTOELASTIC) POCKELS TENSOR

| -0.242 -0.010 -0.010 0.000 0.000 0.000 |

| -0.010 -0.242 -0.010 0.000 0.000 0.000 |

| -0.010 -0.010 -0.242 0.000 0.000 0.000 |

| 0.000 0.000 0.000 -0.025 0.000 0.000 |

| 0.000 0.000 0.000 0.000 -0.025 0.000 |

| 0.000 0.000 0.000 0.000 0.000 -0.025 |

The piezo-optic tensor is then printed (in units of Brewsters):

PIEZO-OPTIC TENSOR (IN BREWSTERS; 1B = 10^-12 Pa^-1 = 1 TPa^-1)

| -0.958 0.204 0.204 0.000 0.000 0.000 |

| 0.204 -0.958 0.204 0.000 0.000 0.000 |

| 0.204 0.204 -0.958 0.000 0.000 0.000 |

| 0.000 0.000 0.000 -0.160 0.000 0.000 |

| 0.000 0.000 0.000 0.000 -0.160 0.000 |

| 0.000 0.000 0.000 0.000 0.000 -0.160 |
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Chapter 13

One-electron Properties and
Wave-function Analysis

One-electron properties and wave function analysis can be computed from the SCF wave func-
tion by running properties. At the end of the SCF process, data on the crystalline system
and its wave function are stored as unformatted sequential data in file fort.9, and as formatted
data in file fort.98 . The wave function data can be transferred formatted from one platform
to another (see keyword RDFMWF, page 282).
The data in file fort.9 (or fort.98) are read when running properties, and cannot be modified.
The data include:

1. Crystal structure, geometry and symmetry operators.

2. Basis set.

3. Reciprocal lattice k-points sampling information.

4. Irreducible Fock/KS matrix in direct space (Unrestricted: Fα, Fβ).

5. Irreducible density matrix in direct space (Unrestricted: Pα+β Pα−β).

The properties input deck is terminated by the keyword END. See Appendix C, page 391,
for information on printing.

13.1 Preliminary calculations

In order to compute the one-electron properties it is necessary to access wave function data
as binary data set: if binary data are not available in file fort.9, the keyword RDFMWF,
entered as 1st record, will read formatted data from file fort.98 and write them unformatted
in file fort.9.
Full information on the system is generated: :

a. symmetry analysis information stored in COMMON areas and modules
b. reducible Fock/KS matrix stored on Fortran unit 11
c. reducible density matrix

c.1 all electron stored on Fortran unit 13 (1st record)
c.2 core electron stored on Fortran unit 13 (2nd record)
c.3 valence electron stored on Fortran unit 13 (3rd record)

d. reducible overlap matrix stored on Fortran unit 3
e. Fock/KS eigenvectors stored on Fortran unit 10

1. a, b, c1, d, are automatically computed and stored any time you run the properties
program.

2. in unrestricted calculations, the total electron density matrix (α+β) and the spin density
matrix (α− β) are written as a unique record in fortran unit 13.
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3. The core and valence electron density matrices (c.2, c.3) are computed only by the
NEWK option when IFE=1. They are stored as sequential data set on Fortran unit
13, after the all electron density matrix. Calculation of Compton profiles and related
quantities requires such information.

4. Properties can be calculated using a new density matrix, projected into a selected range
of bands (keyword PBAN, PGEOMW), range of energy (keyword PDIDE), or con-
structed as a superposition of the atomic density matrices relative to the atoms (or ions)
of the lattice (keyword PATO). In the latter case a new basis set can be used.

When a specific density matrix is calculated [band projected (PBAN), energy projected
(PDIDE), atomic superposition (PATO)], all subsequent properties are calculated using
that matrix.

The option PSCF restores the SCF density matrix.

The keyword PMP2 (see page 302) reads the MP2 correction to the valence density
matrix. Properties can then be computed from a MP2 corrected density matrix.

13.2 Properties keywords

RDFMWF wave function data conversion formatted-binary (fort.98 → fort.9)

Preliminary calculations

NEWK Eigenvectors calculation 299 I
COMMENS Density Matrix commensurate to the Monchorst net 270 I
NOSYMADA No symmetry Adapted Bloch Functions 106 –
PATO Density matrix as superposition of atomic (ionic) densities 301 I
PBAN Band(s) projected density matrix (preliminary NEWK) 301 I
PGEOMW Density matrix from geometrical weights (preliminary NEWK) 302 I
PDIDE Energy range projected density matrix (preliminary NEWK) 302 I
PSCF Restore SCF density matrix 308 –

Properties computed from the density matrix

ADFT Atomic density functional correlation energy 261 I
BAND Band structure 263 I
BIDIERD Reciprocal form factors 264 I
CLAS Electrostatic potential maps (point multipoles approximation) 270 I
ECHG Charge density and charge density gradient - 2D grid 277 I
ECH3 Charge density - 3D grid 276 I
EDFT Density functional correlation energy (HF wave function only) 278 I
EMDLDM Electron momentum distribution (along a line) 279 I
EMDPDM Electron momentum distribution (in a plane) 280 I
HIRSHCHG Hirshfeld population analysis 100 I
KINETEMD Kinetic tensor from electron momentum density 284 I
PMP2 MP2 correction to the Valence Density Matrix 302
POLI Atom and shell multipoles evaluation 303 I
POTM Electrostatic potential - 2D grid 306 I
POT3 Electrostatic potential - 3D grid 304 I
POTC Electrostatic properties 305 I
PPAN Mulliken population analysis 106
XFAC X-ray structure factors 309 I

Properties computed from the density matrix (spin-polarized systems)
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ANISOTRO Hyperfine electron-nuclear spin tensor 262 I
HIRSHCHG Hirshfeld spin population analysis 100 I
ISOTROPIC Hyperfine electron-nuclear spin interaction - Fermi contact 283 I
POLSPIN Atomic spin density multipoles 304 I

Properties computed from eigenvectors (after keyword NEWK)

ANBD Printing of principal AO component of selected CO 261 I
BWIDTH Printing of bandwidth 270 I
DOSS Density of states 274 I
EMDL Electron momentum distribution - line 279 I
EMDP Electron momentum distribution - plane maps 282 I
PROF Compton profiles and related quantities 307 I
BOLTZTRA Transport Properties (electron conductivity, Seebeck) within the

semiclassical Boltzmann theory
268 I

New properties

SPOLBP Spontaneous polarization (Berry phase approach) 314 –
SPOLWF Spontaneous polarization (localized CO approach) 315 –
LOCALWF Localization of Wannier functions 285 I
DIEL Optical dielectric constant 272 I
ISO+POTC Mössbauer isomer shift and quadrupolar effects 315 I
TOPO Topological analysis of the electron density 318 I

Auxiliary and control keywords

ANGSTROM Set input unit of measure to Ångstrom 37 –
BASISSET Printing of basis set, Fock/KS, overlap and density matrices 264 –
BOHR Set input unit of measure to bohr 40 –
CHARGED Non-neutral cell allowed (PATO) 72 –
END Terminate processing of properties input keywords –
FRACTION Set input unit of measure to fractional 49 –
MAPNET Generation of coordinates of grid points on a plane 297 I
MAXNEIGHB maximum number of equidistant neighbours from an atom 51 I
NEIGHBOR Number of neighbours to analyse in PPAN 59 I
PRINTOUT Setting of printing options 62 I
RAYCOV Modification of atomic covalent radii 62 I
SETINF Setting of inf array options 64 I
SETPRINT Setting of printing options 64 I
STOP Execution stops immediately 65 –
SYMMOPS Printing of point symmetry operators 70 –

Info - Output of data on external units

ATOMIRR Coordinates of the irreducible atoms in the cell 262 –
ATOMSYMM Printing of point symmetry at the atomic positions 40 –
COORPRT Coordinates of all the atoms in the cell 44 –
CRYAPI OUT geometry, BS, direct lattice information 271 –
CRYAPI OUT Reciprocal lattice information + eigenvalues 271 –
EXTPRT Explicit structural/symmetry information 46 –
FMWF Wave function formatted outputi in file fort.98. Section 13.10 282 –
INFOGUI Generation of file with wf information for visualization 283 –
XML generation of XML file for electron transport with WanT ?? –
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ANBD - Principal AO components of selected eigenvectors

rec variable value meaning
• ∗ NK n Number of k points considered.

0 All the k points are considered.
NB n Number of bands to analyse

0 All the valence bands + 4 virtual are analysed.
TOL Threshold to discriminate the important eigenvector coefficients. The

square modulus of each coefficient is compared with TOL.
if NK > 0 insert II

• ∗ IK(J),J=1,NK Sequence number of the k points chosen (printed at the top of NEWK
output)

if NB > 0 insert II
• ∗ IB(J),J=1,NB Sequence number of the bands chosen

The largest components of the selected eigenvectors are printed, along with the corresponding
AO type and centre.

ADFT/ACOR - A posteriori Density Functional atomic
correlation energy

The correlation energy of all the atoms not related by symmetry is computed. The charge
density is always computed using an Hartree-Fock Hamiltonian (even when the wave function
is obtained with a Kohn-Shamm Hamiltonian).
The input block ends with the keyword END. Default values are supplied for all the compu-
tational parameters.
A new atomic basis set can be entered. It must be defined for all the atoms labelled with a
different conventional atomic number (not the ones with modified basis set only).

BECKE Becke weights [default] [17]
or

SAVIN Savin weights [198]

RADIAL Radial integration information
rec variable meaning
• ∗ NR number of intervals in the radial integration [1]
• ∗ RL(I),I=1,NR radial integration intervals limits in increasing sequence [4.]
• ∗ IL(I),I=1,NR number of points in the radial quadrature in the I-th interval [55].

ANGULAR Angular integration information
rec variable meaning
• ∗ NI number of intervals in the angular integration [default 10]
• ∗ AL(I),I=1,NI angular intervals limits in increasing sequence. Last limit is set to 9999.

[default values 0.4 0.6 0.8 0.9 1.1 2.3 2.4 2.6 2.8]
• ∗ IA(I),I=1,NI accuracy level in the angular Lebedev integration over the I-th interval

[default values 1 2 3 4 6 7 6 4 3 1].
PRINT printing of intermediate information - no input
PRINTOUT printing environment (see page 62)

TOLLDENS
• ∗ ID DFT density tolerance [default 9]
TOLLGRID
• ∗ IG DFT grid weight tolerance [default 18]

NEWBASIS a new atomic basis set is input
insert complete basis set input, Section 2.2
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ANGSTROM - unit of measure

Unit of measure of coordinates (ECHG, POTM, CLAS) See input block 1, page 37.

ANISOTRO - anisotropic tensor

rec variable meaning
• A keyword enter one of the following keywords:
• A3 ALL

The anisotropic tensor is evaluated for all the atoms in the cell
or

• A6 UNIQUE (alias NOTEQUIV) The anisotropic tensor is evaluated for all the non-
equivalent atoms in the cell

or
• A6 SELECT The anisotropic tensor is evaluated for selected atoms

• ∗ N number of atoms where to evaluate the tensor

• ∗ IA(I),I=1,N label of the atoms
• A PRINT

extended printing

The anisotropic hyperfine interaction tensor is evaluated. This quantity is given in bohr−3

and is transformed into the hyperfine coupling tensor through the relationship [225]

T[mT] =
1000

(0.529177 · 10−10)3

1

4π
µ0βNgNT = 3.4066697gNT

(see ISOTROPIC for the units and conversion factors). The elements of the T tensor at
nucleus A are defined as follows:

TA
ij =

∑
µν

∑
g

Pspin
µνg

∫
ϕµ(r)

(
r2
Aδij − 3rAirAj

r5
A

)
ϕg
ν(r)dr

where rA = |r −A| and rAi = (r −A)i (ith component of the vector).

For extended printing (tensor in original cartesian axes and in principal axis system) insert,
before the keyword ANISOTRO:

SETPRINT

1

18 1

See tests 29, 31, 32, 33.

ATOMIRR - coordinates of irreducible atoms

Cartesian and fractional coordinates of the irreducible atoms are printed. No input data
required.

ATOMSYMM

See input block 1, page 40
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13.3 Electronic Band Structure

BAND - Band structure

rec variable value meaning
• A TITLE any string (max 72 characters).
• ∗ NLINE > 0 number of lines in reciprocal space to be explored (max 20)).

ISS shrinking factor in terms of which the coordinates of the extremes of
the segments are expressed.

NSUB total number of k points along the path.
INZB first band
IFNB last band
IPLO 0 eigenvalues are not stored on disk.

= 1 formatted output for plotting; see Appendix D, page 396
LPR66 6= 0 printing of eigenvalues

if ISS > 0 then
add NLINE records

• ∗ I1,I2,I3 integers that define the starting point of the line (I1/ISS b1+I2/ISS
b2+I3/ISS b3), with b1,b2,b3 reciprocal lattice vectors.

J1,J2,J3 integers that define the final point of the line (J1/ISS b1+J2/ISS
b2+J3/ISS b3) with b1,b2,b3 reciprocal lattice vectors.

if ISS = 0 then
add NLINE records

• ∗ LABELA label of the the starting point of the line (see tables 13.1 and 13.2
below for a legend).

LABELB label of the the final point of the line (see tables 13.1 and 13.2 below
for a legend).

The band structure along a given path n the Brillouin zone is computed. The data are printed
in standard output and (if IPLO = 1) written in file fort.25 (formatted data processed by Cr-
gra2006) and in file BAND.DAT (processed by DLV; see http://www.cse.clrc.ac.uk/cmg/DLV).
See Appendix D, page 396).
When all the starting and terminal points are chosen to coincide with special (high
symmetry) ones, it is possible to write the conventional label of each point instead
of its coordinates (this option is activated by putting ISS=0). These labels have to
be expressed as letters in the latin alphabet: the Γ point is identified by letter G.
Apart from Γ, the labels of the special points are different for each Bravais lattice:
the convention adopted for the special points and their position in the Brillouin
zone can be found in tables 13.1 and 13.2 below. For instance, in the MgO case (fcc
lattice), two equivalent inputs would read:

BAND

MGO

2 0 30 1 18 1 0

G X

X W

and:

BAND

MGO

2 12 30 1 18 1 0

0 0 0 6 0 6

6 0 6 6 3 9

1. Warning : does not run for molecules!! (0D)

2. For a correct interpretation of HF band-structure and DOS’s, it must be stressed that
the HF eigenvalues are not a good approximation to the optical excitation spectrum of
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the crystal. However, as discussed in section III.2 of reference [175] and in Chapter 2 of
reference [171], the band structures, in conjunction with total and projected DOS’s, can
be extremely useful in characterizing the system from a chemical point of view.

3. Note on band extremes coordinates: in two-(one-) dimensional cases I3, J3 (I2,I3,J2,J3)
are formally input as zero (0). See test 3 and 6.

4. The only purpose of ISS is to express the extremes of the segments in integer units (see
tests 8-9). It does not determine the density of k points along the lines, which depends
only on NSUB. The number of k points for each line is computed by the program. The
step is constant along each line. The step is taken as close as possible to a constant along
different lines.

5. If symmetry adapted Bloch functions are used (default option), BAND generates sym-
metry information in k points different from the ones defined by the Monkhorst net.
Eigenvectors computed by NEWK in k points corresponding to the Monkhorst net are
not readable any more. To compute density of states and bands, the sequence must be:
BAND - NEWK - DOSS.

6. The ISS=0 option does not recognize the labels of every special points; the ones recognized
are only those reported in tables 13.1 and 13.2.

See tests 3, 4, 6, 7, 8, 9, 11, 12 and 30.

BASISSET - Printing of basis set and data from SCF

rec variable value meaning
• ∗ NPR number of printing options.

if NPR 6= 0 insert prtrec (see page 64) II

This option allows printing of the basis set and the computational parameters, and, on re-
quest (keyword PRINTOUT before BASISSET), of the Fock/KS matrix (FGRED), the
overlap matrix (OVERLAP), and the reducible density matrix (PGRED), in direct lattice
representation.
Warning: the contraction coefficients of the primitive gaussians are different from the ones
given in input. See “Normalization coefficients”, Appendix E.
Printing options:
59 (Density matrix); 60 (Overlap matrix); 64 (Fock/KS matrix).

13.4 Compton Profiles - from B(r) Function

BIDIERD - Reciprocal form factors

This option evaluates the reciprocal form factors (RFF) (also called auto-correlation function)
for any direction directly from the direct space density matrix.
Compton Profiles (CPs) can be computed by Fourier transforming the RFF with the PROF
sub-keyword below. The starting auto-correlation function must be of good quality in order to
get good CPs. Both RFFs and CPs can be convoluted (see CONV sub-keyword) in order to
be compared with the experiments (affected by the finite resolution of the spectrometer); this
procedure is performed by multiplying the RFF by the gaussian function g(r)σr :

g(r)σr = e
− r2

2σ2r where σr =
1

σp
=

2
√

2log2

FWHMp

where FWHMp, the convolution parameter, has to be defined in input by the user (in atomic
units); the r and p subscripts identify quantities in coordinates and momentum space, respec-
tively. The anisotropies of the RFFs and the CPs can be evaluated via the DIFF sub-keyword.
This block must be ended by ENDB. It works also for open-shell systems.
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Table 13.1: Labels and fractional coordinates (referred to reciprocal space lattice parameters
of the primitive cell) of the special points recognized in input for each Bravais lattice. FC =
face centered, BC = body centered, AC = base centered.

Lattice Point Coordinates

P Cubic
M 1

2
1
2 0

R 1
2

1
2

1
2

X 0 1
2 0

FC Cubic
X 1

2 0 1
2

L 1
2

1
2

1
2

W 1
2

1
4

3
4

BC Cubic
H 1

2
−1
2

1
2

P 1
4

1
4

1
4

N 0 0 1
2

Hexagonal
or

P Trigonal

M 1
2 0 0

K 1
3

1
3 0

A 0 0 1
2

L 1
2 0 1

2
H 1

3
1
3

1
2

Rhombohedral
(R Trigonal)

T 1
2

1
2
−1
2

F 0 1
2

1
2

L 0 0 1
2

P Monoclinic

A 1
2
−1
2 0

B 1
2 0 0

C 0 1
2

1
2

D 1
2 0 1

2
E 1

2
−1
2

1
2

Y 0 1
2 0

Z 0 0 1
2

AC Monoclinic
A 1

2 0 0
Y 0 1

2
1
2

M 1
2

1
2

1
2
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Table 13.2: Labels and fractional coordinates (referred to reciprocal space lattice parameters
of the primitive cell) of the special points recognized in input for each Bravais lattice. FC =
face centered, BC = body centered, AC = base centered.

Lattice Point Coordinates

P Orthorombic

S 1
2

1
2 0

T 0 1
2

1
2

U 1
2 0 1

2
R 1

2
1
2

1
2

X 1
2 0 0

Y 0 1
2 0

Z 0 0 1
2

FC Orthorombic
Z 1

2
1
2 0

Y 1
2 0 1

2
T 1 1

2
1
2

AC Orthorombic

S 0 1
2 0

T 1
2

1
2

1
2

R 0 1
2

1
2

Y 1
2

1
2 0

Z 0 0 1
2

BC Orthorombic

S 1
2 0 0

T 0 0 1
2

R 0 1
2 0

X 1
2
−1
2

1
2

W 1
4

1
4

1
4

P Tetragonal

M 1
2

1
2 0

R 0 1
2

1
2

A 1
2

1
2

1
2

X 0 1
2 0

Z 0 0 1
2

BC Tetragonal
M 1

2
1
2
−1
2

P 1
2

1
2

1
2

X 0 0 1
2
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By using the alternative PROF keyword (see page 307), followed by the BR sub-keyword,
it is possible to obtain the RFF by Fourier transforming the Compton profiles. As the latter
implies numerical integration, the BIDIERD keyword is expected to provide more accurate
results.
Both auto-correlation functions and Compton profiles are saved in two-column format in the
external unit CP.DAT

Users of this option for the calculation of CPs are kindly requested to cite the
following paper[78]:

A. Erba, C. Pisani, S. Casassa, L. Maschio, M. Schütz and D. Usvyat, Phys. Rev. B., 81,165108
(2010). A MP2 versus DFT theoretical investigation of the Compton profiles of crystalline urea.

rec variable value meaning
• ∗ NDIR number of directions along which the RFF are evaluated

NPU number of sampling points along each direction
STEP step along each direction
IMODO 0: the direction is defined by the Cartesian coordinates (bohr) of a point

6= 0: the direction is defined by the atom label and indices of the cell where
the atom is located

ICASO 1: the total density matrix is used
2: the core density matrix is used
3: the valence density matrix is used

• A4 CONV Convolution of the B(r) previously computed
• ∗ FWHMp convolution parameter (a.u.)
• A4 PROF Compton Profiles computed as Fourier Transforms of the B(r)
• ∗ NPOIP number of points along each direction

STEPC step along each direction (a.u.)
• A4 DIFF B(r) and CPs anisotropies are computed
• A3 DIR The directions are specified

if IMODO=0, insert NDIR records
• ∗ X Y Z the explored direction is defined by the straight line going from the

origin to (X,Y,Z)
if IMODO6=0, insert NDIR records

• ∗ I XG YG
ZG

label of the atom and indices of the cell where the atom is located. The
explored direction is defined by the straight line going from the origin
to the atom position

• A4 END End block autocorrelation functions

Notes:
The explored interval is (NPU−1)×STEP long; X,Y,Z or I,XG,YG,ZG data are just used for
defining the direction, NOT the length of the explored interval.
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13.5 Transport Properties

BOLTZTRA- Boltzmann Transport Properties

mandatory keywords II
rec variable meaning
• A TRANGE Temperature range for transport properties calculation
∗ T1,T2,TS 3 reals, temperature range (K) from T1 to T2, TS is the

temperature step
• A MURANGE Chemical potential range for transport properties calcula-

tion
∗ E1,E2,ES 3 reals, chemical potential range (eV) from E1 to E2, ES is

the chemical potential step
• A TDFRANGE Energy range of distribution function for transport proper-

ties calculation
∗ EDF1,EDF2,EDFS 3 reals, energy range of distribution function (eV) from

EDF1 to EDF2, EDFS is the energy step
optional keywords II

rec variable value meaning
• A RELAXTIM τ constant within the relation time approximation for trans-

port properties calculation
∗ T 1 real, T is the electron lifetime (fs), τ (default 10.fs)

• A SMEAR smearing of distribution function for transport properties
calculation

∗ S 1 real, smearing coefficient (default 0.)
• A SMEARTYP smearing type for transport properties calculation
∗ ST -2 cold smearing (Marzari-Vanderbilt)

-1 Fermi-Dirac
0≤ST≥10 Methfessel-Paxton (default 0)

The electrical conductivity, the Seebeck coefficient and the thermal conductivity can be esti-
mated by calculating the three so-called transport coefficients. Their expression can be ob-
tained solving, in the relaxation time approximation, the Boltzmann’s transport equation. A
detailed description of the semiclassical Boltzmann transport theory is beyond our scope. For
a thorough explanation see Refs. [9, 244, 108].
Here, we limit to the main results of this theory i.e. operative equations: σ, σS and κel,

[σ]qr(µ, T ) = e2

∫
dE
(
− ∂f0

∂E

)
Ξqr(E) (13.1)

[σS]qr(µ, T ) =
e

T

∫
dE
(
− ∂f0

∂E

)
(E − µ)Ξqr(E) (13.2)

[κe]qr(µ, T ) =
1

T

∫
dE
(
− ∂f0

∂E

)
(E − µ)2Ξqr(E) (13.3)

where µ is the chemical potential or the Fermi level, E is the energy, f0 is the Fermi-Dirac
distribution and Ξ is the transport distribution function (TDF). In the Equations above, for
the sake of simplicity we define core of the transport coefficients, Ξ, as

Ξqr(E) = τ
∑
k

1

Nk

1

V

∑
i,j

vi,q(k)vj,r(k)δ
(
E − Ei(k)

)
(13.4)

where vi,q(k) is the velocity of the ith band calculated along the cartesian direction q, τ
is the lifetime which is assumed to be constant according to the relax time approximation.
The δ function is approximated by a suitable smearing function, that can be set using the
SMEARTYP keyword.
From the theoretical point of view, the band velocity is the critical quantity that has to be
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calculated. In atomic unit (a.u.) its expression is the derivative of the band energies E(i,k),
with respect to a reciprocal space vector kq

vi,q(k) =
∂Ei(k)

∂kq
. (13.5)

At the end of the calculation, the code saves five formatted DAT files: SIGMA.DAT which
contains Eq. 13.1, SEEBECK.DAT where the Seebeck coefficient is stored, SIGMAS.DAT for
Eq. 13.2, KAPPA.DAT for Eq. 13.3 and TDF.DAT for Eq. 13.4.
The structure of the files for a closed shell calculation (CS) is common for all the different
kinds and it is as follow:

1 # 0 [Electrical conductivity in SI units, i.e. in 1/Ohm/m]
2 # Mu(eV) T(K) N(#carriers) sigma_xx sigma_xy sigma_yy
3 #T(K) = 300.000 Npoints = 1001 V(cm^3) = 7.676E-23

... ... ... ... ... ...
1005 #T(K) = 500.000 Npoints = 1001 V(cm^3) = 7.676E-23

... ... ... ... ... ...

The first line of the header specifies the kind of calculation, 0 or 1 for CS and OS respectively,
and the transport phenomenon. In line 2 we explain the meaning of the numbers of each
column, from left they stand for chemical potential,temperature, number of carriers and tensor
components. In line 3, further information are provided for plotting with the CRYSPLOT
package (see boh). The structure for an open shell calculation (OS) is:

1 # 1 [Alpha Electrical conductivity in SI units, i.e. in 1/Ohm/m]

2 # Mu(eV) T(K) N(#carriers) sigma_xx sigma_xy sigma_yy

3 #T(K) = 300.000 Npoints = 1001 V(cm^3) = 7.676E-23

... ... ... ... ... ... ... ... ...

3 #T(K) = 500.000 Npoints = 1001 V(cm^3) = 7.676E-23

... ... ... ... ... ... ... ... ...

1 # 1 [Beta Electrical conductivity in SI units, i.e. in 1/Ohm/m]

2 # Mu(eV) T(K) N(#carriers) sigma_xx sigma_xy sigma_yy

3 #T(K) = 300.000 Npoints = 1001 V(cm^3) = 7.676E-23

... ... ... ... ... ... ... ... ...

3 #T(K) = 500.000 Npoints = 1001 V(cm^3) = 7.676E-23

... ... ... ... ... ... ... ... ...

For these calculations, in the first line of the header wil appear 1, see above, and the electron

spin specification, alpha or beta.

Notes:

• the Seebeck coefficient, SEEBECK.DAT file, is not spin dependent;

• the SIGMAS.DAT, in OS calculations, will have an alpha and beta headers;

• the numbers of carriers (N) has been computed by means of:

Nµ,T (E) =
n

Nk

∑
k

∑
i

f0

(
E,µ, T

)
Θ
(
E−Ei(k)

)
=

n

Nk

∑
k

∑
i

1

exp
(
E−µ
kBT

)
+ 1

Θ
(
E−Ei(k)

)
(13.6)

where f0 is the Fermi-Dirac distribution, Θ
(
E − Ei(k)

)
is the theta function, n is the

number of electron per state and Nk is the number of k-points in the IBZ.

BOHR - unit of measure

Unit of measure of coordinates (ECHG, POTM, CLAS) See input block 1, page 40.
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BWIDTH - Printing of band width

rec variable meaning
• ∗ INZB first band considered

0 analysis from first valence band
IFNB last band considered
0 analysis up to first 4 virtual bands

The Fock/KS eigenvalues are ordered in bands following their values. Band crossing is not

recognized.

CHARGED - charged reference cell

See input block 2, page 72.

To be used before PATO, when new basis set and/or electron configuration of the atoms result

in a charged cell.

CLAS - Point charge electrostatic potential maps

rec variable value meaning
• ∗ IDER 0 potential evaluation

1 calculation of potential and its first derivatives
IFOR 0 point multipoles have to be evaluated by POLI option

1 point formal charges given as input
if IFOR 6= 0 insert II

• ∗ Q(I),I=1,NAF formal net charge for all the NAF atoms in the unit cell (equivalent
and non equivalent, following the sequence printed at the top of the
properties printout)

insert MAPNET input records (page 297)

1. When IDER=0, the electrostatic potential is calculated at the nodes of a 2-dimensional

net in a parallelogram-shaped domain defined by the segments AB and BC (see keyword

MAPNET, page 297). The potential values are written formatted in file fort.25. (see

Appendix D, page 395).

2. When IDER 6= 0, the electrostatic potential gradient is computed at the nodes of the

same grid. The x, y and z components are printed on the standard output.

3. The potential is generated by an array of point multipoles up to a maximum order IDIPO

defined in the POLI option input, or by atomic point charges given in input (IFOR=1;

IDIPO = 0 is set in that case).

4. The multipoles must be previously computed by running the option POLI when IFOR

is equal to zero.

COORPRT

See input block 1, page 44.

COMMENS - Density Matrix commensurate to Monkhorst grid

rec variable value meaning
• ∗ ICASO 0 total density matrix

1 core density matrix
2 valence density matrix
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The COMMENS keyword has to be inserted as first record in the Properties input before

the NEWK keyword. It activates the construction of the Density Matrix (DM) P ≡ P g
µν

(where µ and ν label two atomic orbitals χµ(r) and χν(r) and g represents a lattice vector)

with the index g running over a number of cells L commensurate to the number L of k-

points of the Monkhorst-Pack grid where the one-electron Hamiltonian is diagonalized and the

crystalline orbitals computed.

If this option is not activated, the truncation over g in the definition of the DM is imposed by

the first tolerance TOL1 of the integrals: those elements P g
µν are disregarded that correspond

to product distributions Π(r) = χµ0(r)χνg(r) for which the pseudo-overlap between the two

AOs is less than 10−TOL1.

The DM obtained in this way can be used for computing electron momentum densities, auto-

correlation functions and Compton profiles (see keywords BIDIERD, EMDLDM, EMD-

PDM). See the discussion in section 17.8 (page 355) for further details.

DENSMAT - First order density matrix ρ(r, r′) - developers only

First order density matrix ρ(r, r′) along a given path is computed.

The variable r′ explores the same interval as r.

For UHF cases two matrices are generated, one corresponding to the total and the other to the

spin density matrix.

rec variable value meaning
• ∗ NKN number of knots in the path (=number of segments+1)

NPU number of sampling points along the full path
IPLOT 0: data are not saved for plot

= 1: data are saved in file fort.25
IMODO 0: knot coordinates (x, y, z) in a. u.

6= 0: knots are defined through atom labels
LPR 6= 0: print the ρ(r, r′) matrix in integer form (values are multiplied by 10000)

if IMODO=0, insert NKN records
• ∗ X Y Z Cartesian coordinates (bohr) of the i-th knot

if IMODO6=0, insert:
• ∗ DX DY

DZ
displacement (bohr) applied to all atoms defining the path

insert NKN records
• ∗ I XG YG

ZG
label of the atom and indices of the cell where the atom is located

• A NPU×NPU square matrix is generated.

• The step between contiguous sampling points belonging to different segments is the same.

• Meaning of the displacement: suppose you want the density matrix corresponding to the

π structure of benzene. Define, for example, the path H–C–C–C–H through the atom

labels and then displace it along z (if the molecule is in the x−y plane) by an appropriate

amount.

CRYAPI OUT - Geometry, BS, and full wave function information

Geometry, local function Basis Set, overlap, hamiltonian, density matrices n direct lattice are

written formatted in file GRED.DAT

Wannier functions (if file fort.80 is present; see keyword LOCALWF, page 285) are appended

to file GRED.DAT
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k points coordinates (Monkhorst sampling net) and eigenvectors (if computed by NEWK page

299) in the full Brillouin zone are written formatted in file KRED.DAT.

The scripts runcry06/runprop06 save files GRED.DAT and KRED.DAT (if present) as

inpfilename.GRED and inpfilename.KRED

The utility program cryapi inp reads and prints the data. The organization of data can be

understood from the output of cryapi inp and from its source.

See Appendix D, page 404.

DIEL/DIELECT - Optical dielectric constant

Computes the dielectric constant of the system along the periodic direction where an external

electric field has been applied during the SCF calculation (using keyword FIELD, page 46).

The dielectric constant is calculated by using the concept of macroscopic average of the total

charge density (see for example Fu et al. [91]) and Poisson’s equation. The charge density is

first averaged with respect to the (infinite) plane orthogonal to the field

ρ(z) =
1

A

∫
A

ρ(z) dA (13.7)

where A = |~a×~b|, and ~a and ~b are the lattice parameters of the supercell orthogonal to the field

direction. When a Fourier representation of the charge density is used, the previous equation

becomes:

ρ(z) =
1

V

+∞∑
`=−∞

F00` e
−ı 2π`zC (13.8)

F00` are structure factors (note that the two first indices are always zero) calculated analytically

from the SCF crystalline orbitals depending now on the applied field. The quantity ρ is then

averaged with respect to the z coordinate

ρ(z) =
1

∆z

z+∆z/2∫
z−∆z/2

ρ(z′) dz′ (13.9)

that is

ρ(z) =
1

V

+∞∑
`=−∞

F00` sinc

(
`π

∆z

C

)
e−ı

2π`z
C (13.10)

where the sinc function is the cardinal sinus (sinc(u) = sin(u)
u ) and ∆z has been chosen equal

to c; we can now apply Poisson’s equation to ρ(z):

∂2V (z)

∂z2
= −4πρ(z) (13.11)

or
∂E(z)

∂z
= 4πρ(z) (13.12)

because

∂V (z)

∂z
= −E(z) (13.13)

V (z), F (z) and ρ(z) are the mean values of the macroscopic electric potential, electric field

and electron density at z position along the electric field direction.

Structure factors can be separated in a real and an imaginary part:

F00` = F<00` + ıF=00` (13.14)
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Exploiting the following properties of the structure factors:

F000 = Ne (number of electrons in the supercell) (13.15)

F<00` = F<00−`

F=00` = −F=00−`

the real and imaginary parts of ρ take the following form:

<
[
ρ(z)

]
=
Ne
V

+
2

V

+∞∑
`=1

[
F<00` cos

(
2π`z

C

)
+ F=00` sin

(
2π`z

C

)]
sinc

(
`π

∆z

C

)
(13.16)

=
[
ρ(z)

]
= 0 (13.17)

As expected, the imaginary part is null. The Ne/V term can be disregarded, as it is exactly

canceled by the nuclear charges in the supercell.

According to equation 13.13, the local macroscopic field corresponds to minus the slope of

V (z), it has opposite sign with respect to the imposed outer field, according to the Lenz law,

and is obtained from ρ(z)(eq. 13.12):

E(z) =
8π

V

+∞∑
`=1

[
F<00`

sin
(

2π`z
C

)(
2π`
C

) − F=00`

cos
(

2π`z
C

)(
2π`
C

) ]
sinc

(
`π

∆z

C

)
(13.18)

The corresponding macroscopic electric potential can be written as follows:

V (z) =
−8π

V

+∞∑
`=1

[
F<00`

cos
(

2π`z
C

)(
2π`
C

)2 + F=00`

sin
(

2π`z
C

)(
2π`
C

)2
]

sinc

(
`π

∆z

C

)
(13.19)

Since −E and E0 have opposite sign, the ratio E0/(E0+E) is larger than one, and characterizes

the relative dielectric constant of the material along the direction of the applied field:

ε =
E0

E0 + E
(13.20)

The number of structure factors computed for a Fourier representation of the perturbed charge

density by default is equal to 300, the structure factors from F001 to F00 300.

The data computed are written in file DIEL.DAT in append mode. See Appendix D, page 396.

Available keywords are:

rec variable meaning
• A END end of DIEL input block

optional keywords II
• A PRINT extended output
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13.6 Electronic Density-of-State

DOSS - Density of states

rec variable value meaning
• ∗ NPRO 0 only total DOS is calculated

> 0 total DOS and NPRO projected densities are calculated.
NPT number of uniformly spaced energy values where DOSs are calculated, from

bottom of band INZB to top of band IFNB.
INZB first band considered in DOS calculation
IFNB last band considered in DOS calculation
IPLO 0 DOSs are not stored on disk

1 formatted output to file fort.25 for plotting (Appendix D, page 396).
2 formatted output to file DOSS.DAT for plotting (Appendix D, page 397).

NPOL number of Legendre polynomials used to expand DOSS (≤ 25)
NPR number of printing options to switch on

if INZB and IFNB < 0 insert II
• ∗ BMI,BMA Minimum and maximum energy (hartree) values to span for DOSS. They

must be in a band gap
if NPRO 6= 0, insert NPRO records II

• ∗ N > 0 DOS projected onto a set of N AOs
< 0 DOS projected onto the set of all AOs of the N atoms.

NDM(J),J=1,N vector NDM identifies the AOs (N>0) or the atoms (N<0) by their sequence
number (basis set order)

if NPR 6= 0, insert prtrec (see page 64) II

Following a Mulliken analysis, the orbital (ρµ), atom (ρA) and total (ρtot) density of states can

be defined for a closed shell system as follows:

ρµ(ε) = 2/VB
∑
j

∑
ν

∫
BZ

dkSµν(k)aµj(k)a∗νj(k) δ[ε− εj(k)] (13.21)

ρA(ε) =
∑
µ∈A

ρµ(ε) (13.22)

ρtot(ε) =
∑
A

ρA(ε) (13.23)

where the last sum extends to all the atoms in the unit cell.

Bond population density of states are not computed.

1. Warning: do not run for molecules!

2. The NEWK option must be executed (to compute Hartree-Fock/KS eigenvectors and

eigenvalues) before running DOSS. The values of the input parameters IS and ISP of

NEWK have a consequent effect on the accuracy of the DOSS calculation. Suggested

values for IS: from 4 to 12 for 3-D systems, from 6 to 18 for 2-D and 1-D systems (Section

17.7, page 355). ISP must be equal or greater than 2*IS; low values of the ratio ISP/IS

can lead to numerical instabilities when high values of NPOL are used.

If BAND is called between NEWK and DOSS, and symmetry adapted Bloch functions

are used (default option), the information generated by NEWK is destroyed. To compute

density of states and bands, the sequence must be: BAND - NEWK - DOSS.

3. DOSS are calculated according to the Fourier-Legendre technique described in Chapter

II.6 of reference 1, and in C. Pisani et al, ([172, 173]). Three computational parameters

must be defined: NPOL, IS, ISP. IS and ISP are entered in the NEWK option input.
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4. NPOL is the number of Legendre polynomials used for the expansion of the DOS. The

value of NPOL is related to the values of IS and ISP, first and second input data of

NEWK option.

Suggested values for NPOL: 10 to 18.

5. Warning NEWK with IFE=1 must be run when spin-polarized solutions (SPIN-

LOCK, page 113) or level shifter (LEVSHIFT, page 102) were requested in SCF,

to obtain the correct Fermi energy and eigenvalues spectra.

6. Unit of measure: energy: hartree; DOSS: state/hartree/cell.

Computed data are written in file fort.25 (in Crgra2006 format), and in file DOSS.DAT

Printing options: 105 (density of states and integrated density of states); 107 (symmetrized

plane waves).

See tests 3, 4, 5, 6, 7, 8, 9, 11 and 30.

13.7 Crystal Orbital Overlap/Hamiltonian Populations

Similar to the density of states calculation, a crystal orbital overlap/Hamiltonian population

(COOP/COHP) analysis allows for the investigation of electronic states within a material. But

in contrast to the DOS, a COOP/COHP calculation is specifically aimed at the interaction

between two selected groups of orbitals/atoms. Thus, information regarding bonding and anti-

bonding states, bond orders, and interaction strengths can be obtained in a straightforward

fashion.

The difference between the COOP and COHP analyses lie in the usage of either the overlap

matrix (S) or the Hamiltonian matrix (H) elements for COOP and COHP, respectively. The

former provides a measure of the bond order, while the latter a measure of bond strength. The

mathematical form is very similar to that of a projected DOS equation:

COOPA−B(ε) =
2

VB

∑
j

∑
µ∈A

∑
ν∈B

∫
BZ

Sµν(k)a∗µj(k)aνj(k)δ(ε− εj(k))dk

COHPA−B(ε) =
2

VB

∑
j

∑
µ∈A

∑
ν∈B

∫
BZ

Hµν(k)a∗µj(k)aνj(k)δ(ε− εj(k))dk

Two keywords are available to compute these quantities: COOP and COHP.

As with the calculation of the density of states, the COOP/COHP calculations require the

Fock/KS eigenvectors at each k point defined by Pack-Monkhorst net, which need to be recal-

culated using the keyword NEWK.

The INPUT format for the crystal orbital overlap population (COOP) and the crystal orbital

Hamiltonian population (COHP) calculations are essentially identical, and both can be run

simultaneously.

Users of this module are kindly asked to cite the following reference:

M.T. Ruggiero, A. Erba, R. Orlando and T. M. Korter, Phys. Chem. Chem. Phys., 17,

31023-31029 (2015)
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rec variable value meaning
• ∗ NINT number of interactions A-B

NPT number of uniformly spaced energy values where COOP/COHP are calcu-
lated, from bottom of band INZB to top of band IFNB.

INZB first band considered in COOP/COHP calculation
IFNB last band considered in COOP/COHP calculation
IPLO 0 COOP/COHP are not stored on disk

1 formatted output to file fort.25 for plotting (Appendix D, page 396).
2 formatted output to file COOP.DAT or COHP.DAT for plotting (Appendix

D, page 397).
NPOL number of Legendre polynomials used to expand COOP/COHP (≤ 25)
NPR number of printing options to switch on

if INZB and IFNB < 0 insert II
• ∗ BMI,BMA Minimum and maximum energy (hartree) values to span for DOSS. They

must be in a band gap
insert NINT records II

• ∗ NA > 0 Number of AOs of center A (to be listed in the line below)
< 0 All AOs of NA atoms (to be listed in the line below) included in center A

NDM(J),J=1,NA List of AOs (if NA>0) or atoms (if NA<0) by their sequence number (basis
set order)

• ∗ NB > 0 Number of AOs of center B (to be listed in the line below)
< 0 All AOs of NB atoms (to be listed in the line below) included in center B

NDM(J),J=1,NB List of AOs (if NB>0) or atoms (if NB<0) by their sequence number (basis
set order)

if NPR 6= 0, insert prtrec (see page 64) II

For the calculation of COOP/COHP the following information must be specified:

The number of interactions to explore

The number of points along the energy range at which the COOP/COHP is calculated

The range of energy to explore. It can be defined by two bands (the range is from the bottom

of the first band to the top of the second band), or by two energies.

The way in which the COOP/COHP data is written

The degree of the polynomials to be used in the COOP/COHP expansion

Any printing options (see the manual)

Followed by the selection of the orbitals or atoms that are to be included in the two groups

Selection of either orbital (positive) or atomic (negative) indices and the number of or-

bitals/atoms to include in the group

The label of the orbital(s) or atom(s)

13.8 3D Electron Charge Density

ECH3 - Electronic charge (spin) density on a 3D grid

rec variable meaning
• ∗ NP Number of points along the first direction

if non-3D system

keyword to choose the type of grid on the non-periodic direction(s):
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SCALE RANGE
length scales for non-periodic dimensions boundary for non-periodic dimensions (au)

if 2D system
• ∗ ZSCALE • ∗ ZMIN

• ∗ ZMAX

if 1D system
• ∗ YSCALE,ZSCALE • ∗ YMIN,ZMIN

• ∗ YMAX,ZMAX

if 0D system
• ∗ XSCALE,YSCALE,ZSCALE • ∗ XMIN,YMIN,ZMIN

• ∗ XMAX,YMAX,ZMAX

The electronic charge [and spin density] (electron/bohr3)is computed at a regular 3-dimensional

grid of points. The grid is defined by the lattice vectors of the primitive unit cell and user

defined extents in non-periodic directions. NP is the number of points along the first lattice

vector (or XMAX-XMIN for a molecule). Equally spacing is used along the other vectors.

Non-periodic extents may be specified as an explicit range (RANGE) or by scaling the extent

defined by the atomic coordinates (SCALE).

Formatted data are written to file fort.31 (function value at the grid points) in the format

required by the visualization program DLV.

See Appendix D, page 401, for description of the format.

Function data computed at 3D grid points are written according to GAUSSIAN CUBE format

in files:

DENS CUBE.DAT charge density
SPIN CUBE.DAT spin density

PS. The sum of the density values divided by the number of points and multiplied by the

cell volume (in bohr, as printed in the output) gives a very rough estimate of the number of

electrons in the cell.

13.9 2D Electron Charge Density

ECHG - Electronic charge density maps and charge density gradient

rec variable value meaning
• ∗ IDER n order of the derivative - < 2

insert MAPNET input records (Section 13.11, page 297)

1. IDER=0

The electron charge density (and in sequence the spin density, for unrestricted wave func-

tions) is calculated at the nodes of a 2-dimensional net in a parallelogram-shaped domain

defined by the segments AB and BC (see keyword MAPNET, page 297). The electron

density values (electron bohr−3) are written formatted in file fort.25 (see Appendix D,

page 395).

2. IDER=1

electron charge density, x, y, z component of first derivative, and modulus of the deriva-

tive, are written. The string in the header is always ”MAPN”.

3. When the three points define a segment (A≡B or B≡C), function data are written in file

RHOLINE.DAT. (see Appendix D, page 395)
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4. When IDER 6= 0, the charge density gradient is computed at the nodes of the same grid.

The x, y and z components are printed on the standard output and written formatted in

file fort.25 (see Appendix D, page 395).

5. The electron charge density is computed from the density matrix stored in file fort.31.

The density matrix computed at the last cycle of SCF is the default.

6. Band projected (keyword PBAN), energy projected (keyword PDIDE) or atomic su-

perposition (keyword PATO) density matrices can be used to compute the charge den-

sity. The sequence of keywords must be: (NEWK-PBAN-ECHG), (NEWK-PDIDE-

ECHG) or (PATO-ECHG).

EDFT/ENECOR -A posteriori Density Functional correlation energy

Estimates a posteriori the correlation energy via a HF density. It is controlled by keywords.

The input block ends with the keyword END. All the keywords are optional, as default values

for all the integration parameters are supplied by the program, to obtain reasonably accurate

integration of the charge density. Please check the integration error printed on the output.

BECKE Becke weights [default] [17]
or

SAVIN Savin weights [198]

RADIAL Radial integration information
rec variable meaning
• ∗ NR number of intervals in the radial integration [1]
• ∗ RL(I),I=1,NR radial integration intervals limits in increasing sequence [4.]
• ∗ IL(I),I=1,NR number of points in the radial quadrature in the I-th interval [55].

ANGULAR Angular integration information
rec variable meaning
• ∗ NI number of intervals in the angular integration [default 10]
• ∗ AL(I),I=1,NI angular intervals limits in increasing sequence. Last limit is set to 9999.

[default values 0.4 0.6 0.8 0.9 1.1 2.3 2.4 2.6 2.8]
• ∗ IA(I),I=1,NI accuracy level in the angular Lebedev integration over the I-th interval

[default values 1 2 3 4 6 7 6 4 3 1].
PRINT printing of intermediate information - no input
PRINTOUT printing environment (see page 62)

TOLLDENS
• ∗ ID DFT density tolerance [default 9]
TOLLGRID
• ∗ IG DFT grid weight tolerance [default 18]
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13.10 Electron Momentum Density

EMDL - Electron Momentum Density - line maps

rec variable value meaning
• ∗ N number of directions (≤ 10)

PMAX maximum momentum value (a.u.) for which the EMD is to be calcu-
lated

STEP interpolation step for the EMD
IPLO 0 no data stored on disk

1 formatted output to file fort.25 for plotting (Appendix D, page 397).
2 formatted output to file LINEA.DAT for plotting (Appendix D,

page397).
LPR113 6= 0 printing of EMD before interpolation

• ∗ (K(I,J),
I=1,3),J=1,N

directions in oblique coordinates

• ∗ NPO number of orbital projections (≤ 10)
NPB number of band projections(≤ 10)

if NPO 6= 0 insert NPO sets of records II
• ∗ NO number of A.O.’s in the I-th projection
• ∗ IQ(I),I=1,NO sequence number of the A.O.’s in the I-th projection - basis set se-

quence.
if NPB 6= 0 insert NPB sets of records II

• ∗ NB number of bands in the I-th projection
• ∗ IB(I),I=1,NB sequence number of the bands in the I-th projection

Warning The calculation of the Fermi energy is necessary for metallic systems (NEWK

keyword with IFE = 1). The Electron Momentum Density is calculated along given directions

(equation 17.22, page 356). It can be computed also for open-shell systems. The electron

momentum distribution, EMD, is a non-periodic function; it falls rapidly to zero outside the

first Brillouin zone. ρ(0) gives the number of electrons at rest. The oblique coordinates

directions given in input refer to the conventional cell, not to the primitive cell, for 3D systems.

Example: in a FCC system the input directions refer to the orthogonal unit cell frame (sides

of the cube) not to the primitive non-orthogonal unit cell frame.

EMDLDM - Electron Momentum Density from Density Matrix - line
path

Users of this option are kindly requested to cite the following papers[77, 176]:

A. Erba and C. Pisani, J. Comput. Chem., 33, 822 (2012). Evaluation of the electron mo-

mentum density of crystalline systems from ab initio linear combination of atomic orbitals

calculations.

C. Pisani, A. Erba, S. Casassa, M. Itou and Y. Sakurai, Phys. Rev. B, 84, 245102 (2011).

The anisotropy of the electron momentum distribution in α-quartz investigated by Compton

scattering and ab initio simulations.
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rec variable value meaning
• ∗ N number of directions (≤ 10)

PMAX maximum momentum value (a.u.) for which the EMD is computed
STEP discretization step for the EMD
IPLO 0 no data stored on disk

1 formatted output to file fort.25 for plotting (Appendix D, page 397).
2 formatted output to file EMDLDM.DAT for plotting (Appendix D,

page 397).
insert N records

• ∗ H K L three integers defining the direction with respect to the conventional
cell

end
• ∗ ICASO 1 the total density matrix is used

2 the core density matrix is used
3 the valence density matrix is used

• ∗ NSA1 0 no spherically averaged EMD
1 the spherically averaged EMD is computed

NSA2 0 no EMD-anisotropy
1 EMD-anisotropies are computed

The Electron Momentum Density (EMD) is calculated along given crystallographic directions

(defined in oblique coordinates with respect to the conventional cell) directly from the Density

Matrix. The EMD is a non-periodic function; it falls rapidly to zero outside the first Brillouin

zone. π(0) gives the number of electrons at rest. For Open-Shell systems the α + β and the

α− β EMD are computed.

The NEWK keyword must be called with the option activating the Fermi level calculation

before EMDLDM if the core or valence Density Matrix is desired (ICASO=2,3).

The spherically averaged EMD πSA(|p|) is computed according to the procedure described in

section 17.8 (page 355). The EMD-anisotropy is ∆π(p) = π(p)− πSA(|p|).

EMDPDM- Electron Momentum Density from Density Matrix - maps

Users of this option are kindly requested to cite the following papers[77, 176]:

A. Erba and C. Pisani, J. Comput. Chem., 33, 822 (2012). Evaluation of the electron mo-

mentum density of crystalline systems from ab initio linear combination of atomic orbitals

calculations.

C. Pisani, A. Erba, S. Casassa, M. Itou and Y. Sakurai, Phys. Rev. B, 84, 245102 (2011).

The anisotropy of the electron momentum distribution in α-quartz investigated by Compton

scattering and ab initio simulations.
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rec variable value meaning
• ∗ N number of planes (≤ 10)

PMAX maximum momentum value (a.u.) for which the EMD is computed
in the two main directions defining the plane

STEP discretization step for the EMD
IPLO 0 no data stored on disk (data only in output)

1 formatted output to file fort.25 for plotting (Appendix D, page 395)
2 formatted output to files 3DEMDTOTAL.DAT and 3DEM-

DANISO.DAT for 3D plotting of total EMD and EMD-anisotropy
(for squared map-windows only); see below

IDIR 0 planes defined via the MAPNET dummy keyword
1 planes defined via two crystallographic directions

• ∗ ICASO 1 the total density matrix is used
2 the core density matrix is used
3 the valence density matrix is used

• ∗ NSA1 0 no spherically averaged EMD
1 the spherically averaged EMD is computed

NSA2 0 no EMD-anisotropy
1 EMD-anisotropies are computed

NSA3 0 no restart of spherically averaged EMD
6=0 a previously computed spherically averaged EMD is read from input

if NSA3 6= 0 insert NSA3 records
• ∗ P value of |p|

SAEMD value of the spherically averaged EMD π(|p|)
end

insert N records
if IDIR = 0

insert MAPNET input records (Section 13.11, page 297)
else if IDIR = 1

• ∗ H K L three integers defining the first direction with respect to the conven-
tional cell

H’ K’ L’ three integers defining the second direction with respect to the con-
ventional cell

end if
end

The Electron Momentum Density (EMD) is calculated in given crystallographic planes (defined

in oblique coordinates with respect to the conventional cell) directly from the Density Matrix.

The EMD is a non-periodic function; it falls rapidly to zero outside the first Brillouin zone.

π(0) gives the number of electrons at rest. EMD-maps can be computed for closed-shell systems

only.

The NEWK keyword must be called with the option activating the Fermi level calculation

before EMDPDM if the core or valence Density Matrix is desired (ICASO=2,3).

The spherically averaged EMD πSA(|p|) is computed according to the procedure described in

section 17.8 (page 355). The EMD-anisotropy is ∆π(p) = π(p)−πSA(|p|). If one activates the

computation of the spherically averaged EMD (NSA1=1), the STEP should be small in order to

reduce the numeric noise in its fitting procedure.

Formatted external units 25 (fort.25) are generated that can be read by the Crgra2006 graph-

ics software for creating 2D maps. See Appendix D at page 395. The formatted external

files 3DEMDTOTAL.DAT and 3DEMDANISO.DAT consist of a series of records PX, PY,

EMD(PX,PY) and can easily be used for representing 3D surfaces of the EMD on a plane.
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EMDP - Electron Momentum Density - plane maps

rec variable value meaning
• ∗ NP number of planes (< 5)

IS shrinking factor.
IPLO 0 no data stored on disk.

1 formatted output on Fortran unit 25 for plotting
LPR115 printing of the EMD function in output

insert NP set of records
• ∗ (L1(J),J=1,3),

(L2(J),J=1,3)
fractional coordinates of the reciprocal lattice vectors that identify the
plane

• ∗ PMX1 maximum p value along the first direction
PMX2 maximum p value along the second direction

• ∗ NPO number of orbital projections (≤ 10)
NPB number of band projections(≤ 10)

if NPO 6= 0 insert NPO set of records II
• ∗ NO number of A.O.’s in the I-th projection
• ∗ IQ(I),I=1,NO sequence number of the A.O.’s in the I-th projection - basis set order

if NPB 6= 0 insert NPB set of records II
• ∗ NB number of bands in the I-th projection
• ∗ IB(I),I=1,NB sequence number of the bands in the I-th projection

Warning The Fermi energy must be computed for metallic systems (NEWK keyword with

IFE = 1). Calculation of electron momentum density on definite planes (equation 17.22, page

356). It works also for open-shell systems. If LPR115 6= 0 the EMD function is printed in

output (recommended). The fractional coordinates of the reciprocal lattice vectors given in

input refer to the conventional cell, not to the primitive cell, for 3D systems. Example: in a

FCC system the input directions refer to the orthogonal unit cell frame (sides of the cube) not

to the primitive non-orthogonal unit cell frame.

END

Terminate processing of properties input. Normal end of the program properties. Subse-

quent input records are not processed.

EXTPRT

See input block 1, page 46

FMWF - Wave function formatted output

The keyword FMWF, entered in properties input, writes formatted wave function data (same

data are written in file fort.9, unformatted, at the end of SCF) in file fort.98 (LRECL=80).

The formatted data can then be transferred to another platform. No input data required.

The resources requested to compute the wave function for a large system (CPU time, disk

storage) may require a mainframe or a powerful workstation, while running properties is not

so demanding, at least in terms of disk space. It may be convenient computing the wave

function on a given platform, and the properties on a different one.

The keyword RDFMWF, entered in the first record of the properties input deck reads

formatted data from file fort.98, and writes unformatted data in file fort.9. The key dimensions

of the program computing the wave function and the one computing the properties are checked.

If the dimensions of the arrays are not compatible, the program stops, after printing the

PARAMETER statement used to define the dimension of the arrays in the program which
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computed the wave function. The sequence of the operations, when transferring data from one

platform to another is the following:

platform program input action
1 properties FMWF wave function formatted to file fort.98

ftp file fort.98 from platform 1 to platform 2
2 properties RDFMWF wf read from file fort.98 (formatted) and written in

file fort.9 (unformatted)

FRACTION - unit of measure

Unit of measure of coordinates in the periodic direction (ECHG, POTM, CLAS) See input

block 1, page 49.

GRID3D - Selected property computed on a 3D grid

rec variable meaning
• ∗ NP Number of points along the first direction
• A CHARGE electronic charge selected - see ECH3 input

or
• ∗ POTENTIAL electronic charge selected - see POT3 input

The propertty to be computed at the grid points is chosen by a keyword. Input as required by

the selected property follows.

Computed data are written, formatted, to file fort.31. See Appendix D, page 401, for descrip-

tion of the format.

HIRSHCHG/HIRSHBLK - Iterative Hirshfeld Population Analysis

See input block 3, page 100.

INFOGUI/INFO - output for visualization

No input data required.

Information on the system and the computational parameters are written formatted in fortran

unit 32, in a format suitable for visualization programs.

See Appendix D, page 401, for description of the format.

ISOTROPIC - Fermi contact - Hyperfine electron-nuclear
spin interaction isotropic component

rec variable meaning
• A keyword enter one of the following keywords:

ALL Fermi contact is evaluated for all the atoms in the cell
or

UNIQUE Fermi contact is evaluated for all the non-equivalent atoms in the cell
or

SELECT Fermi contact is evaluated for selected atoms
• ∗ N number of atoms where to evaluate Fermi contact
• ∗ IA(I),I=1,N label of the atoms

As an additional information, the total electron density at the nuclei is computed for all

systems.

In the case of open shell systems, the spin density at the nuclei (〈ρspin(rN)〉) is evaluated. This

283



quantity is given in bohr−3 and is transformed into the hyperfine coupling constant aN[mT]

through the relationship [225]

aN[mT] =
1000

(0.529177 · 10−10)3

2

3
µ0 βN gN 〈ρspin(rN)〉 = 28.539649 gN 〈ρspin(rN)〉

where

µ0 = 4π · 10−7 = 12.566370614 · 10−7[T2J−1m3] (permeability of vacuum)

βN = 5.0507866 · 10−17[JT−1] (nuclear magneton)

the nuclear gN factors for most of the nuclei of interest are available in the code and are taken

from [225]. Conversion factors:

aN[MHz] =
aN[mT]geβe

109h[Js]
= 28.02.6 · aN[mT]

aN[cm−1] =
aN [MHz]108

c[ms−1]
= 0.33356410 · 10−4 · aN[MHz]

aN[J] = ge βe 10−3aN[mT] = 1.856954 · 10−26aN[mT]

where:

βe = 9.2740154 · 10−24 [JT−1] (bohr magneton)

ge = 2.002319304386 (free-electron g factor)

c = 2.99792458 · 108 [ms−1] (speed of light in vacuum)

h = 6.6260755 · 10−34 [Js] (Planck constant)

For extended printing (tensor in original cartesian axes and in principal axis system) insert,

before the keyword ISOTROPIC:

SETPRINT

1

18 1

See tests 29, 31, 32, 33.

KINETEMD - Kinetic Tensor computed from the Electron Momen-
tum Distribution

rec variable value meaning
• ∗ PMAX maximum momentum value (a.u.) for which the EMD is computed

PINT Maximum momentum value (a.u.) defining an inner sphere where the
EMD is computed exactly (PINT < PMAX)

STEP discretization step for the computation of the EMD in the inner region
of p-space (p < PINT)

STEPDIST discretization step for the computation of the EMD in the outer region
of p-space (PINT < p < PMAX)

• ∗ ICASO 1 the total density matrix is used
2 the core density matrix is used
3 the valence density matrix is used

The KINETEMD keyword activates the computation of the kinetic tensor T, whose trace is

the total kinetic energy of the system, as the set of second moments of the electron momentum

distribution. See the discussion in section 17.8 (page 355).
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KNETOUT - Reciprocal lattice information - Fock/KS eigenvalues

Obsolete. See CRYAPI OUT, page 271.

13.11 Localized Crystalline Orbitals - Wannier Functions

LOCALWF - Localization of Wannier Functions (WnF)

Wannier functions are computed fromBloch functions, and then localized, following the method

described in [242] and [241] The method applies to non-conductor systems only.

The localization of Wannier Functions (WnF) is controlled by parameters. Default values are

supplied for all parameters.

Optional keywords allow modification of the default choices, recommended to developers only.

The LOCALWF block is closed by the END keyword.

For UHF calculations two set of blocks must be inserted for the α and β electrons, each one

ending with the keyword END.

1. The NEWK option must be executed before running LOCALWF, to compute theBloch

functions.

2. The number of k points required for a good localization depends on the characteristics of

the bands chosen. For core electrons or valence bands in non-conducting materials, an IS

slightly larger than that used in the SCF part is enough to provide well localized WnFs.

For valence bands in semiconductors or conduction bands the k-point net is required to

be denser, but there are no recipes to determine a priori the optimum IS value. The

IS value chosen determines a Born-von Karman supercell (or cyclic cluster) from which

the program a priori estimates the memory space that should be enough to contain all

WnF coefficients lower than the threshold 10−ITDP (see the meaning of ITDP in what

follows) in real space. The size of this crystal domain in terms of unit cells is provided in

output before the localization procedure. If the crystal domain is too small usually the

localization fails and IS must be increased. On the other hand, if it is too large (very

large IS) the memory space reserved for the WnF coefficients becomes overestimated and

the calculation may stop because of a lack of memory for array allocation.

3. The efficiency of the localization can be controlled using the CYCTOL parameters. In

most cases, increasing ITDP and/or ICONV leads to larger and more accurate localiza-

tion of the WnFs.

4. The RESTART option admits MAXCYCLE = 0, then the program just reconstructs

all the information about the WnFs given in file fort.81 but does not continue the lo-

calization. This two options together with a IS=1 in NEWK is useful to perform the

analysis of the WnFs after localization by means of the PRINTPLO option.

Definition of the set of bands considered in the localization process

VALENCE

Valence bands are chosen for localization.

OCCUPIED

All the occupied bands are chosen for localization [default].

285



INIFIBND

rec variable value meaning
• ∗ IBAN initial band considered for localization

LBAN last band considered for localization

BANDLIST

rec variable meaning
• ∗ NB number of bands considered
• ∗ LB(I),I=1,NB labels of the bands.

Tolerances for short and large cycles

A short cycle is a sequence of wannierization and Boys localization steps. The accuracies in

both, the calculation of the Dipole Moments (DM) and the definition of the phases assigned

to each periodically irreducible atom, are controlled so that they increase as the localization

process evolves. This results in a significant saving of computational cost. Therefore, each

time a given criterion is fulfilled, the accuracy in the DM evaluation increases and a new large

cycle starts.

CYCTOL

rec variable value meaning
• ∗ ITDP0 > 0 Initial tolerance used to calculate the DM matrix elements:

10−ITDP0 2
ITDP > 0 Final tolerance used to calculate the DM matrix elements:

10−ITDP 5
ICONV > 0 Convergence criterion to finish a large cycle: ABS(ADI(N) -

ADI(N-1)) < 10−ICONV, where ADI is the atomic delocaliza-

tion index and N is the short cycle number 5

PHASETOL

rec variable value meaning
• ∗ ITPH0 > 0 10−ITPH0 is the initial tolerance on the atomic charge popula-

tion to attribute the phase to atoms in the wannierization step
2

ITPH > 0 10−ITPH is the final tolerance used to attribute this phase 3
ICHTOL > 0 DM tolerance of the cycle where ITPH0 changes to ITPH.

ITDP0+1

Restart Keywords

With this option the WnFs of a previous run are read from file fort.81 (copy of file fort.80,

written by the previous run) and projected onto the current occupied subspace. Along with

the projection the WnFs are re-orthonormalized within the Born-von Karman cyclic cluster.

Tolerances and active bands must be the same as in the previous run.

Three variants are possible, corresponding to three different keywords.

RESTART: can be used to start a new localization or to improve a previous one. After

the projection, cycles of wannierization and localization are performed until convergence is

attained.
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RESTORTH: similar to the RESTART keyword but here the WnF are orthonormalized in di-

rect space (where the tails feature different topological properties than in the Born-von Karman

cyclic cluster) immediately after their reading. Next the localization properties in direct space

of the resulting WnFs may optionally be improved using the appropriate keywords (WANDM

and FULLBOYS).

FIXWF: this keyword can be used only if file fort.80 of the previous run has been gener-

ated with the keyword SYMMWF. After projection, no further Boys localization step is

performed. Both the original symmetry and the WnF labeling are kept with a negligible loss

in the localization indices.

The last option is recommended when a sequence of CRYSCOR calculations are to be per-

formed corresponding each time to small geometrical changes. Accordingly, to ensure a smooth

evolution of the energy and wave function, all indices concerning the symmetry and the label-

ing of the WnFs are kept to be the same along the sequence. This is required in particular

in geometry optimizations and scanning along geometrical parameters (for instance: in the

calculation of molecular physisorption energy curves – see the CRYSCOR Users’s Manual and

the CRYSCOR Tutorials for a detailed description of the procedure). As for the FIXINDEX

option (page 93), the reference calculation should be the one with the most compact structure.
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General Keywords

MAXCYCLE

rec variable value meaning

• ∗ NCYC > 0 maximal number of short cycles for the iterative process 30

BOYSCTRL

Parameters that control the Boys localization step. Convergence of the process is achieved

when the orbital-stability conditions: Bst = 0;Ast > 0, (see Pipek and Mezey 1989 [170])

are fulfilled for all pairs st of WnFs. Additionally, in order to avoid nearly free rotations (for

instance in core or lone-pair WnFs) those pairs st with Ast close to 0 are not mixed (frozen).

rec variable value meaning
• ∗ IBTOL 10−IBTOL is the threshold used for the stability condition on

Bst. 4
IBFRZ If for a pair of WnFs st, |Ast| ≤ 10−IBFRZ, then the corre-

sponding WnFs are not mixed. 4
MXBCYC Maximum number of cycles allowed in the Boys localization

process 500

EMDWF

The EMDWF keyword activates the computation of the contribution to the total Electron

Momentum Density (EMD) π(p) of a selected Wannier Function, according to the partitioning

scheme illustrated in section 17.8 (page 355). Partitioning the EMD in terms of contributions

coming from chemically meaningful objects like WFs (that can easily be assigned to bonds,

lone pairs, etc.) is an appealing way of extracting information from a function which is still

far from being completely understood.

The contribution to the EMD is computed on a given plane. The user can provide, via input, a

previously computed spherically averaged EMD (see keywords EMDLDM and EMDPDM)

in order to compute the contribution of a selected WF to the global anisotropy of the EMD.

See the discussion of section 17.8 (page 355).

The formatted external file WFEMD.DAT consists of a series of records PX, PY,

EMD(PX,PY), [SAEMD(PX,PY)] and can easily be used for representing 3D surfaces or 2D

maps of the EMD on the plane.

Users of this option are kindly requested to cite the following papers[77, 176]:

A. Erba and C. Pisani, J. Comput. Chem., 33, 822 (2012). Evaluation of the electron mo-

mentum density of crystalline systems from ab initio linear combination of atomic orbitals

calculations.

C. Pisani, A. Erba, S. Casassa, M. Itou and Y. Sakurai, Phys. Rev. B, 84, 245102 (2011).

The anisotropy of the electron momentum distribution in α-quartz investigated by Compton

scattering and ab initio simulations.
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rec variable value meaning
• ∗ WF label of the selected WF

NTOL1 [1] initial tolerance used to calculate the Dipole Moment matrix elements:
10−NTOL1

IDIR 0 planes defined via the MAPNET dummy keyword
1 planes defined via two crystallographic directions

PMAX maximum momentum value (a.u.) for which the EMD is computed
in the two main directions defining the plane

STEP discretization step for the EMD
IPLO 0 no data stored on disk (data only in output)

1 formatted output to file WFEMD.DAT for 2-3D plotting of total
EMD and EMD-anisotropy (for squared map-windows only)

• ∗ NSA1 0 the spherically averaged EMD is not read
6=0 the spherically averaged EMD is read from input

NELVAL number of valence electron for which the spherically averaged EMD
has been computed. If NSA1=0 then NELVAL becomes a dummy entry

if NSA1 6= 0 insert NSA1 records
• ∗ P value of |p|

SAEMD value of the spherically averaged EMD π(|p|)
end

if IDIR = 0
insert MAPNET input records (Section 13.11, page 297)

else if IDIR = 1
• ∗ H K L three integers defining the first direction with respect to the conven-

tional cell
H’ K’ L’ three integers defining the second direction with respect to the con-

ventional cell
end if

EMDWFKIN

The EMDWFKIN keyword activates the computation of the kinetic tensor Ti related to

a selected Wannier function Wi. The contribution of Wi to the electron momentum density

πi(p) is computed and then its second moment is obtained via numerical integration (see the

discussion in section 17.8 at page 355).

rec variable value meaning
• ∗ WF label of the selected WF

NTOL1 [1] initial tolerance used to calculate the Dipole Moment matrix elements:
10−NTOL1

• ∗ PMAX maximum momentum value (a.u.) for which the EMD is computed
PINT Maximum momentum value (a.u.) defining an inner sphere where the

EMD is computed exactly (PINT < PMAX)
STEP discretization step for the computation of the EMD in the inner region

of p-space (p < PINT)
STEPDIST discretization step for the computation of the EMD in the outer region

of p-space (PINT < p < PMAX)

Initial guess options

The iterative localization process of the WnFs needs to start from a reasonable initial guess.

By default the starting functions are obtained automatically from the Hamiltonian eigenvectors

at the Γ point. When required (pure covalent bonds that link atoms in different unit cells), a
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pre-localization is performed using a scheme similar to that suggested by Magnasco and Perico

(1967) [139].

IGSSCTRL

Parameters used to control the pre-localization of the Γ point eigenvectors.

rec variable value meaning
• ∗ CAPTURE The capture distance between atoms I and J is given by

CAPTURE ∗ (RAYCOV(I) + RAYCOV(J)) (RAYCOV, cova-
lent radius (default value table page 63). An inter-atomic dis-
tance lower than the capture indicates that I and J can be
covalently bonded. Default value [ 2.0 ].

MPMAXIT Maximum number of iterations in the pre-localization
process 200

ICNVMP 10−ICNVMP is the convergence threshold for the Magnasco-
Perico pre-localization 8

IOVPOP Just those pairs of atoms whose overlap population are greater
than 10−IOVPOP are considered covalently bonded 4

The initial guess can be given as input in two mutually exclusive ways, controlled by the

keywords IGSSVCTS and IGSSBNDS:

IGSSVCTS

The eigenvectors and the phases are given explicitly after the LOCALWF block (and before

the plot parameters if required), in the following format.

rec variable value meaning
• ∗ NGUES Number of bands whose phase is pre-assigned such that the

involved atoms are to be located in a given cell.
insert 2 × NGUES records

• ∗ IB
• ∗ IGAT(I,IB),I=1,NAF

Index of the direct lattice vector corresponding to the cell
where atom I is expected to have the largest charge population
in Wannier IB (NAF is the number of atoms per cell)

insert:
GUESSV(I),I=NDF*NOCC

where NDF is the basis set dimension and NOCC the num-
ber of bands considered. GUESSV is a matrix containing the
initial guess vectors for the iterative Wannier-Boys procedure
(GUESSV is written in free format as a one-dimensional ar-
ray).

IGSSBNDS

Use this option to explicitly indicate the WnFs that are to be assigned to covalent bonds.

rec variable value meaning
• ∗ NBOND Number of covalent bonds given as input.

insert NBOND records
• ∗ NAT1 Label of the first atom of the bond, it is assumed to be located

in the reference cell.
NAT2 Label of the second atom of the covalent bond
IC1,IC2,IC3 Indices of the cell where atom NAT2 is located
NBNDORD Bond Order
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CAPTURE

The value of the CAPTURE parameter (see IGSSCTRL can be redefined.

rec variable value meaning
• ∗ CAPTURE The capture distance between atoms I and J is given by

CAPTURE ∗ (RAYCOV(I) + RAYCOV(J)) (RAYCOV, cova-
lent radius (default value table page 63). An inter-atomic dis-
tance lower than the capture indicates that I and J can be
covalently bonded. Default value [ 2.0 ].

Symmetry adaptation of Wannier Functions

SYMMWF

The WnFs a-posteriori symmetrization procedure [39], activated by the SYMMWF keyword,

is mandatory in the case of a subsequent CRYSCOR calculations. A brief outline of the

procedure can help to orient in the particular nomenclature adopted to define the symmetrized

WnFs and their symmetry relations.

1. after the localization step, the WnFs are centered at different Wickoff sites of the reference

cell which are invariant with respect to point-symmetry subgroup H of the space group

G of the crystal;

2. for each site, a coset decomposition of G by H is performed, thus leading to the definition

of NF = |G|
|H| symmetry operators (coset representatives) which rotate the reference site

into equivalent ones;

3. among each set of equivalent sites, a reference site is chosen;

4. the WnFs of the reference site are symmetrized according to the corresponding subgroup

H: each of these symmetrized WnFs is basis of an irreducible representations (IRREP) of

the subgroup H and hereafter each component of the irreducible basis set will be referred

to as petal;

5. the collection of petals belonging to the same IRREP of H ,the whole irreducible basis

set, constitutes a so-called flower. It is worth noting that bi/three-dimensional IRREPs

gives rise to flower made up of two/three petals, respectively;

6. the rotation of the reference flower performed by means of the corresponding NF -1 coset

representatives (identity excluded) yields the creation of others NF -1 symmetry related

flowers; the set of such equivalent flowers constitutes a bunch;

7. in general, more than one bunch could be associated to the same reference site;

8. as a result of this procedure, each WnF is fully classified by four indices |b,f,p,g〉 (b

= bunch, f=flower, p= petal, g= crystal cell) such that a general symmetry operator of

the system R̂ ∈ G, applied to a WnF gives: R̂ |b,f,p,g〉 =
∑
p′ [A(R)]pp′ |b,fR,p’,gR〉.

In addition to the general keywords of the localization step, a set of optional keywords, recom-

mended to developers only, can be used to modify some default settings.

The SYMMWF input block must be closed by the keyword END.
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rec variable value meaning

• A TOLBOND redefinition of the tolerance to classify WFs as bond or
atomic - default value [ 0.2 ]

• F TOLB if |[pi1 − pi2]| < tolb then the WnF ωi is a bond one (pix
is the atomic population of the two atoms which most
contribute to the WnF i)

• F TOLSYM a WnF ωi is classified as already symmetric if

〈ωj |R|ωi〉 > TOLSYM - default value [ 0.99 ]
• A NOSYMAP an alternative algorithm for the unpacking of WnFs (from

the reciprocal to the direct lattice) is followed

• A PRINT default value [ 0 ]

WnFs’s Quality. Get WnFs of good quality, in terms of norm and symmetry, is a necessary

prerequisites for obtaining reliable energy at the MP2 level. The output file contains some

useful information that can be used to check the quality of the solution: as a general and

safety rule, the final value for ”ERR PER WF” should be less than 1∗10−5 and the precision

on the scalar products between WnFs (printed by setting the PRINT option equals 2) should

not be less than 1∗10−5.

The solution can be eventually improved by tuning some computational parameters; in partic-

ular the user can:

• set tighter tolerances for the evaluation of two-electron integrals in the HF reference solution

(TOLINTEG): despite the increase of computational time, it turns out that the localization

procedure is particularly sensitive to the the first threshold;

• increase the number of k points (NEWK) according to the suggestions reported in the LO-

CALWF introduction paragraph;

• use more severe values for the short and large cycles tolerances (CYCTOL).

Finally, in some case, the activation of the FULLBOYS option can be decisive.

Printing Options and Plot of the WnFs

WnFs can be printed in terms of their coefficients or can be plotted as 2D or 3D maps.

PRINTPLO

rec variable value meaning
• ∗ IPRT 0 Does not print Wannier coefficients [default]

> 0 Prints Wannier coefficients at each cycle up to the IPRT-th
star of direct lattice vectors 0

IPRP 0 Prints population analysis only at the end of the localization.

6=0 Prints analysis at each W-B cycle 0

ITPOP Only atomic population larger than 10−ITPOP are printed 2
IPLOT 0 WnFs are not computed for plot

6= 0 WnFs are computed in a grid of points, IPLOT being the
number of stars of direct lattice vectors taken into account for
WnF coefficients. Data are written in file fort.25 0

If IPLOT 6= 0 insert after the LOCALWF keyword block (defining the localization procedure

computational parameters, and terminated by END) the following data:

rec variable value meaning
• ∗ NWF number of WnF to plot

insert NWF blocks of data
• ∗ NUMBWF sequence number (output order) of the WnF to plot

MAPNET input data (Section 13.11, page 297)
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Each block defines the index number of WnF to be computed in a grid of points,

followed by data defining the frame inside which the value of localized WnF has

to be computed in a grid of points (see MAPNET, 297. The package Crgra2006

(http://www.crystal.unito.it/Crgra2006.html) allows plotting the function as contour lines.

The WnFs and the WnFs densities (in this order) within the selected regions are given in file

fort.25.

If IPLO < 0 the WnFs are computed in a 3D grid, which is generated considering the

coordinates of WnFs centroids. Insert the following data:

rec variable value meaning
• ∗ ICUBE 0 data are saved in fort.31

> 0 data are saved in fort.31 and in the CUBE format in the ex-
ternal units inputfilename WAN CUBE.DAT

RADIUS R defines the spatial region of the 3D grid. The value is in
Angstrom

NPOINTS NP number of points along the x direction
NWFS 0 all the WnFs are plotted

> 0 number of WnFs to plot
if NWFS > 0 insert

• ∗ WnFs=1,NWFS sequence number (output order) of the WnFs to be plotted

Let us consider the following input for generating the values of WnFs on a 3D grid of points:

NEWK
4 4
0 0
LOCALWF
VALENCE
SYMMWF
END
PRINTPLO
0 0 0 -8
1 2 60 2
1 2
END
END
END

The previous input allows for the computation of all the valence (see keyword VALENCE)

WnFs of the system and for the 3D plotting of the first and second valence WnFs. The data

are saved in CUBE format in external units inputfilename WAN CUBE.DAT. It is possible to

visualize the structure of the considered system and the WnFs contained in the CUBE files

by using the Jmol program, for instance. In that case, it would be necessary to insert these

commands in the Jmol console:

load ”file: path-to-the-cube-file”

isosurface sign red blue cutoff 0.7 ”file: path-to-the-cube-file”

The default cutoff value is 0.2 but it is possible to modify it as shown above, in order to get

a better graphical representation. Some examples of graphical representations are given in

Figures (13.1 and 13.2).
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Figure 13.1: First valence WnF of MgO; two different views.

Figure 13.2: Second valence WnF of MgO; two different views.

New keywords - developers only

CLUSPLUS

Upon transformation from Bloch Functions to Wannier Function, the latter are defined within

a region with cyclic boundary condition imposed. We call it the ”cyclic cluster”. The volume

of this region depends on the shrinking factor used in the previous NEWK. For instance, if

IS=4, then the cyclic cluster in a 3D system will be 4**3 times larger than the primitive cell.

For the localization part to work the WnFs are required to be described in the real space,

hence the cyclic conditions and the WnFs are mapped onto a cluster in direct space. The size

of this cluster where the localization is performed is defined as follows:

1. We define a small cluster, as a spherical region that contains the minimum number of

G-vectors that fully map the cyclic cluster. Let’ s call RO its radius.

2. As the centroid of some WnFs may be at the border of the reference cell we should

consider some additional space in the direct cluster so as to allow the tails to be fully

included in the region. This additional distance R1 is calculated as the maximum G-

vector modulus of the set of cells at the neighbours of the reference one.

3. The radius of the resulting direct cluster will read: R = R0 + IPLUSCLUS*R1, where

IPLUSCLUS is given in input. By default IPLUSCLUS is 5.

rec variable value meaning
• ∗ iplusclus factor to define the radius of direct cluster

ORTHNDIR
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After the WANNIER-BOYS localization the WnFs are not fully orthonormal in direct space

(they are just orthonormal within the cyclic cluster). To perform a true localization in direct

space (see FULLBOYS) a previous re-orthonormalization in direct space is required. This

is carried out by constructing the first order approximation of the Lowdin transformation and

applying it to the WnFs. This process is performed iteratively up to fulfill a given criterion.

ORTHNDIR sets the parameters that control this process.

rec variable value meaning
• ∗ ISTORTH > 0 number of stars of G-vectors that contains the transformation

matrix.
= 0 the number of stars is computed so as to contain the reference

cell and all its neighbors [default].
ITOLORTH > 0 the overlap matrix elements are computed just between WnF

components gt 10**-ITOLORTH in absolute value [default 5].
NREORTHN ≥ 0 maximum number of iterations [default 10 in properties, 0 in

crystal.
< 0 the iterative procedure is performed up to the mean normal-

ization error of the WnFs is < 10**NREORTHN in absolute
value (Default -7)

WANDM

WANDM controls the computation of the DM matrix elements between WnFs assigned to the

reference and the neighboring cells (translational images of the former).

rec variable value meaning
• ∗ INEIGH controls the extent of the DM matrix by limiting the neigh-

boring cell around the origin considered in the computation of
the matrix elements:

> 0 number of stars of neighboring cells considered for the matrix
elements of DM

< 0 the DM matrix is computed up to star of neighbor IS-
TAR with the condition that ABS(ALOCLEN(ISTAR)-
ALOCLEN(ISTAR-1))¡10**(-ABS(INEIGH)), where ALO-
CLEN(ISTAR) means ”localization length computed up to
star ISTAR”

• ∗ TOLDM tolerance in the WnF coefficients used to calculate the DM
matrix elements (see CYCTOL)

FULLBOYS

rec variable value meaning
• ∗ ITOLWPG > 0 TOLWPG 10**(-ITOLWPG) tolerance on the DM matrix el-

ements

Request of Foster-Boys localization in direct space. The set of WnFs considered in the calcula-

tion of the DM matrix (see WANDM) are orthogonally transformed so as to obtain maximally

localized WnFs under the Boys criterion. The resulting functions keep both, orthonormality

and translational equivalence.

TOLWPG 10**(-TOLWPG) tolerance on the DM matrix elements to keep and use it in com-

pact form. A small TOLWPG means that only a few DM matrix elements are considered in

the localization process, then the calculation is quite fast and not very demanding in mem-

ory. A very large value would bring about very accurate LWFs with high computational cost.

Recommended values: 4-6.
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MAPNET - coordinates of grid points on a plane

This is a dummy keyword, to explain the way is generated the grid of points in which is

evaluated a given function F: charge density and spin density (ECHG), electrostatic potential

(CLAS, POTM). The graphic representation of the resulting 2D function is made by external

software.

rec variable meaning
• ∗ NPY number of points on the B-A segment.
• A keyword enter a keyword to choose the type of coordinate:
• COORDINA
• ∗ XA,YA,ZA cartesian coordinates of point A
• ∗ XB,YB,ZB cartesian coordinates of point B
• ∗ XC,YC,ZC cartesian coordinates of point C

or
• ATOMS
• ∗ IA label of the atom at point A

AL,AM,AN indices (direct lattice, input as reals) of the cell where the atom is located
• ∗ IB label of the atom at point B

BL,BM,BN indices (direct lattice, input as reals) of the cell where the atom is located
• ∗ IC label of the atom at point C

CL,CM,CN indices (direct lattice, input as reals) of the cell where the atom is located
optional keyword II

• RECTANGU definition of a new A’B’C’D’ rectangular window, with B’C’ on BC, A’D’
on AD and diagonals A’C’=B’D’=max(AC,BD) (see Fig 13.3)

optional keyword II
• MARGINS definition of a new A”,B”,C”,D” window including ABCD (or A’B’C’D’)

(see Fig 13.4)
• ∗ ABM margins along AB

CDM margins along CD
ADM margins along AD
BCM margins along BC

optional keyword II
• PRINT printing of the values of the function in the net

• ANGSTROM cartesian coordinates in Ångstrom (default)
• BOHR cartesian coordinates in bohr
• FRACTION cartesian coordinates in fractional units
• END end of MAPNET input block

1. Function F is mapped in a ABCD parallelogram-shaped domain defined by the sides AB

and BC of any ÂBC angle. F is calculated at the nAB * nBC nodes of a commensurate

net (nAB and nBC integers).

2. If C ≡ B, F is calculated along the line AB. Data are written in file RHOLINE.DAT D.

3. nBC is set by the program such that all points in the net are as equally spaced as possible

( δAB ≈ δBC ).

4. formatted output is written in file fort.25 (processed by Crgra2006; see Appendix D, page

395.

5. The position of the three points A, B and C can be specified in two alternative ways:
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Figure 13.3: Definition of the window where the function F is mapped Effect of optional
keyword RECTANGU.
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Figure 13.4: Definition of frame around the original window where the function F is mapped.
Effect of optional keyword MARGINS.

COORDINA the cartesian coordinates of the three points are given in bohr /
Ångstrom / fractional units (default Ångstrom; see Section 3.1,
page 37)

ATOMS A,B,C correspond to the position of 3 nuclei, identified by their
sequence number in the reference cell, and the crystallographic in-
dices of the cell in which they are located (input as real numbers).

6. The symmetry is used to restrict the calculation of the function to the irreducible part of

the parallelogram chosen. To maximize the use of symmetry, the points of the net should

include the low multiplicity positions in the selected plane. For example, B=(0,0,0),

A=(a,0,0), C=(0,b,0) (a,b lattice vectors). Choose NPY=4n+1 for (100) faces of cubic

crystals, or NPY = 6n+1 for (0001) faces of hexagonal crystals.

NEIGHBOR/NEIGHPRT

See input block 1, page 59
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NEWK - Hamiltonian eigenvectors

rec variable value meaning
if system is periodic, insert II

• ∗ IS Shrinking factor for reciprocal space net (Monkhorst net). The num-
ber NKF of k points, where the Fock/KS matrix is diagonalized, is
roughly proportional to ISIDIM/MV F where IDIM denotes the pe-
riodic dimensionality of the system, and MVF denotes the number of
point symmetry operators (see page 29).

ISP Shrinking factor of the secondary reciprocal space net (Gilat net) for
the evaluation of the Fermi energy and density matrix.

if system is periodic and IS=0, insert II
• ∗ Shrinking factors of reciprocal lattice vectors

IS1 Shrinking factor along B1
IS2 Shrinking factor along B2
IS3 Shrinking factor along B3.

• ∗ IFE 0 no Fermi energy calculation is performed;
1 Fermi energy is computed, by performing integration on the new k

points net. Total, valence and core density matrices are written on
Fortran unit 13

NPR number of printing options to switch on
if NPR 6= 0 insert prtrec (see page 64) II

The Fock/KS eigenvectors are computed at a number of k points in reciprocal space, defined

by the shrinking factor IS, and written unformatted in file fort.10 (in the basis of symmetry

adapted Bloch functions) and in file fort.8 (in the basis of AO). Eigenvalues and related infor-

mation (coordinates of k points in reciprocal lattice, weights etc) are written in file KIBZ.DAT

by inserting the keyword CRYAPI OUT (page 271).

1. The Fock/KS matrix in direct space is always the SCF step final one. If the SCF con-

vergence was poor, and convergence tools were used, eigenvalues and eigenvectors may

be different from the ones that could be obtained after one more cycle without any

convergence trick.

2. The shrinking factors IS and ISP (Section 17.7, page 355) can be redefined with respect

to the ones used in the SCF process. If this value is smaller than the one used in the scf

step, numerical inaccuracy may occur in the Fourier transform of the Fock/KS matrix,

Fg → Fk (Chapter 17, equation 17.5).

3. A Fermi energy calculation must be performed (IFE=1) to run the Compton profiles

option PROF, the electron momentum density options EMDL and EMDP, PBAN

and PDIDE in order to compute the weight associated to each eigenvalue.

4. Warning NEWK with IFE=1 must be run to obtain the correct Fermi energy and eigen-

values spectra when a shift of eigenvalues was requested in SCF (LEVSHIFT, page 102;

SPINLOCK, page 113; BETALOCK, 84.

A new density matrix is computed. If the convergence of scf was poor, and convergence

tools were used (FMIXING, LEVSHIFT, ..), the density matrix obtained from the eigen-

vectors computed by NEWK may be different from the matrix that could be calculated

with one more scf cycle. Properties depending on the density matrix may be different if

computed before or after NEWK.

5. if BAND is called after NEWK, and symmetry adapted Bloch functions are used

(default option), the information generated by NEWK is destroyed. For instance, to
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compute density of states and bands, the sequence must be: BAND - NEWK - DOSS.

The sequence NEWK BAND DOSS will give the error message:

NEWK MUST BE CALLED BEFORE DOSS

Printing options: 59 (Density matrix - direct lattice); 66 (Hamiltonian eigenvalues); 67 (Hamil-

tonian eigenvectors).

NOSYMADA

See input block 3, page 106

13.12 3D plotting of crystalline (molecular) orbitals

ORBITALS - Crystalline (Molecular) orbitals 3D plot

rec variable value meaning
• ∗ VAR filename
• ∗ ICAR 0 Cartesian coordinates (default for molecules)

1 Fractionary coordinates (default for periodic systems)
ILOC 0 crystalline orbitals as Bloch functions

1 crystalline orbitals as Wannier functions

The crystalline (or molecular) orbitals are computed and written in a Molden format to be

visualized with graphical tools. Molecular orbitals can be visualized with multiple programs,

e.g. Gabedit, Molden and many others supporting the Molden format. Crystalline orbitals

are written in a modified Molden format which is currently only supported by a recent version

of Jmol.

1. The NEWK option must be executed (to compute Hartree-Fock/KS eigenvectors and

eigenvalues) before running ORBITALS.

2. The filename corresponds to the row name of the files that contain the information for

plotting the orbitals. For periodic systems a file is generated for each real k point while

two files are created for complex k points.

3. When ICAR=0, the 3D plot of the orbitals is referred to Cartesian coordinates. This is

the default when plotting molecular orbitals.

4. When ICAR=1, orbitals are plotted in fractionary coordinates. This is the default for

periodic systems.

5. When ILOC=0, canonical molecular orbitals (or crystalline orbitals - Bloch functions)

are calculated

6. When ILOC=1, localized molecular orbitals (or crystalline orbitals - Wannier functions)

are computed. Note that the localized orbitals must be previously computed by running

the option LOCALI.

Examples

COs - Bloch functions Localized-COs - Wannier functions

NEWK NEWK

3 3 3 3
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1 0 1 0

END LOCALI

ORBITALS END

Corundum-COs ORBITALS

1 Corundum-LCOs

0 1

END 1

END END

END

13.13 Density Matrix of Non-interacting Atoms

PATO - Density matrix as superposition of atomic densities

rec variable value meaning
• ∗ IBN 0 density matrix computed with the same basis set as in the crystal cal-

culation.
6= 0 new basis set and/or new electron configuration is given

NPR 6= 0 printing of the density matrix for the first NPR direct lattice vectors
if IBN 6= 0 insert basis set input (page 23) II

1. The PATO option is used for calculating crystal properties, such as charge density

(ECHG), structure factors (XFAC) with a periodic density matrix obtained as a su-

perposition of atomic solutions (periodic array of non interacting atoms). The reducible

density matrix is written to file fort.13.

2. The atomic wave function is computed by the atomic program [188], using HF hamilto-

nian, s, p, d orbitals basis set, properly handling the open shell electronic configuration.

3. If the basis set used for the crystalline calculation (given as input of the integral part)

is not suitable for describing a free- atom or free-ion situation, a new basis set can be

supplied (see Section 2.2). When this option is used (IBN.NE.0) the basis set of all the

atoms with different conventional atomic number has to be provided.

4. The electronic configuration of selected atoms may be modified (CHEMOD in basis set

input). This allows calculation of the density matrix as superposition of atomic densities

or ionic densities, for the same crystal structure.

5. The wave function data stored in file fort.9 at the end of the SCF cycles are not modified.

Only the data stored on the temporary data set (reducible density matrix in fortran unit

13 and overlap matrix in fortran unit 3) are modified. The keyword PSCF restores the

scf density matrix and all the original information (including geometry and basis set).

6. See also ATOMHF, input block 3, page 83, and CHARGED, input block 2, page 72.

PBAN/PDIBAN - Band(s) projected density matrix

rec variable meaning
• ∗ NB number of bands to consider.
• ∗ N(I),I=1,NB sequence number of the bands summed up for the projected density ma-

trix.
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A density matrix projected onto a given range of bands is computed and stored in fortran unit

13. The properties will subsequently be computed using such a matrix.

The PBAN keyword must be preceeded by the NOSYMADA and NEWK (with IFE set

to 1) ones (in this order).

To be combined only with ECHG and PPAN.

For spin polarized systems, two records are written:

first record, total density matrix (N=nα + nβ electrons);

second record, spin density matrix (Ns=nα - nβ electrons).

PGEOMW - Density matrix from geometrical weights

A density matrix projected onto the range of bands defined in input (see PBAN input instruc-

tions) is computed, using the geometrical weights of the k points in the reciprocal lattice. The

properties will subsequently be computed using such a matrix. All the bands are attributed an

occupation number 1., independently of the position of the Fermi energy. The density matrix

does not have any physical meaning, but the trick allows analysis of the virtual eigenvectors.

For spin polarized systems, two records are written:

first record, total density matrix (N=nα + nβ electrons);

second record, spin density matrix (Ns=nα - nβ electrons).

To be combined only with ECHG and PPAN.

Fock/Kohn-Sham eigenvectors and band weights must be computed by running NEWK and

setting IFE=1. Symmetry adaptation of Bloch functions is not allowed, the keyword NOSY-

MADA must be inserted before NEWK.

PDIDE - Density matrix energy projected

rec variable meaning
• ∗ EMI,EMAX lower and upper energy bound (hartree)

A density matrix projected onto a given energy range is computed and stored in file fort.13.

The properties will subsequently be computed using such a matrix. To be combined only

with DOSS, ECHG and PPAN. Fock/Kohn-Sham eigenvectors and band weights must be

computed by running NEWK and setting IFE=1.

The charge density maps obtained from the density matrix projected onto a given energy range

give the STM topography [134] within the Tersoff-Haman approximation [215].

PMP2 - Reads the MP2 correction to the Valence Density Matrix

1. The MP2 correction to the Valence Density Matrix, as computed by the Cryscor pro-

gram, is read from the external unformatted file fort.63, which has to be provided by the

user.

2. The PMP2 keyword must be preceded by NEWK (with IFE=1) since the Fermi energy

has to be computed in order to split the total SCF DM into core and valence density

matrices. The MP2 correction to the DM is summed to the valence SCF DM.

3. By default the Properties program adopts the SCF density matrix (DM) but if one adds

the PMP2 keyword in the input file then any property whose corresponding keyword is

inserted after PMP2 is computed using the HF+MP2 density matrix.
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4. For instance, in order to evaluate the MP2 correction to the X-rays Structure Factors Fhkl,

the following sequence of keywords has to be used: NEWK-XFAC-PMP2-XFAC-

END; in the output file will be printed the HF Fhkl followed by the HF+MP2 Fhkl.

We report in the following the list of the properties for which the MP2 correction can be

evaluated, along with some advices one has to take in mind:

• Directional Compton Profiles (PROF) The ICORE variable must be 1 or 3 and the IVIA

variable must be 1

• Auto-correlation Function and Compton Profiles (BIDIERD) The ICASO variable must

be 1 or 3

• Electron Momentum Density (EMDLDM and EMDPDM) The ICASO variable must

be 1 or 3

• Electron Charge Density (ECHG)

• Mulliken’s Populations (PPAN)

• Structure Factors (XFAC)

POLI - Spherical harmonics multipole moments

rec variable value meaning
• ∗ IDIPO multipole order (maximum order `=6)
∗ ITENS 1 the quadrupole cartesian tensor is diagonalized

0 no action
LPR68 maximum pole order for printing:

< 0 atom multipoles up to pole IDIPO

≥ 0 atom and shell multipoles up to pole IDIPO

The multipoles of the shells and atoms in the primitive cell are computed according to a

Mulliken partition of the charge density, up to quantum number IDIPO (0 ≤ IDIPO ≤ 6). The

first nine terms, corresponding to `=0,1,2 (for the definition of higher terms, see Appendix A1,

page 170 in reference [175]) are defined as follow:

` m

0 0 s

1 0 z

1 1 x

1 -1 y

2 0 z2 − x2/2− y2/2

2 1 3xz

2 -1 3yz

2 2 3(x2 − y2)

2 -2 6xy

3 0 (2z2 − 3x2 − 3y2)z

3 1 (4z2 − x2 − y2)x

3 -1 (4z2 − x2 − y2)y

3 2 (x2 − y2)z

3 -2 xyz

3 3 (x2 − 3y2)x
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3 -3 (3x2 − y2)y

If ITENS=1, the cartesian quadrupole tensor is computed, and its eigenvalues and eigen-

vectors are printed after diagonalization. The components of the cartesian tensor are:

x2, y2, z2, xy, xz, yz

Warning: the shell multipoles are not printed by default. On request (keyword POLIPRT),

they are printed in atomic units (electron charge = +1).

POLSPIN - Spin multipole moments

rec variable value meaning
• ∗ IDIPO multipole order (maximum order `=6)
∗ ITENS 1 the quadrupole cartesian tensor is diagonalized

0 no action
LPR68 maximum pole order for printing:

< 0 atom multipoles up to pole IDIPO

≥ 0 atom and shell multipoles up to pole IDIPO

The electron spin density is partitioned in atomic contributions according to the Mulliken

scheme, and the spherical harmonic atomic multipoles up to the IDIPO angular quantum

number are evaluated (see the POLI keyword for definition of the multipoles and references).

The Cartesian tensor Tij =
∫
xixj ρ

spin(r) dr is computed and diagonalized, and its eigenvalues

and eigenvectors are printed. This option may be useful in the analysis of the size, shape and

orientation of localized electron holes.

13.14 3D Electrostatic Potential

POT3 - Electrostatic potential on a 3D grid

rec variable meaning
• ∗ NP Number of points along the first direction
• ∗ ITOL penetration tolerance (suggested value: 5) (see POTM, page 306)

if non-3D system

keyword to choose the type of grid on the non-periodic direction(s):

SCALE RANGE
length scales for non-periodic dimensions boundary for non-periodic dimensions (au)

if 2D system
• ∗ ZSCALE • ∗ ZMIN

• ∗ ZMAX

if 1D system
• ∗ YSCALE,ZSCALE • ∗ YMIN,ZMIN

• ∗ YMAX,ZMAX

if 0D system
• ∗ XSCALE,YSCALE,ZSCALE • ∗ XMIN,YMIN,ZMIN

• ∗ XMAX,YMAX,ZMAX

The electrostatic potential is computed at a regular 3-dimensional grid of points. The grid

is defined by the lattice vectors of the primitive unit cell and user defined extents in non-

periodic directions. NP is the number of points along the first lattice vector (or XMAX-XMIN

for a molecule). Equally spacing is used along the other vectors. Non-periodic extents may
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be specified as an explicit range (RANGE) or by scaling the extent defined by the atomic

coordinates (SCALE).

Formatted data are written in fortran unit 31 (function value at the grid points), in the format

required by the visualization program DLV.

See Appendix D, page 401, for description of the format.

Function data computed at 3D grid points are written according to GAUSSIAN CUBE format

in file POT CUBE.DAT

13.15 2D Electrostatic Potential

POTC - Electrostatic potential and its derivatives

rec variable meaning
• ∗ ICA 0 calculation of potential (V ), its first derivative (E) and second derivatives (E′)

in one or more points
1 not implemented
2 calculation of V (z), E(z), E′(z) and ρ(z) averaged in the plane at z position

(2D only)
3 calculation of V (z), E(z), E′(z) and ρ(z) averaged in the volume between z–ZD

and z+ZD (2D only)
NPU n number of points at which these properties are computed

0 these properties are computed at the atomic positions defined by IPA value
IPA 0 calculations are performed at each atomic positions in the cell

1 calculations are performed just for non equivalent atomic positions in the cell
if ICA = 0 then

if NPU > 0 insert NPU records II
• ∗ X,Y,Z point coordinates (cartesian, bohr)

if NPU < 0 data are read from file POTC.INP II
if ICA = 2 insert II

• ∗ ZM,ZP properties are averaged over NPU planes orthogonal to the z axis from z = ZP
to z = ZM by step of (ZP–ZM)/(NPU–1) (bohr)

if ICA = 3 insert II
• ∗ ZM,ZP properties are averaged over NPU volumes centered on planes orthogonal to

the z axis, same as ICA = 2
ZD half thickness of the volume (bohr)

The exact electrostatic potential V , its derivatives E (electric field) and E′ (electric field

gradient) are evaluated for molecules (0D), slabs (2D) and crystals (3D). Plane and volume

averaged properties can be computed for slabs (2D) only. The plane is orthogonal to the z

axis.

For ICA = 3, the volume average is performed around a middle plane at z position, from z–ZD

to z+ZD, giving a thickness of 2∗ZD.

According to Poisson’s law, the charge density ρ(z) is defined as

ρ(z) = − 1

4π

d2V (z)

dz2
=
−E′(z)

4π

If an electric field of intensity E0 is present (keyword FIELD, see page 3.1, only for slabs),

the total potential Vfield(z) is calculated:

Vfield(z) = V (z)− E0z

where V (z) is the potential of the slab itself and −E0z is the perturbation applied.
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• ICA = 0 ; NPU > 0; 2D or 3D system

It is possible to enter the cartesian coordinates (bohr) of the points where the exact

value of the properties must be computed. It is useful when applying fitting procedure

to obtain formal point charges.

• ICA = 0 ; NPU < 0; 2D or 3D system

coordinates in bohr are read (free format) from file POTC.INP

record type of data content

1 1 integer N, number of points

2..2+N-1 4 real x y z

• ICA 6= 0; NPU 6= 0; 2D or 3D system

The data computed are written in file POTC.DAT. See Appendix D, page 398.

POTM - Electrostatic potential maps and electric field

rec variable value meaning
• ∗ IDER 0 the electrostatic potential is evaluated

1 the potential and its first derivatives are evaluated
ITOL penetration tolerance (suggested value: 5)

insert MAPNET input records (page 297)

1. When IDER=0, the electrostatic potential is calculated at the nodes of a 2-dimensional

net in a parallelogram-shaped domain defined by the segments AB and BC (see keyword

MAPNET, page 297). The electrostatic potential values are written formatted in file

fort.25 (see Appendix D, page 395).

2. When IDER 6= 0, the electrostatic potential gradient is computed at the nodes of the

same grid. The x, y and z components are printed in the standard output, and written

formatted in file fort.25 (see Appendix D, page 395).

3. The electrostatic potential at r is evaluated [197] by partitioning the periodic charge

density ρ(r) in shell contributions ρhλ:

ρ(r) =
∑
h

∑
λ

ρλ(r − h)

(h translation vector).

4. The long range contributions are evaluated through a multipolar expansion of ρλ(r − h)

[196]. The short range contributions are calculated exactly.

5. The separation between long and short range is controlled by ITOL: ρλ(r−h) is attributed

to the short range (exact) region if

e−αλ(r−sλ−h)2 > 10−ITOL

where: αλ = exponent of the adjoined gaussian of shell λ; sλ = internal coordinates of

shell λ in cell at h.

The difference between the exact and the approximated potential is smaller than 1%

when ITOL=5 (input datum to POTM), and IDIPO=4 (input datum to POLI), and

smaller than 0.01% when ITOL=15 and IDIPO=6 [197, 196].

6. The multipoles of shell charges are computed if POLI option was not run before POTM.
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PPAN/MULPOPAN - Mulliken Population Analysis

13.16 Mulliken Population Analysis

See input block 3, page 106.

PRINTOUT - Setting of printing environment

See input block 1, page 62.

PROF - Compton Profiles

rec variable value meaning
• ∗ ICORE 1 core plus valence calculation.

2 core only calculation.
3 valence only calculation.

IVIA 0 valence contribution is computed by numerical integration.
1 valence contribution is computed analytically.

NPR number of printing options to switch on.
IPLO 0 CP related data are not stored on disk

1 formatted CP data stored in file fort.25 (Appendix D, page 397)
2 formatted CP data stored in Fortran unit 24 (Appendix D, page 397)

if NPR 6= 0 insert prtrec (see page 64) II
• A2 CP calculation of Compton profiles (J(q)) along selected directions (eq.

17.26).
• ∗ ND number of directions (≤ 6).

REST maximum value of q for J(q) calculation (bohr−1).
RINT internal sphere radius (bohr−1).
IRAP shrinking factor ratio.

• ∗ (KD(J,N), J=1,3),
N=1,ND

directions in oblique coordinates; see note 9

• ∗ STPJ interpolation step (in interpolated Compton profiles calculation).
• A4 DIFF CP difference between all computed directional CPs.

• A2 BR auto-correlation function B(r) calculation.
• ∗ RMAX maximum r value (bohr) at which B(r) is computed

STBR step in computation of B(r).
• A4 CONV convolution of the data previously computed (CP, DIFF, BR)

• ∗ FWHM convolution parameter (a.u.) full width half maximum;

σ =
√

(FWHM)2/(8 · 2log2).
• A4 ENDP End of input records for CP data

The keyword PROF starts the calculation of Compton profiles (J(q)) along selected directions

(eq. 17.26). The specific keywords DIFF BR CONV allow the calculation of the related

quantities. The card with the keyword ENDP ends the Compton profiles input section.

1. The input of the options must be given in the order in which they appear in the above

description. To enter this property, the CP option must always be selected after PROF,

while the others are optional.

2. Core and valence contributions are computed by using different algorithms. Core con-

tribution to CP’s is always computed analytically via the Pg matrix (direct lattice sum-

mation); the valence contribution is computed numerically (IVIA=0) by integrating the

EMD. Valence contribution can be evaluated analytically, setting IVIA=1.
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3. The numerical integration is extended to a sphere (radius RINT) where EMD is sampled

at the points of a commensurate net characterized by a shrinking factor IS (in the IBZ)

and at all the points (with modulus less then RINT) obtained from these by applying

reciprocal lattice translations.

It is possible to define a second sphere (with radius REST); in the volume between

the two spheres a second net is employed with shrinking factor IS1 greater then IS.

IRAP=IS1/IS is given in INPUT card 2; a reasonable value is IRAP=2. The outer

contribution is supposed to be the same for different CP’s, and is obtained by integrating

the average EMD.

4. If ICORE 6= 2 (valence electron CP’s are required) the NEWK option, with IFE=1,

must be run before the PROF option, in order to generate the eigenvectors required for

the EMD calculation, as well as the weights associated with each k point.

5. If ICORE 6= 2 and IVIA = 0 the CPs are evaluated at points resulting from the IS

partition of the reciprocal lattice translators. The interpolation is performed at STPJ

intervals (STPJ is given in input).

If ICORE = 2 or IVIA = 1 the CPs are, in any case, evaluated at points resulting from

STPJ intervals.

IVIA=0 (numerical integration) produces much more accurate results;

IVIA=1 (analytical integration) is to be used only for molecular calculations or for non

conducting polymers.

6. Total CP’s are always obtained by summing core and valence contributions.

7. Reasonable values of the integration parameters depend on the system under investi-

gation. The normalization integral of the CP’s is a good check of the accuracy of the

calculation. For instance, in the case of the valence electron of beryllium (test 9), good

values of RINT and IS are 10. a.u. and 4 respectively. In the case of silicon (test 10),

good values of the same variables are 8. a.u. and 8 respectively. Much greater RINT

values are required in order to include all the core electrons (70. a.u. in the case of

silicon, and 25. a.u. in the case of beryllium).

8. BR (auto-correlation function or reciprocal space form factor) should be calculated only

for valence electrons. All electron BR are reliable when the normalization integral, after

the analytical integration for core electrons contribution, is equal to the number of core

electrons.

9. The oblique coordinates directions given in input refer to the conventional cell, not to

the primitive cell for 3D systems.

Example: in a FCC system the input directions refer to the orthogonal unit cell frame

(sides of the cube) not to the primitive non-orthogonal unit cell frame.

Printing options: 116 (Compton profiles before interpolation); 117 (average EMD before inter-

polation); 118 (printing of core, valence etc. contribution). The LPRINT(118) option should

be used only if ICORE=1, that is, if core plus valence calculation are chosen.

PSCF - Restore SCF density matrix

The wave function data computed at the last SCF cycle are restored in common areas and

fortran units 3 (overlap matrix), 11 (Fock/KS matrix), 13 (density matrix). The basis set
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defined in input block 2 is restored. Any modification in the default settings introduced in

properties is overwritten. No input data required.

RAYCOV - covalent radii modification

See input block 1, page 62

ROTREF - Rotation of eigenvectors and density matrix

This option permits the rotation of the cartesian reference frame before the calculation of the

properties.

It is useful, for example, in the population analysis or in the AO projected density of states of

systems containing transition metal atoms with partial d occupation.

Consider for example a d7 occupation as in CoF2, where the main axis of the (slightly distorted)

CoF6 octahedron in the rutile structure makes a 450 angle with the x axis, and lies in the xy

plane, so that the three empty β states are a combination of the 5 d orbitals. Re-orienting the

octahedron permits to assign integer β occupations to dxz and dyz.

Input for the rotation as for EIGSHROT (page 89)

SETINF - Setting of INF values

See input block 1, page 64

SETPRINT - Setting of printing options

See input block 1, page 64.

STOP

Execution stops immediately. Subsequent input records are not processed.

SYMADAPT

See input block 3, page 113

13.17 X-ray Structure Factors and XRD Spectra

XFAC - X-ray structure factors

The Fourier transform of the static ground state charge density ρ(r) of a crystalline system

provides the set of static structure factors {Fhkl} of the crystal, which can be determined

experimentally, after taking into account a number of corrective terms, in particular those

related to thermal and zero point motion of nuclei (vide infra):

Fhkl =

∫
drρ(r)eik·r with k = hb1 + kb2 + lb3 ,

where b1, b2 and b3 are the fundamental reciprocal lattice vectors and h,k,l are Miller’s indices.

The electron charge density is a function that exhibits translational invariance so that we can

consider its expression just in the reference cell ρcell(r). Let us introduce an, to some extent
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arbitrary, approximation: the partition of ρcell(r) into atomic contributions, based on some

criteria:

ρcell(r) =
∑
A∈cell

ρA(r− rA)

where rA is the equilibrium position of atom A in the cell. Within such an approximation the

expression of the static structure factors simply becomes:

Fhkl =
∑
A∈cell

fA(k)eik·rA with fA(k) =

∫
drρA(r)eik·r

A simple way for introducing the effect of thermal nuclear motion in the above expression is

represented by the so-called atomic Debye-Waller factors DWA(k):

F̃hkl =
∑
A∈cell

fA(k)eik·rA × e−DWA(k)

where the symbol F̃hkl represents dynamic structure factors and where, if one assumes a har-

monic anisotropic potential acting over the atoms and a Gaussian probability of finding an

atom displaced by its equilibrium position, the Debye-Waller factors can be expressed as

DWA(k) =
1

2
〈k|UA|k〉

where UA is the mean square displacement tensor (that depends upon temperature):

UA =

 〈x2
1〉 〈x1x2〉 〈x1x3〉

〈x2x1〉 〈x2
2〉 〈x2x3〉

〈x3x1〉 〈x3x2〉 〈x2
3〉


with xi components of the displacement of atom A with respect to its equilibrium position.

The above tensor and its eigenvalues are sometimes referred to as anisotropic displacement

parameters (ADP).

Users of this option for the calculation of dynamical structure factors are kindly

requested to cite the following paper [73]:

A. Erba, M. Ferrabone, R. Orlando and R. Dovesi, J. Comput. Chem., 34, 346 (2013). Accurate

dynamical structure factors from ab initio lattice dynamics: The case of crystalline silicon.

rec variable value meaning
• ∗ ISS > 0 number of reflections whose theoretical structure factors are calculated.

< 0 a set of non-equivalent reflections with indices h,k,l < |ISS| is gener-
ated

PC 0 Miller’s indices h,k,l refer to the primitive cell
1 Miller’s indices h,k,l refer to the conventional cell (if any)

if ISS > 0 insert ISS records
• ∗ H,K,L Miller’s indices h,k,l of the reflections
• A2DW Debye-Waller atomic factors DWA(k) are computed to obtain dynamic

structure factors. Anisotropic displacement parameters (ADP) for a
given temperature are read from the external unit ADP.DAT where
they are inserted as tensors

• ∗ UNITS 0 The ADP in the unit are given in atomic units (bohr2)
1 The ADP in the unit are given in 10−4 Å2

2 The ADP in the unit are given in Å2

DWPRT 0 Debye-Waller atomic factors are not printed
1 Debye-Waller atomic factors are printed

• A2END End of the block of instructions of XFAC
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Note: if dynamic structure factors are computed for a given temperature T , the corresponding

ADPs have to be provided via the external formatted unit ADP.DAT. Such unit has to be put

in the scratch directory where the Properties program is executed. If the standard script

runprop09 is used, then such unit can be renamed inputfilename.adp and put in the same

directory where the input file inputfilename.d3 is.

The structure of the ADP.DAT unit is as follows (this example refers to the crystal of silicon):

298.1500

1

0.017717 0.000000 0.000000

0.000000 0.017717 0.000000

0.000000 0.000000 0.017717

2

0.017717 0.000000 0.000000

0.000000 0.017717 0.000000

0.000000 0.000000 0.017717

where the first entry is the temperature (in Kelvin) at which the ADPs have been mea-

sured/computed. After that, a list of the ADP tensors is given for all the atoms in the cell.

In the example above there are just two atoms per cell and their ADP tensors are equal and

diagonal.
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XRDSPEC - X-ray diffraction Spectra

X-ray static structure factors Fhkl can be computed as discussed above, and correspond to a

discrete Fourier transform of the electron charge density of the crystal:

Fhkl =

∫
cell

ρ(r)ei2πk·rdr , (13.24)

where k = hb1 + kb2 + lb3 is a reciprocal lattice vector (being b1, b2 and b3 the fundamental

reciprocal lattice vectors) and h,k,l Miller’s indices. From the Crystal09 version of the

program, Debye-Waller thermal factors can be computed to transform static into dynamical

structure factors, starting from harmonic atomic anisotropic displacement parameters (ADPs).

The intensity of the diffraction peaks is affected by many factors and is typically proportional

to:

Ihkl ∝ |Fhkl|2 ×Mhkl × LP (θ)× e−B , (13.25)

where Mhkl is the symmetry multiplicity of the structure factor and LP (θ) is a correction

for Lorentz and Polarization effects, with a functional form depending on Bragg’s angle θ

(linked to Miller’s indices through the spacing of the corresponding crystallographic planes

and the wavelength of the experiment). In Crystal17, an option has been implemented,

which computes the structure factor multiplicities Mhkl, converts h,k,l Miller’s indices into

Bragg’s angle θ, and corrects the intensities for the Lorentz and Polarization (LP) effects.

rec variable value meaning
• ∗ NRIF > 0 a set of non-equivalent reflections with indices h,k,l < |NRIF | is gen-

erated
LAMBD λ The wavelength λ (in Å)
B The isotropic Debye-Waller thermal factor B = 8π2 × ADP (in Å2)

[typical values in the range 0.5 - 1.5]
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13.18 Spontaneous polarization

The ferroelectric phases of a ferroelectric material exhibit two possible enantiomorphic non

centrosymmetric structures, which can be labelled by the geometric parameters λ=+1 and

λ=−1. An external electric field can force the system to change from one structure to the

other, passing through a small energy maximum. The centrosymmetric unstable structure

which sits in the middle of the λ=+1 and λ=−1 structures can be labelled by the geometric

parameters λ=0.

The spontaneous polarization in ferroelectric materials is then evaluated through either a Berry

phase approach [187, 48] or a localized Wannier functions approach, as the polarization differ-

ence between one of the two enantiomorphic structures (λ=+1 or λ=−1) and the intermediate

geometric structure (λ=0).

Three subsequent runs are required.

1. First run: preliminary calculation related to λ=0 structure

2. Second run: preliminary calculation related to λ=+1 (or λ=−1) structure

3. Third run: merging of previous data

Some comments:

1. The unit-cell has to contain an even number of electrons.

2. Cell parameters have to be the same for whatever value of the geometric parameter

λ. The difference between the λ=+1, λ=0, and λ=−1 structures is only in the atomic

positions.

3. Numerical accuracy and computational parameters in input block 3 (such as TOLIN-

TEG, POLEORDR, etc.) should be the same for the first and the second run.

4. See page 299 for the NEWK input, which has to be the same for the first and the second

run. The shrinking factor IS should be at least equal to 4. Fermi energy calculation is

not necessary, then set IFE=0.

5. Data evaluated with the keywords POLARI or LOCALI in the first two runs do not

have any physical meaning if considered independently. Only the output produced choos-

ing the keywords SPOLBP or SPOLWF in the third run is significant.

6. When the λ=−1 geometric structure is chosen in the second run, the spontaneous polar-

ization vector obtained at the end will have the same modulus and direction but opposite

versus with respect to the vector obtained by choosing the λ=+1 structure.

7. The spontaneous polarization is obtained through either the Berry phase approach or

the localized Wannier functions approach. Since a phase is defined only in the interval

−π to +π, each component of the spontaneous polarization vector is defined to within an

integer number (positive or negative) of the correspondent component of the ”quantum

of polarization” vector, which is automatically shown in the output of the third run.

Usually there is not need to take into account the quantum of polarization vector, unless

the ferroelectric material shows a large value of the spontaneous polarization.

In case of doubt whether the quantum of polarization vector has to be considered or

not, it is possible to evaluate the spontaneous polarization by setting in the second run a

geometric structure corresponding to an intermediate geometric parameter, e.g. λ=0.25,

and then to extrapolate linearly the result to the λ=1 structure.
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Deck 1

Potassium niobate - KNbO3

CRYSTAL 3D system
0 0 0 IFLAG IFHR IFSO
123 space group, P4/mmm
3.997 4.063 lattice parameters
4 4 non equivalent atoms (5 atoms in the primitive cell)
19 0.5 0.5 0.5 Z=19, Potassium; x, y, z (multiplicity 1)
8 0.0 0.0 0.5 Z=8, Oxygen I; x, y, z (multiplicity 1)
8 0.5 0.0 0.0 Z=8, Oxygen II; x, y, z (multiplicity 2)
41 0.0 0.0 0.0 Z=41, Niobium; x, y, z (multiplicity 1)
END end of geometry input records

Deck 2

Potassium niobate - KNbO3

CRYSTAL 3D system
0 0 0 IFLAG IFHR IFSO
123 space group, P4/mmm
3.997 4.063 lattice parameters
4 4 non equivalent atoms (5 atoms in the primitive cell)
19 0.5 0.5 0.5 Z=19, Potassium; x, y, z (multiplicity 1)
8 0.0 0.0 0.5 Z=8, Oxygen I; x, y, z (multiplicity 1)
8 0.5 0.0 0.0 Z=8, Oxygen II; x, y, z (multiplicity 2)
41 0.0 0.0 0.0 Z=41, Niobium; x, y, z (multiplicity 1)
FRACTION fractional coordinates
ATOMDISP displacement of atoms
4 four atoms to be displaced
1 0.0 0.0 -0.023 displacement of atom no. 1 (Potassium)
2 0.0 0.0 -0.042 displacement of atom no. 2 (Oxygen II)
3 0.0 0.0 -0.042 displacement of atom no. 3 (Oxygen II)
4 0.0 0.0 -0.040 displacement of atom no. 4 (Oxygen I)
END end of geometry input records

SPOLBP - Spontaneous polarization (Berry phase approach)

To calculate the spontaneous polarization, a preliminary with the keyword POLARI run is needed

for each of the two systems λ = 1 and λ = 0. Then a third run with the keyword SPOLBP

gives the difference of polarization between both systems.

1. First run: preliminary calculation related to system λ = 0

Program Keyword comments
crystal see deck 1 for input blocks 1 and 1b
properties NEWK additional keywords allowed

POLARI see above
save Fortran unit 27 as sys0.f27

2. Second run: preliminary calculation related to system λ = 1

Program Keyword comments
crystal see deck 2 for input blocks 1 and 1b
properties NEWK same input as in first run

POLARI

save Fortran unit 27 as sys1.f27

3. Third run: merging of previous data.
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copy sys0.f27 to Fortran unit 28
copy sys1.f27 to Fortran unit 29
Program Keyword comments
properties SPOLBP

SPOLWF - The spontaneous polarization (localized CO approach)

To calculate the spontaneous polarization, two preliminary runs with the keyword LOCALI

is needed for each of the two systems λ = 1 and λ = 0. Then a third run with the keyword

SPOLWF computes the difference of polarization between both systems.

1. First run: preliminary calculation related to system λ = 0

Program Keyword comments
crystal see deck 1 for input blocks 1 and 1b
properties NEWK additional keywords allowed

LOCALI see above
save Fortran unit 37 as sys0.f37

2. Second run: preliminary calculation related to system λ = 1

Program Keyword comments
crystal see deck 2 for input blocks 1 and 1b
properties NEWK same input as in first run

LOCALI

save Fortran unit 37 as sys1.f37

3. Third run: merging of previous data.

copy sys0.f37 to Fortran unit 38
copy sys1.f37 to Fortran unit 39
Program Keyword comments
properties SPOLWF

13.19 Mössbauer Spectroscopy

A nuclear spin transition can be promoted when a γ photon, originated from a nuclear spin

relaxation, interacts with a chemical equivalent nucleus. The resonant condition are satisfied

if the crystal lattice can conveniently absorb the recoil energy. This transition, that in the case

of 57Fe occurs between I1/2 → I3/2 and involves an energy of 14.4 keV, can be accompanied

by at least two effects resulting in a sensitive shift of the energy levels:

• the isotropic effect and

• the anisotropic or quadrupolar interaction.

The code is capable of calculating the electron density and the eigenvalues of the 3x3 matrix

of the electric field gradient, at the nuclei. These particular quantities can be related to

experimental observable, as shown in the following subsections, and can provide a deeper

insight into the chemical-physical environment surrounding the resonant nucleus. For a better
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comprehension of the Mossbauer effect and its exploitation in the characterization of solid state

materials, please refer to literature[149, 205, 79, 86].

Isotropic effect (IS)

The energy associated to a nuclear spin transition, ∆Eγ , is directly proportional to the total

electron density ρ(r) and this means than nuclei subjected to a different field due to their

chemical surrounding, absorb at a slightly different frequency. Experimentally what is observed

is the shift δ, expressed in terms of the Doppler velocity (mm/s) needed to achieve the resonance

absorption between the source S (i.e. the nucleus which emits the γ-ray) and the absorber A

(i.e. the nucleus which undergoes the spin transition):

δ =
c

Eγ
(∆EAγ −∆ESγ ) (13.26)

where c is the light velocity and Eγ the energy of the γ ray. Exploiting the proportionality

between ∆Eγ and ρ(r), it is possible to state that:

δ = A[ρAe (0)− ρSe (0)] (13.27)

where the constant A groups a certain number of terms (relativist effects among the others)

for a given isotope. Since all components in equation 13.27 are constant for a given isotope

but the electron density of the absorber, it is sufficient to consider the simplified equation:

δ = a[ρAe (0)− b] (13.28)

with a and b to be determined in a calibration procedure in which the calculated electron

density at a given nucleus is plotted versus the experimentally determined isotopic shift (IS)

δ, for a series of compounds containing that nucleus. Once the a and b parameters, for a series

of omogeneus compounds (i.e. organic, organo-metallic, inorganic,..) of a given nucleus, have

been calculated can be used to infer the chemical shift of such nucleus in systems for which

the experimental data are unknown or ambiguous[232, 223].

Anisotropic effect

If the nucleus possess a quadrupolar tensor, Q, the first excited nuclear spin state splits into two

double degenerated and equally probable spin states, characterized by the energies E3/2±EQI,

where the quadrupolar interaction (QI) is of the form:

EQI = −e2 1

6

∑
i,j=1,3

VijQij = V ·Q (13.29)

the Q tensor, representing the deviation of the nuclear charge from the ideal spherical shape,

is almost a constant for a given nucleus and can be obtained experimentally. The 3x3 V

matrix contains the electric field gradients at the nucleus and can be diagonalize to obtain the

eigenvalues VAA, VBB and VCC and the asymmetric parameter:

η =
VBB − VAA

VCC
(13.30)

being always |VCC| ≥ |VBB| ≥ |VAA|. Experimentally a doublet is observed, corresponding

to the transitions from the ground state (I = 1/2) towards the two excited states and the

difference between the two peaks can be directly related to η and VCC:

∆EQI = E[3/2,QI] − E[3/2,−QI] = E3/2 + EQI − E3/2 + EQI =

= 2EQI =
1

2
eQVCC(1 +

η2

3
)1/2 (13.31)
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where Q is generally expressed in barn (1 barn = 1 10−28m). Equation 13.31 can be used in

two ways: (i) if the quadrupolar moment, Q, is known the value of ∆EQI can be estimated;

(ii) if ∆EQI is given then Q can be derived.

Input and Output

By mean of the following input (see page 283 for the ISOTROPIC keyword and page 305 for

the POTC one):

ISOTROPIC

UNIQUE

POTC

0 0 0

END

the following information for metal Iron, at the B3LYP level, can be obtained:

..

*******************************************************************************

TOTAL DENSITY AT THE NUCLEAR POSITIONS

*******************************************************************************

POINT ATOM X(AU) Y(AU) Z(AU) BOHR**(-3)

1 1 FE 0.0000 0.0000 0.0000 11613.823418809

*******************************************************************************

...

..

*******************************************************************************

TOTAL ELECTROSTATIC POTENTIAL

*******************************************************************************

.....

TRACELESS ELECTRIC FIELD GRADIENT TENSOR

POINT 1 POSITION 2.7483 -4.7602 0.5717

TENSOR IN PRINCIPAL AXIS SYSTEM

AA -1.316699E-14 BB -3.355213E-12 CC 3.368380E-12

....

CONVERSION FACTORS (CODATA RECOMMENDED VALUES 1998)

...

THE PRODUCT OF THE EFG COMPONENT [AU] AND THE NUCLEAR

QUADRUPOLE MOMENT COMPONENT [BARN] MUST BE MULTIPLIED BY 6.073349

TO OBTAIN THE QUADRUPOLAR COUPLING CONSTANT [mm/s]

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT POTC TELAPSE 95.57 TCPU 95.37

The tensor ”in principal axis system” represent the electric field gradients (EFG). To get the
multiplicative factor, let’s rewrite equation 13.31 in terms of units (written in bold for sake of
clarity):

∆EQI[mm/s] =
1

2
eQVCC(1 +

η2

3
)1/2

=
1

2
1.6021761 · 10−19[JV −1] Q · 10−28[m2] ·

·9.71736153 · 1021 VCC(1 +
η2

3
)1/2 [Vm−2]

=
1

2
15.5689 · 10−26 QVCC(1 +

η2

3
)1/2 J
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using the following conversion factors:

1J = 6.241509751018eV

1eV = 0.125108mm/s

we end with:

∆EQI = 6.073349 QVCC(1 +
η2

3
)1/2 [mm/s] (13.32)

where Q has to be expressed in barn and VCC and η in atomic unit.

13.20 Topological analysis

The TOPOND [92] public code, written by C. Gatti and interfaced to previous public versions
of CRYSTAL[37], has presently been embedded in the code itself. By mean of the keyword
TOPO, after the evaluation of the wave function, it is now possible to perform a topological
analysis of the electron density, according to the Quantum Theory of Atoms in Molecules
(QTAIM) developed by Bader and coworkers[11]. QTAIM allows to perform a detailed study
of the electron density through different steps, ruled by various keywords the use of which is
fully explained and documented in the TOPOND Reference Manual[95]. A brief summary is
here presented.
The first step in the study of the electron density is the search of its critical points (CP) i.e.
the points where its gradient, ∇ρ(r), vanishes. CPs can be classified in terms of their type and
a two-way correspondence with chemically recognizable structures, namely atoms, bonds, ring
and cages, can be performed providing lighting information on the bond nature[93]. A second
step concerns the topological analysis of the Laplacian of the electron density, ∇2ρ(r). This
analysis can reveal the atomic shell structure and the degree of sharing of paired electrons
among neighboring atoms. A comparison with the corresponding properties in the case of
isolated molecules, or atoms, enable to evaluate the effects of the crystal packing on the bonding
structure. A third step deals with the determination of the atomic basins and their local
and integrated properties. Electronic population, Lagrangian and Hamiltonian kinetic energy,
virial density, Becke electron localization function[21] can be defined and calculated in terms of
atomic contributions[94]. Finally, for sake of completeness, a certain number of quantities can
be plotted and visualize in 2 and 3 dimensions: in figure 13.5 the electron density, its Laplacian
and the gradient trajectories of the Urea crystal are reported.

Figure 13.5: From left to right: electron density, ρ, its Laplacian, ∇2ρ and the ∇ρ trajectories
for Urea bulk. Bond paths are indicated in heavy black lines and the bond critical points are
denoted by filled circles. Dotted blue lines indicate negative contour levels.
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Chapter 14

Running CRYSTAL in parallel

The CRYSTAL package contains the following parallel binaries:

• Pcrystal

• Pproperties

• MPPcrystal

Pcrystal (parallel crystal) and Pproperties (parallel properties) are replicated-data versions of
crystal and properties, whereas MPPcrystal (massively parallel crystal) distributes data and
tasks to cores more efficiently than Pcrystal and is particularly suitable to large unit cell cases
with large memory requirements. Pcrystal and MPPcrystal differ essentially for the way they
handle data in reciprocal space and for the algorithms used to diagonalize the Fock matrix
and process the eigenvectors. On the other hand, data in real space, such as the calculation
of one and two-electron integrals are processed by Pcrystal and MPPcrystal through the same
algorithms and parallelization strategy.
Parallelism in CRYSTAL is based on the MPI libraries. Pcrystal and Pproperties link no other
libraries. MPPcrystal relies on the use of Massive Parallel Libraries (Scalapack).

14.1 Running Pcrystal and Pproperties

Pcrystal is fairly efficient for small up to medium sized systems, particularly with high symme-
try. Matrices in reciprocal space are distributed to cores over the irreducible representations
of the group of the system. In fact, if represented in the basis of the symmetry adapted
atomic orbitals (SYMADAPT, default; see page 113), such matrices are decomposed into a
block-diagonal form, each block (or sub-matrix) corresponding to a row of an irreducible repre-
sentation. In the case of no symmetry adaptation (NOSYMADA, page 106) or P1 symmetry,
matrices are distributed over the k points of the Pack-Mokhorst net (or the k points along a
selected path in Pproperties, for example, to plot energy bands). Thus, the number of cores to
be employed to run Pcrystal efficiently should not exceed the total number of the irreducible
representations for all k points in the Pack-Mokhorst net (or the number of k points when
P1 or NOSYMADA), unless the diagonalization step is negligible in terms of computational
time with respect to the other steps of a calculation. Double-counting must be considered for
open-shell systems.
Both Pcrystal and Pproperties expect to read input data from a file called INPUT in a directory
of those discs where the programs store temporary data (fortran units). Output data are
addressed to the standard error.
Use of option CHUNKS (page 130) is recommended to improve load balancing in DFT
calculations. Option LOWMEM can be used to reduce memory requirements.
Parallelism in Pcrystal and Pproperties is enabled by calls to routines of the MPI library.
Communication speed is generally not an issue in this case as inter-process communication is
limited to a relatively small amount of data at few steps throughout a calculation.
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14.2 Running MPPcrystal

MPPcrystal is designed to compute the total energy and wavefunction of large unit cell systems
with large memory requirements, as matrices in the reciprocal space are fully distributed
over the processors. [154] In particular, MPP running is recommended when nirr/nprocs (or
nk/nprocs), i.e. the ratio of the number of irreducible representations at all k points (or the
number of k points sampled in the reciprocal space) to the number of processors used is small.

Advantages of MPPcrystal :

• Matrix diagonalization is well balanced because many processors are involved in the
diagonalization of one matrix;

• Memory requirement per processor decreases with nprocs because data are distributed to
processors

• I/O is limited to reading the user’s input deck and writing the output files with the
results of a job.

Such features make it particularly suitable to run on High Performance computers, but it can
also run on smaller clusters. Since communications are more intensive than with Pcrystal,
performance is improved by fast connections.

In choosing nprocs, the user should consider that MPPcrystal is efficient when nAO/nprocs ≥ 50
(nAO is the number of Atomic Orbitals per cell, or basis functions). If nprocs is too large
compared to the size of the system, some parts of the calculation (matrix diagonalization)
become inefficient because of increasing communications among processors.
In evaluating the best choice for nprocs a user must take into account that MPPcrystal uses a
double-level parallelization in order to reduce communications and improve performance:

1. over the k points in the Pack-Monkhorst net

2. over blocks of a matrix for a k point

Level 1 of parallelization is enabled when nprocs ≥ ntasks, with ntasks = nr + nc ∗WEIGHT.
nr and nc denote the number of k points in the Pack-Monkhorst net where the Fock matrix
elements are real or complex numbers, respectively, and WEIGHT (see CMPLXFAC on
page 86) accounts for the overloading due to the diagonalization of a complex matrix relative
to a real matrix (ntasks is doubled in open-shell cases). If nprocs < ntasks, every matrix for
each k point is diagonalized by all processors. If otherwise, the nprocs cores are subdivided
into nr + nc subsets of cores. Each subset is assigned the the task of diagonalizing a matrix
for one of the k points. The composition of each subset depends on the value of WEIGHT
and is such as to achieve the best load-balancing.

MPPcrystal sets the following standards and defaults:

• “Divide and Conquer” method for matrix diagonalization (disabled by STDIAG);

• Reduced memory storage is enabled as with LOWMEM (page 103); disabled by
NOLOWMEM

• two- and one-electron integrals are computed in real time within a SCF cycle as enabled
by SCFDIR (page 107);

• multipole moments for the evaluation of those two-electron integrals which are approxi-
mated through bipolar expansions and exceed the storage memory limit set by BIPO-
SIZE and EXCHSIZE are computed in real time (they are stored to disc by Pcrystal);

• Data relative to the grid of points used to integrate the exchange-correlation functionals
are distributed over nprocs cores as enabled by DISTGRID (page 131); disabled by
REPLGRID;
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• Symmetry adaptation of the crystalline orbitals is inhibited as with NOSYMADA (page
106);

• Eigenvectors are stored to memory and distributed over all cores; thus, they cannot be
printed nor stored to disc at the end of a calculation.

The following options are not available:
keyword block

CPHF CPHF 1
Infrared intensities in phonon spectra FREQCALC/INTENS 1
Raman intensities in phonon spectra FREQCALC/INTRAMAN 1
Piezoelectric constants PIEZOCON and ELAPIEZO 1
Photoelastic constants PHOTOELA 1
Bloch Functions Symmetry Adapted SYMADAPT 3
Printing of eigenvalues of overlap matrix in k space EIGS 3

SCF convergence may proceed along slightly different paths with Pcrystal and MPPcrystal,
particularly in those cases where convergence is difficult to be achieved, so that SCF
convergence acceleration methods may exhibit different behaviours. A particular setting of
convergence tool parameters, for example a given mixing rate of matrices along several SCF
steps, may result to be effective with Pcrystal and ineffective with MPPcrystal. However,
a proper choice of the parameters will always result into achievement of the SCF cycle
convergence in both cases.

Like Pcrystal, MPPcrystal expects to read input data from a file called INPUT in a directory
of those discs where the programs store temporary data (fortran units). Output data are
addressed to the standard error.
MPPcrystal runs as Pcrystal if keyword REPLDATA (page 107) is added to the input

deck.
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Chapter 15

Input examples

15.1 Standard geometry input

3D - Crystalline compounds - 1st input record keyword:
CRYSTAL

Atom coordinates: fractional units of the crystallographic lattice vectors.
Sodium Chloride - NaCl (Rock Salt Structure)
CRYSTAL
0 0 0 IFLAG IFHR IFSO
225 space group, Fm3m, cubic
5.64 a (Å)
2 2 non equivalent atoms
11 .5 .5 .5 Z=11, Sodium, 1/2, 1/2, 1/2
17 .0 .0 .0 Z=17, Chlorine

Diamond - C (2nd Setting - 48 symmops - 36 with translational component)
CRYSTAL
0 0 0 IFLAG IFHR IFSO
227 space group, Fd3m, cubic
3.57 a (Å)
1 1 non equivalent atom
6 .125 .125 .125 Z=6, Carbon, 1/8, 1/8, 1/8 (multiplicity 2)

Diamond - C (1st Setting - 48 symmops - 24 with translational component)
CRYSTAL
0 0 1 IFLAG IFHR IFSO
227 space group 227, Fd3m, cubic
3.57 a (Å)
1 1 non equivalent atom
6 .0 .0 .0 Z=6, Carbon (multiplicity 2)

Zinc Blend - ZnS
CRYSTAL
0 0 0 IFLAG IFHR IFSO
216 space group 216, F4̄3m, cubic
5.42 a (Å)
2 2 non equivalent atoms
30 .25 .25 .25 Z=30, Zinc, (1/4, 1/4, 1/4)
16 .0 .0 .0 Z=16, Sulphur

Wurtzite - ZnS
CRYSTAL
0 0 0 IFLAG IFHR IFSO
186 space group 186, P63mc, hexagonal
3.81 6.23 a,c (Å)
2 2 non equivalent atoms
30 .6666666667 .3333333333 .0 Zinc, (2/3, 1/3, 0.)
16 .6666666667 .3333333333 .375 Sulphur, (2/3, 1/3, 3/8)
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Cuprite - Cu2O
CRYSTAL
0 0 0 IFLAG IFHR IFSO
208 space group 208, P4232, cubic
4.27 a (Å)
2 2 non equivalent atoms
8 .0 .0 .0 Z=8, Oxygen
29 .25 .25 .25 Z=29, Copper (1/4, 1/4, 1/4)

Aragonite - CaCO3

CRYSTAL
1 0 0 IFLAG (1, SPGR symbol) IFHR IFSO
P M C N space group Pmcn, orthorhombic
4.9616 7.9705 5.7394 a,b,c (Å)
4 4 non equivalent atoms
20 .25 .4151 .2103 Z=20, Calcium
6 .25 .7627 .085 Z=6, Carbon
8 .25 .9231 .0952 Z=8, Oxygen
8 .4729 .6801 .087 Z=8, Oxygen

Fluorite - CaF2

CRYSTAL
0 0 0 IFLAG IFHR IFSO
225 space group 225, Fm3m, cubic
5.46 a (Å)
2 2 non equivalent atoms
9 .25 .25 .25 Fluorine
20 .0 .0 .0 Calcium

Cesium chloride - CsCl
CRYSTAL
0 0 0 IFLAG IFHR IFSO
221 space group 221, Pm3m, cubic
4.12 a (Å)
2 2 non equivalent atoms
55 .5 .5 .5 Cesium
17 .0 .0 .0 Chlorine

Rutile - TiO2

CRYSTAL
0 0 0 IFLAG IFHR IFSO
136 space group 136, P42/mnm, tetragonal
4.59 2.96 a, c (Å)
2 2 non equivalent atoms
22 .0 .0 .0 Titanium
8 .305 .305 .0 Oxygen

Graphite - C (Hexagonal)
CRYSTAL
0 0 0 IFLAG IFHR IFSO
194 space group 194, P63/mmc, hexagonal
2.46 6.70 a,c (Å)
2 2 non equivalent atoms
6 .0 .0 .25 Carbon, 0, 0, 1/4
6 .33333333333 .66666666667 .25 Carbon, 1/3, 2/3, 1/4

Pyrite - FeS2

CRYSTAL
0 0 0 IFLAG IFHR IFSO
205 space group 205, Pa3, cubic
5.40 a (Å)
2 2 non equivalent atoms
26 .0 .0 .0 Iron
16 .386 .386 .386 Sulphur
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Calcite - CaCO3

CRYSTAL
0 1 0 IFLAG IFHR (=1, rhombohedral representation) IFSO
167 space group 167, R3̄c, hexagonal
6.36 46.833 a (Å), α◦

3 3 non equivalent atoms
20 .0 .0 .0 Calcium
6 .25 .25 .25 Carbon
8 .007 .493 .25 Oxygen

Corundum - Al2O3 (hexagonal representation)
CRYSTAL
0 0 0 IFLAG IFHR IFSO
167 space group 167, R3̄c, hexagonal
4.7602 12.9933 a,c (Å)
2 2 non equivalent atoms
13 0. 0. 0.35216 Aluminium
8 0.30621 0. 0.25 Oxygen

Corundum - Al2O3 (rhombohedral representation)
CRYSTAL
0 1 0 IFLAG IFHR (=1, rhombohedral cell) IFSO
167 space group 167, R3̄c, hexagonal
5.12948 55.29155 a (Å), α◦

2 2 non equivalent atoms
13 0.35216 0.35216 0.35216 Aluminium
8 0.94376 0.25 0.55621 Oxygen

Zirconia - ZrO2 - monoclinic structure
CRYSTAL
0 0 1 IFLAG IFHR IFSO (=1, standard shift of origin)
14 space group 14, P21/c, monoclinic
5.03177 5.03177 5.258 90.0 a,b,c (Å), β◦

3 3 non equivalent atoms
240 0.2500 0.0000 0.25000 Zirconium, Pseudopotential (Z’ > 200)
208 0.0000 0.2500 0.07600 Oxygen, Pseudopotential
208 -0.500 -0.250 0.07600 Oxygen, Pseudopotential

Zirconia - ZrO2 - tetragonal structure
CRYSTAL
0 0 1 IFLAG IFHR IFSO (=1, standard shift of origin)
137 space group 137, P42/nmc, tetragonal
3.558 5.258 a,c (Å)
3 3 non equivalent atoms
240 0.0 0.0 0.0 Zirconium, Pseudopotential (Z’ > 200)
208 0.0 -0.5 0.174 Oxygen, Pseudopotential
208 0.5 0.0 0.326 Oxygen, Pseudopotential

Zirconia - ZrO2 - cubic structure
CRYSTAL
0 0 1 IFLAG IFHR IFSO (=1, standard shift of origin)
225 space group 225, Fm3m, cubic
5.10 a (Å)
3 3 non equivalent atoms
240 0.00 0.00 0.00 Z=40 Zirconium, Pseudopotential (Z’ > 200)
208 0.25 0.25 0.25 Oxygen, Pseudopotential
208 -0.25 -0.25 -0.25 Oxygen, Pseudopotential
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SiO2, Chabazite
CRYSTAL
0 1 0 IFLAG IFHR (=1,rhombohedral representation) IFSO
166 space group 166 R3̄m, hexagonal
9.42 94.47 a (Å), β◦

5 5 non equivalent atoms (36 atoms in the primitive cell)
14 .1045 .334 .8755 Silicon (multiplicity 12)
8 .262 -.262 .0 Oxygen (multiplicity 6)
8 .1580 -.1580 .5000 Oxygen (multiplicity 6)
8 .2520 .2520 .8970 Oxygen (multiplicity 6)
8 .0250 .0250 .3210 Oxygen (multiplicity 6)

SiO2, Siliceous Faujasite
CRYSTAL
0 0 0 IFLAG IFHR IFSO
227 space group 227, Fd3m, cubic
21.53 a (Å)
5 5 non equivalent atoms (144 atoms in the primitive cell)
14 .1265 -.0536 .0370 Silicon (multiplicity 48)
8 .1059 -.1059 .0 Oxygen (multiplicity 24)
8 -.0023 -.0023 .1410 Oxygen (multiplicity 24)
8 .1746 .1746 -.0378 Oxygen (multiplicity 24)
8 .1785 .1785 .3222 Oxygen (multiplicity 24)

SiO2, Siliceous Edingtonite
CRYSTAL
0 0 0 IFLAG IFHR IFSO
115 space group 115, P4̄m2, tetragonal
6.955 6.474 a, c (Å)
5 5 non equivalent atoms (15 atoms in the primitive cell)
14 .0 .0 .5000 Silicon (multiplicity 1)
14 .0 .2697 .1200 Silicon (multiplicity 4)
8 .0 .189 .3543 Oxygen (multiplicity 4)
8 .50000 .0 .8779 Oxygen (multiplicity 2)
8 .189 .189 .0 Oxygen (multiplicity 4)

SiO2, Siliceous Sodalite
CRYSTAL
0 0 0 IFLAG IFHR IFSO
218 space group 218, P4̄3n, cubic
8.950675 a (Å)
3 3 non equivalent atoms (36 atoms in the primitive cell)
14 .25000 .50000 .0 Silicon (multiplicity 6)
14 .25000 .0 .50000 Silicon (multiplicity 6)
8 .14687 .14687 .50000 Oxygen (multiplicity 24)
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2D - Slabs (surfaces) - 1st input record keyword: SLAB

A 2D structure can either be created by entering directly the 2D cell parameters and

irreducible atoms coordinates to obtain a slab of given thickness (keyword SLAB in the first

record of the geometry input), or it can be derived from the 3D structure through the keyword

SLABCUT (page 64), entered in the geometry editing section of 3D structure input. In that

case the layer group is automatically identified by the program. The input tests 4-24, 5-25,

6-26 and 7-27 show the two different ways to obtain the same 2D structure.

Atom coordinates: z in Ångstrom, x, y in fractional units of the crystallographic cell translation

vectors.

Test05 - graphite 2D (see test 25)

SLAB
77 layer group (hexagonal)
2.47 lattice vector length (Å)
1 1 non equivalent atom
6 -0.33333333333 0.33333333333 0. Z=6; Carbon; x,y,z

Beryllium - 3 layers slab
SLAB
78 layer group (hexagonal)
2.29 lattice vector length (Å)
2 2 non equivalent atoms
4 0.333333333333 0.666666666667 0. Z=4, Beryllium; 1/3, 2/3, z
4 0.666666666667 0.333333333333 1.795 Z=4, Beryllium; 2/3, 1/3,z

Test06 - beryllium - 4 layers slab (see test 26)
SLAB
72 layer group (hexagonal)
2.29 lattice vector length (Å)
2 2 non equivalent atoms
4 0.333333333333 0.666666666667 0.897499 Z=4, Beryllium;x,y,z
4 0.666666666667 0.333333333333 2.692499 Z=4, Beryllium;x,y,z

Test04 - Corundum 001 (0001) 2 layers slab (see test 24)
SLAB
66 layer group (hexagonal)
4.7602 lattice vector length (Å)
3 3 non equivalent atoms
13 0. 0. 1.9209 Z=13, Aluminum; x,y,z
8 0.333333333 -0.027093 1.0828 Z=8, Oxygen; x,y,z
13 -0.333333333 0.333333333 0.2446 Z=13, Aluminum; x,y,z

Test07 - Corundum 110 (1010) slab (see test 27)
SLAB
7 layer group (Oblique)
5.129482 6.997933 95.8395 a,b (Å) α (degrees)
6 6 non equivalent atoms
8 -0.25 0.5 2.1124 Z=8, Oxygen; x,y,z
8 0.403120 0.153120 1.9189 Z=8, Oxygen; x,y,z
8 0.096880 0.346880 0.4612 Z=8, Oxygen; x,y,z
8 -0.25 0.00 0.2677 Z=8, Oxygen; x,y,z
13 0.454320 0.397840 1.19 Z=13, Aluminum; x,y,z
13 0.045680 0.102160 1.19 Z=13, Aluminum; x,y,z

MgO (110) 2 layers slab
SLAB
40 layer group
4.21 2.97692 lattice vectors length (Å)
2 2 non equivalent atoms
12 0.25 0.25 0.74423 Z=12, Magnesium; x,y,z
8 0.75 0.25 0.74423 Z=8, Oxygen; x,y,z
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MgO (110) 3 layers slab
SLAB
37
4.21 2.97692 lattice vectors length (Å)
4 4 non equivalent atoms
12 0. 0. 1.48846 Z=12, Magnesium; x,y,z
8 0.5 0. 1.48846 Z=8, Oxygen; x,y,z
12 0.5 0.5 0. Z=12, Magnesium; x,y,z
8 0. 0.5 0. Z=8, Oxygen; x,y,z

CO on MgO (001) two layers slab - one-side adsorption
SLAB
55

2.97692 lattice vector length [4.21/
√

2] (Å)
6 6 non equivalent atoms
108 0. 0. 4.5625 Z=8, Oxygen; x,y,z
6 0. 0. 3.4125 Z=6, Carbon; x,y,z
12 0. 0. 1.0525 Z=12, Magnesium; x,y,z
8 0.5 0.5 1.0525 Z=8, Oxygen; x,y,z
12 0. 0. -1.0525 Z=12, Magnesium; x,y,z
8 0.5 0.5 -1.0525 Z=8, Oxygen; x,y,z

Two different conventional atomic numbers (8 and 108) are attributed to the Oxygen in CO and to the Oxygen
in MgO. Two different basis sets will be associated to the two type of atoms (see Basis Set input, page 23, and
test 36).

CO on MgO (001) two layers slab - two-side adsorption
SLAB
64
2.97692 lattice vector length (Å)
4 4 non equivalent atoms
108 0.25 0.25 4.5625 Z=8, Oxygen; x,y,z
6 0.25 0.25 3.4125 Z=6, Carbon; x,y,z
12 0.25 0.25 1.0525 Z=12, Magnesium; x,y,z
8 0.75 0.75 1.0525 Z=8, Oxygen; x,y,z

Two different conventional atomic numbers (8 and 108) are attributed to the Oxygen in CO and to the Oxygen
in MgO.

Diamond slab parallel to (100) face - nine layers slab
SLAB
59
2.52437 lattice vector length (Å)
5 5 non equivalent atoms
6 0. 0. 0. Z=6, Carbon; x,y,z
6 0.5 0. 0.8925 Z=6, Carbon; x,y,z
6 0.5 0.5 1.785 Z=6, Carbon; x,y,z
6 0. 0.5 2.6775 Z=6, Carbon; x,y,z
6 0. 0. 3.57 Z=6, Carbon; x,y,z

Diamond slab parallel to (100) face - ten layers slab
SLAB
39 layer group
2.52437 2.52437 lattice vectors length (Å)
5 5 non equivalent atoms
6 0.25 0. 0.44625 Z=6, Carbon; x,y,z
6 0.25 0.5 1.33875 Z=6, Carbon; x,y,z
6 0.75 0.5 2.23125 Z=6, Carbon; x,y,z
6 0.75 0 3.12375 Z=6, Carbon; x,y,z
6 0.25 0. 4.01625 Z=6, Carbon; x,y,z
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1D - Polymers - 1st input record keyword: POLYMER

Atom coordinates: y,z in Ångstrom, x in fractional units of the crystallographic cell translation

vector.

Test03 - (SN)x polymer

POLYMER
4 rod group
4.431 lattice vector length (Å)
2 2 non equivalent atoms
16 0.0 -0.844969 0.0 Z=16, Sulphur; x, y, z
7 0.141600540 0.667077 -0.00093 Z=7, Nitrogen; x, y, z

Water polymer

POLYMER
1
4.965635 lattice vector length (Å)
6 6 non equivalent atoms
8 0. 0. 0. Z=8, Oxygen; x, y, z
1 0.032558 0.836088 -0.400375 Z=1, Hydrogen; x, y, z
1 0.168195 -0.461051 0. Z=1, Hydrogen; x, y, z
8 0.5 -1.370589 0. Z=8, Oxygen; x, y, z
1 0.532558 -2.206677 0.400375 Z=1, Hydrogen; x, y, z
1 0.668195 -0.909537 0. Z=1, Hydrogen; x, y, z

Formamide chain - test40 DFT

POLYMER
4 rod group
8.774 lattice vector length (Å)
6 6 non equivalent atoms
8 -7.548E-2 5.302E-3 0.7665 Z=8, Oxygen; x, y, z
7 0.1590 -0.8838 0.3073 Z=7, Nitrogen; x, y, z
6 5.627E-2 7.051E-2 0.2558 Z=6, Oxygen; x, y, z
1 0.2677 -0.6952 -9.1548E-2 Z=1, Hydrogen; x, y, z
1 0.1310 -1.8019 0.7544 Z=1, Hydrogen; x, y, z
1 9.244E-2 0.9973 -0.2795 Z=1, Hydrogen; x, y, z
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0D - Molecules - 1st input record keyword: MOLECULE

Atom coordinates: x,y,z in Ångstrom.
Test00 - CO molecule

MOLECULE
1 point group
2 2 non equivalent atoms
6 0. 0. 0. Z=6, Carbon; x, y, z
8 0.8 0.5 0.4 Z=8, Oxygen; x, y, z

Test01 - CH4 Methane molecule

MOLECULE
44 point group
2 2 non equivalent atoms
6 0. 0. 0. Z=6, Carbon; x, y, z
1 0.629 0.629 0.629 Z=1, Hydrogen; x, y, z

Test02 - CO(NH2)2 Urea molecule

MOLECULE
15 point group
5 5 non equivalent atoms
6 0. 0. 0. Z=6, Carbon; x, y, z
8 0. 0. 1.261401 Z=8, Oxygen; x, y, z
7 0. 1.14824666034 -0.69979 Z=7, Nitrogen; x, y, z
1 0. 2.0265496501 -0.202817 Z=1, Hydrogen; x, y, z
1 0. 1.13408048308 -1.704975 Z=1, Hydrogen; x, y, z

15.2 Basis set input

Optimized basis sets for periodic systems used in published papers are available on WWW:

http://www.crystal.unito.it

All electron Basis sets for Silicon atom

STO-3G
14 3 Z=14, Silicon; 3 shells
1 0 3 2. 0. Pople BS; s shell; 3G; CHE=2; standard scale factor
1 1 3 8. 0. Pople BS; sp shell; 3G; CHE=8; standard scale factor
1 1 3 4. 0. Pople BS; sp shell; 3G; CHE=4; standard scale factor

6-21G
14 4 Z=14, Silicon; 4 shells
2 0 6 2. 1. Pople 6-21 BS; s shell; 6G; CHE=2; scale factor 1 (core AO).
2 1 6 8. 1. Pople 6-21 BS; sp shell; 6G; CHE=8; scale factor 1 (core AOs).
2 1 2 4. 1. Pople 6-21 BS; sp shell; 2G; CHE=4; scale factor 1 (inner valence).
2 1 1 0. 1. Pople 6-21 BS; sp shell; 1G; CHE=0; scale factor 1 (outer valence).

NB. The 4th shell has electron charge 0. The basis functions of that shell are included in the basis set to
compute the atomic wave functions, as they correspond to symmetries (angular quantum numbers) occupied
in the ground state of the atom. The atomic basis set is: 4s, 3p.

6-21G modified
14 4 Z=14, Silicon; 4 shells
2 0 6 2. 1. Pople 6-21 BS; s shell; 6G; CHE=2; scale factor 1.
2 1 6 8. 1. Pople 6-21 BS; sp shell; 6G; CHE=8; scale factor 1.
2 1 2 4. 1. Pople 6-21 BS; sp shell; 2G; CHE=4; scale factor 1.
0 1 1 0. 1. free BS; sp shell; 1G; CHE=0; scale factor 1.
0.16 1. 1. gaussian exponent; s coefficient; p coefficient
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3-21G
14 4 Z=14, Silicon; 4 shells
2 0 3 2. 1. Pople 3-21 BS; s shell; 3G; CHE=2; scale factor 1.
2 1 3 8. 1. Pople 3-21 BS; sp shell; 3G; CHE=8; scale factor 1.
2 1 2 4. 1. Pople 3-21 BS; sp shell; 2G; CHE=4; scale factor 1.
2 1 1 0. 1. Pople 3-21 BS; sp shell; 1G; CHE=0; scale factor 1.

3-21G*
14 5 Z=14, Silicon; 5 shells
2 0 3 2. 1. Pople 3-21 BS; s shell; 3G; CHE=2; scale factor 1.
2 1 3 8. 1. Pople 3-21 BS; sp shell; 3G; CHE=8; scale factor 1.
2 1 2 4. 1. Pople 3-21 BS; sp shell; 2G; CHE=4; scale factor 1.
2 1 1 0. 1. Pople 3-21 BS; sp shell; 1G; CHE=0; scale factor 1.
2 3 1 0. 1. Pople 3-21 BS; d shell; 1G; CHE=0; scale factor 1.

NB. The basis functions of the 5th shell, d symmetry, unoccupied in the ground state of Silicon atom, is not
included in the atomic wave function calculation.

3-21G modified+polarization
14 5 Z=14, Silicon; 5 shells
2 0 3 2. 1. Pople 3-21 BS; s shell; 3G; CHE=2; scale factor 1.
2 1 3 8. 1. Pople 3-21 BS; sp shell; 3G; CHE=8; scale factor 1.
2 1 2 4. 1. Pople 3-21 BS; sp shell; 2G; CHE=4; scale factor 1.
0 1 1 0. 1. free BS; sp shell; 1G; CHE=0; scale factor 1.
0.16 1. 1. gaussian exponent; s contraction coefficient; p contr. coeff.
0 3 1 0. 1. free BS; d shell; 1G; CHE=0; scale factor 1.
0.5 1. gaussian exponent; d contraction coefficient.

free basis set
14 4 Z=14, Silicon; 4 shells
0 0 6 2. 1. free BS; s shell; 6 GTF; CHE=2; scale factor 1.
16115.9 0.00195948 1st gaussian exponent; s contraction coefficient
2425.58 0.0149288 2nd gaussian exponent; s contraction coefficient
553.867 0.0728478 3rd gaussian exponent; s contraction coefficient
156.340 0.24613 4th gaussian exponent; s contraction coefficient
50.0683 0.485914 5th gaussian exponent; s contraction coefficient
17.0178 0.325002 6th gaussian exponent; s contraction coefficient
0 1 6 8. 1. free BS; sp shell; 6 GTF; CHE=8; scale factor 1.
292.718 -0.00278094 0.00443826 1st gaussian exp.; s contr. coeff.; p contr. coeff.
69.8731 -0.0357146 0.0326679 2nd gaussian exp.; s contr. coeff.; p contr. coeff.
22.3363 -0.114985 0.134721 3rd gaussian exp.; s contr. coeff.; p contr. coeff.
8.15039 0.0935634 0.328678 4th gaussian exp.; s contr. coeff.; p contr. coeff.
3.13458 0.603017 0.449640 5th gaussian exp.; s contr. coeff.; p contr. coeff.
1.22543 0.418959 0.261372 6th gaussian exp.; s contr. coeff.; p contr. coeff.
0 1 2 4. 1. free BS; sp shell; 2 GTF; CHE=4; scale factor 1
1.07913 -0.376108 0.0671030 1st gaussian exp.; s contr. coeff.; p contr. coeff.
0.302422 1.25165 0.956883 2nd gaussian exp.; s contr. coeff.; p contr. coeff.
0 1 1 0. 1. free BS; sp shell; 1 GTF; CHE=0; scale factor 1.
0.123 1. 1. gaussian exp.; s contr. coeff.; p contr. coeff.

Examples of ECP and valence only basis set input

Nickel atom. Electronic configuration: [Ar] 4s(2) 3d(8)
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Durand & Barthelat large core
228 4 Z=28,Nickel; 4 shells valence basis set
BARTHE keyword; Durand-Barthelat ECP
0 1 2 2. 1. free BS;sp shell;2 GTF;CHE=2;scale factor 1
1.55 .24985 1. 1st GTF exponent;s coefficient;p coefficient
1.24 -.41636 1. 2nd GTF exponent;s coefficient;p coefficient
0 1 1 0. 1. free BS; sp shell; 1 GTF; CHE=0; scale factor 1
0.0818 1.0 1. GTF exponent;s coefficient;p coefficient
0 3 4 8. 1. free BS; d shell; 4 GTF; CHE=8; scale factor 1
4.3842E+01 .03337 1st GTF exponent; d coefficient
1.2069E+01 .17443 2nd GTF exponent; d coefficient
3.9173E+00 .42273 3rd GTF exponent; d coefficient
1.1997E+00 .48809 4th GTF exponent; d coefficient
0 3 1 0. 1. free BS; d shell; 1 GTF; CHE=0; scale factor 1
0.333 1. GTF exponent; d coefficient

Hay & Wadt Large Core - [Ar] 4s(2) 3d(8)
228 4 Z=28,Nickel; 4 shells valence basis set
HAYWLC keyword; Hay-Wadt large core ECP
0 1 2 2. 1. free BS; sp shell; 2 GTF; CHE=2; scale factor 1
1.257 1.1300E-01 2.6760E-02 exponent,s coefficient,p coefficient
1.052 -1.7420E-01 -1.9610E-02
0 1 1 0. 1. second shell,sp type,1 GTF
0.0790 1.0 1.
0 3 4 8. 1. third shell,d type,4 primitive GTF
4.3580E+01 .03204
1.1997E+01 .17577
3.8938E+00 .41461
1.271 .46122
0 3 1 0. 1. fourth shell,d type,1 GTF
0.385 1.

Hay & Wadt Small Core - [Ne] 3s(2) 3p(6) 4s(2) 3d(8)
228 6 nickel basis set - 6 shells
HAYWSC keyword; Hay-Wadt small core ECP
0 1 3 8. 1. first shell,sp type,3 primitive GTF -
2.5240E+01 -3.7000E-03 -4.0440E-02 exponent,s coefficient,p coefficient
7.2019E+00 -5.3681E-01 -7.6560E-02
3.7803E+00 4.2965E-01 4.8348E-01
0 1 2 2. 1. second shell,sp type,2 primitive GTF
1.40 .84111 .55922
0.504 .13936 .12528
0 1 1 0. 1. third shell,sp type,1 GTF
0.0803 1.0 1.
0 3 3 8. 1. fourth shell,d type,4 primitive GTF
4.1703E+01 3.5300E-02
1.1481E+01 1.8419E-01
3.7262E+00 4.1696E-01
0 3 1 0. 1. fifth shell,d type,1 GTF
1.212 1.
0 3 1 0. 1. sixth shell,d type,1 GTF
0.365 1.0
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Free input
228 5 Z=28, nickel basis set - 5 shells (valence only)
INPUT keyword: free ECP (Large Core)- input follows
10. 5 4 5 2 0 0 nuclear charge; number of terms in eq. 3.17 and 3.18
344.84100 -18.00000 -1 eq. 3.17, 5 records:
64.82281 -117.95937 0 α, C, n
14.28477 -29.43970 0
3.82101 -10.38626 0
1.16976 -0.89249 0
18.64238 3.00000 -2 eq. 3.18, 4 records ` = 0
4.89161 19.24490 -1
1.16606 23.93060 0
0.95239 -9.35414 0
30.60070 5.00000 -2 eq. 3.18, 5 records ` = 1
14.30081 19.81155 -1
15.03304 54.33856 0
4.64601 54.08782 0
0.98106 7.31027 0
4.56008 0.26292 0 eq. 3.18, 2 records ` = 2
0.67647 -0.43862 0 basis set input follows - valence only
0 1 1 2. 1. 1st shell: sp type; 1 GTF; CHE=2; scale fact.=1
1.257 1. 1. exponent, s coefficient, p coefficient
0 1 1 0. 1. 2nd shell: sp type; 1 GTF; CHE=0; scale fact.=1
1.052 1. 1.
0 1 1 0. 1. 3rd shell: sp type; 1 GTF; CHE=0; scale fact.=1
0.0790 1.0 1.
0 3 4 8. 1. 4th shell; d type; 4 GTF; CHE=8; scale fact.=1
4.3580E+01 .03204
1.1997E+01 .17577
3.8938E+00 .41461
1.271 .46122
0 3 1 0. 1. 5th shell; d type; 1 GTF; CHE=0; scale fact.=1
0.385 1.

15.3 SCF options

Example of how to edit the density matrix obtained for a given magnetic solution to define a
scf guess with a different magnetic solution.

Deck 1 - ferromagnetic solution

Spinel MnCr2O4

CRYSTAL
0 0 0
227 space group number
8.5985 lattice parameter
3 3 non equivalent atoms (14 atoms in the primitive cell)
24 0.500 0.500 0.500 Chromium - x, y, z - multiplicity 4
25 0.125 0.125 0.125 Manganese - x, y, z - multiplicity 2
8 0.2656 0.2656 0.2656 Oxygen - x, y, z - multiplicity 8
END end of geometry input records - block 1

basis set input terminated by END

UHF Unrestricted Hartree Fock
TOLINTEG the default value of the truncation tolerances is modified
7 7 7 7 14 new values for ITOL1-ITOl2-ITOL3-ITOL4-ITOL5
END end of input block 3
4 0 4 reciprocal lattice sampling (page 29)
SPINLOCK nα - nβ is locked to be 22 for 50 cycles.
22 50 All the d electrons are forced to be parallel
LEVSHIFT a level shifter of 0.3 hartree, maintained after diagonalization,
3 1 causes a lock in a non-conducting solution
MAXCYCLE the maximum number of SCF cycles is set to 50
50
PPAN Mulliken population analysis at the end of SCF cycles
END

Deck 2 (SCF input only)
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4 0 4
GUESSP initial guess: density matrix from a previous run
SPINEDIT elements of the density matrix are modified
2 the diagonal elements corresponding to 2 atoms
5 6 label of the 2 atoms (6 is equivalent to 5)
LEVSHIFT a level shifter of 0.3 hartree, maintained after diagonalization,
3 1 causes a lock in a non-conducting solution
PPAN Mulliken population analysis at the end of SCF cycles
END

=====================================================================
First run - geometry output
=====================================================================

COORDINATES OF THE EQUIVALENT ATOMS (FRACTIONAL UNITS)

N. ATOM EQUIVALENT AT. NUMBER X Y Z

1 1 1 24 CR -5.000E-01 -5.000E-01 -5.000E-01
2 1 2 24 CR -5.000E-01 -5.000E-01 0.000E+00
3 1 3 24 CR 0.000E+00 -5.000E-01 -5.000E-01
4 1 4 24 CR -5.000E-01 0.000E+00 -5.000E-01

5 2 1 25 MN 1.250E-01 1.250E-01 1.250E-01
6 2 2 25 MN -1.250E-01 -1.250E-01 -1.250E-01

7 3 1 8 O 2.656E-01 2.656E-01 2.656E-01
8 3 2 8 O 2.656E-01 2.656E-01 -2.968E-01
9 3 3 8 O -2.968E-01 2.656E-01 2.656E-01

10 3 4 8 O 2.656E-01 -2.968E-01 2.656E-01
11 3 5 8 O -2.656E-01 -2.656E-01 -2.656E-01
12 3 6 8 O -2.656E-01 -2.656E-01 2.968E-01
13 3 7 8 O -2.656E-01 2.968E-01 -2.656E-01
14 3 8 8 O 2.968E-01 -2.656E-01 -2.656E-01

=====================================================================
Ferromagnetic solution: all unpaired electrons with the same spin
=====================================================================
SPIN POLARIZATION - ALPHA-BETA = 22 FOR 50 CYCLES

=====================================================================
Convergence on total energy reached in 33 cycles (level shifter active)
=====================================================================
CYCLE 33 ETOT(AU) -7.072805900367E+03 DETOT -8.168E-07 DE(K) 9.487E+00

=====================================================================
Population analysis - ferromagnetic solution
=====================================================================
MULLIKEN POPULATION ANALYSIS
ALPHA+BETA ELECTRONS - NO. OF ELECTRONS 210.000000

ATOM Z CHARGE SHELL POPULATION
s sp sp sp sp d d

1 CR 24 21.884 2.000 8.047 2.251 4.487 1.331 3.078 .690
5 MN 25 23.147 2.000 8.081 2.170 4.299 1.489 4.478 .629
7 O 8 9.521 1.996 2.644 2.467 2.414

MULLIKEN POPULATION ANALYSIS
ALPHA-BETA ELECTRONS - NO. OF ELECTRONS 22.000000

ATOM Z CHARGE SHELL POPULATION
s sp sp sp sp d d

1 CR 24 3.057 .000 -.002 .011 .027 -.011 2.790 .242
5 MN 25 4.925 .000 -.003 .019 .055 -.052 4.408 .498
7 O 8 -.010 .000 .003 -.014 .002

================================================================================
================================================================================
Second run - Anti ferromagnetic solution:
Integrals calculation not affected by the spin state

Cr (atoms 1-2-3-4) unpaired electrons spin alpha;
Mn (atoms 5 and 6) unpaired electrons spin beta
================================================================================

RESTART FROM A PREVIOUS RUN DENSITY MATRIX
SPIN INVERSION IN SPIN DENSITY MATRIX FOR ATOMS: 5 6

=====================================================================
Convergence on total energy reached in 15 cycles

333



=====================================================================
CYCLE 15 ETOT(AU) -7.072808080821E+03 DETOT -4.930E-07 DE(K) 6.694E-06

======================================uuuu============================
Population analysis - anti ferromagnetic solution
=====================================================================
MULLIKEN POPULATION ANALYSIS

ALPHA+BETA ELECTRONS - NO. OF ELECTRONS 210.000000

ATOM Z CHARGE SHELL POPULATION
s sp sp sp sp d d

1 CR 24 21.884 2.000 8.047 2.251 4.487 1.331 3.078 .690
5 MN 25 23.149 2.000 8.081 2.170 4.299 1.489 4.479 .631
7 O 8 9.521 1.997 2.644 2.467 2.414

MULLIKEN POPULATION ANALYSIS
ALPHA-BETA ELECTRONS - NO. OF ELECTRONS 2.000000
ATOM Z CHARGE SHELL POPULATION

s sp sp sp sp d d
1 CR 24 3.049 .000 -.002 .011 .027 -.012 2.785 .240
5 MN 25 -4.917 .000 .003 -.018 -.055 .054 -4.406 -.495
7 O 8 -.045 .000 -.024 -.013 -.008

================================================================================

15.4 Geometry optimization

Crystal geometry input section (block1) for the geometry optimization of the urea molecule:

. Example

Urea Molecule Title
MOLECULE Dimension of the system
15 Point group (C2v)
5 Number of non equivalent atoms
6 0. 0. 0. Atomic number and cartesian coordinates
8 0. 0. 1.261401

7 0. 1.148247 -0.699790

1 0. 2.026550 -0.202817

1 0. 1.134080 -1.704975

OPTGEOM Keyword to perform a geometry optimization

ENDOPT End of geometry optimization input block
END end og geometry input
Basis set input As in test 12
END End of basis set input section
END block3 input - Molecule - no information on sampling in K space

Crystal output contains additional information on the optimization run after the initial part
of the geometry output:

. . . . . . . . .. . . . . . . . . . . . . . . . . .

BERNY OPTIMIZATION CONTROL

MAXIMUM GRADIENT COMPONENT 0.00045 MAXIMUM DISPLACEMENT COMPONENT 0.00030
R.M.S. OF GRADIENT COMPONENT 0.00180 R.M.S. OF DISPLACEMENT COMPONENTS 0.00120
THRESHOLD ON ENERGY CHANGE 0.100E-06 EXTRAPOLATING POLYNOMIAL ORDER 2
MAXIMUM ALLOWED NUMBER OF STEPS 100 SORTING OF ENERGY POINTS: NO
ANALYTICAL GRADIENTS
. . . . . . . . .. . . . . . . . . . . . . . . . . .

SYMMETRY ALLOWED INTERNAL DEGREE(S) OF FREEDOM: 7

. . . . . . . . .. . . . . . . . . . . . . . . . . .

334



At the first step of the optimization, the Crystal standard output contains both energy

(complete SCF cycle) and gradient parts. At the end of the first step, a convergence check is

performed on the initial forces and the optimization stops if the criteria are already satisfied.

For the subsequent steps, only few lines on the optimization process are reported in standard

output, namely: current geometry, total energy and gradients, and convergence tests (SCF

output is routed to file SCFOUT.LOG).

At each optimization step, xxx, the geometry is written in file optcxxx (in a format suitable

to be read with EXTERNAL keyword). Optimization step can be restarted from any step

geometry, by renaming optcxxx as fort.34.

The standard output for the urea molecule geometry optimization looks as follows:

OPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPTOPT
*******************************************************************************
GEOMETRY OPTIMIZATION - POINT 2
*******************************************************************************
ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: 8

ATOM X(ANGSTROM) Y(ANGSTROM) Z(ANGSTROM)
*******************************************************************************

1 T 6 C 0.000000000000E+00 0.000000000000E+00 2.645266012706E-02
2 T 8 O 0.000000000000E+00 0.000000000000E+00 1.241474126876E+00
3 T 7 N 0.000000000000E+00 1.150483100972E+00 -7.044307566681E-01
4 F 7 N 0.000000000000E+00 -1.150483100972E+00 -7.044307566681E-01
5 T 1 H 0.000000000000E+00 2.022583078191E+00 -2.043778206895E-01
6 F 1 H 0.000000000000E+00 -2.022583078191E+00 -2.043778206895E-01
7 T 1 H 0.000000000000E+00 1.135517317174E+00 -1.702036316144E+00
8 F 1 H 0.000000000000E+00 -1.135517317174E+00 -1.702036316144E+00

T = ATOM BELONGING TO THE ASYMMETRIC UNIT

INTRACELL NUCLEAR REPULSION (A.U.) 1.2463005288098E+02

TOTAL ENERGY(HF)(AU)( 11) -2.2379435865343E+02 DE-4.8E-08 DP 7.2E-06

SYMMETRY ALLOWED FORCES (ANALYTICAL) (DIRECTION, FORCE)

1 4.0854048E-02 2 -2.8460660E-02 3 1.4184257E-03 4 -3.0361419E-03
5 -1.7599295E-02 6 -1.3809310E-02 7 6.7962224E-03

GRADIENT NORM 0.055108 GRADIENT THRESHOLD 0.500000

MAX GRADIENT 0.040854 THRESHOLD 0.000450 CONVERGED NO
RMS GRADIENT 0.020829 THRESHOLD 0.000300 CONVERGED NO
MAX DISPLAC. 0.024990 THRESHOLD 0.001800 CONVERGED NO
RMS DISPLAC. 0.015649 THRESHOLD 0.001200 CONVERGED NO

When all four convergence tests are satisfied, optimization is completed. The final energy and

the optimized structure are printed after the final convergence tests.

******************************************************************
* OPT END - CONVERGED * E(AU): -2.237958289701E+02 POINTS 14 *
******************************************************************

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

FINAL OPTIMIZED GEOMETRY - DIMENSIONALITY OF THE SYSTEM 0
(NON PERIODIC DIRECTION: LATTICE PARAMETER FORMALLY SET TO 500)
*******************************************************************************
ATOMS IN THE ASYMMETRIC UNIT 5 - ATOMS IN THE UNIT CELL: 8

ATOM X(ANGSTROM) Y(ANGSTROM) Z(ANGSTROM)
*******************************************************************************

1 T 6 C 0.000000000000E+00 0.000000000000E+00 3.468988750953E-02
2 T 8 O 0.000000000000E+00 0.000000000000E+00 1.230143233209E+00
3 T 7 N 0.000000000000E+00 1.143750090534E+00 -7.056136525307E-01
4 F 7 N 0.000000000000E+00 -1.143750090534E+00 -7.056136525307E-01
5 T 1 H 0.000000000000E+00 2.001317638364E+00 -2.076003454226E-01
6 F 1 H 0.000000000000E+00 -2.001317638364E+00 -2.076003454226E-01
7 T 1 H 0.000000000000E+00 1.157946292824E+00 -1.696084062406E+00
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8 F 1 H 0.000000000000E+00 -1.157946292824E+00 -1.696084062406E+00

T = ATOM BELONGING TO THE ASYMMETRIC UNIT

INTRACELL NUCLEAR REPULSION (A.U.) 1.2541002823701E+02

**** 4 SYMMOPS - TRANSLATORS IN FRACTIONA LUNITS
V INV ROTATION MATRICES TRANSLATOR
1 1 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
2 2 -1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
3 3 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
4 4 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

The final geometry is both printed in the Crystal output and writ-

ten in file fort.34. The following input defines the geometry, read-

ing data from file fort.34 (keyword EXTERNAL, input block1, page 19).

. Example

Urea Molecule Title

EXTERNAL Geometry read from file fort.34
optional keywords
END End of the geometry input section

Optimization can restart, by adding the keyword RESTART in the same

input deck used for the first optimization run. Information to restart

are read from file OPTINFO.DAT, updated after each optimization cycle.

. Example

Initial input Restart input

Urea Molecule Urea Molecule

MOLECULE MOLECULE

15 15

5 5

6 0. 0. 0. 6 0. 0. 0.

8 0. 0. 1.261401 8 0. 0. 1.261401

7 0. 1.148247 -0.699790 7 0. 1.148247 -0.699790

1 0. 2.026550 -0.202817 1 0. 2.026550 -0.202817

1 0. 1.134080 -1.704975 1 0. 1.134080 -1.704975

OPTGEOM OPTGEOM

ENDOPT RESTART

END ENDOPT

END

Partial optimization

In order to optimize the coordinates of the hydrogens in urea molecule, the following input

must be entered:
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. Example

Urea Molecule Title
MOLECULE Dimension of the system
15 Point group (C2v)
5 Number of non equivalent atoms
6 0. 0. 0. Atomic number and cartesian coordinates
8 0. 0. 1.261401

7 0. 1.148247 -0.699790

1 0. 2.026550 -0.202817

1 0. 1.134080 -1.704975

KEEPSYMM maintain symmetry in subsequent operations

OPTGEOM Keyword to perform a geometry optimization

FRAGMENT Keyword for a partial optimization

2 Number of atoms to be optimized

5 7 Label of the atoms to be optimized

ENDOPT End of the geometry optimization input block
END End of the geometry input section

The atoms allowed to move are the two hydrogens irreducible, 5 and 7. The symmetry is

maintained, atoms 6 and 7 are allowed to move.

*******************************************************************************
* PARTIAL OPTIMIZATION - ATOMS FREE TO MOVE 2 INPUT LIST :

5( 1) 7( 1)

SYMMETRY IS KEPT

ATOM 5 AND 6 ARE LINKED BY SYMMOP 2
ATOM 7 AND 8 ARE LINKED BY SYMMOP 2
*******************************************************************************

If the symmetry is not maintained (default, no KEEPSYMM before OPTGEOM) the symmetry

operators linking atoms 5 and 6, and atoms 7 and 8, are removed.

*******************************************************************************
* PARTIAL OPTIMIZATION - ATOMS FREE TO MOVE 2 INPUT LIST :

5( 1) 7( 1)

SYMMETRY MAY BE BROKEN

THE NUMBER OF SYMMETRY OPERATORS HAS BEEN REDUCED FROM 4 TO 2
******************************************************************************

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .
SYMMETRY ALLOWED INTERNAL DEGREE(S) OF FREEDOM: 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

Final run

During optimization process, the classification of the integrals is done with reference to the

input geometry, and used for all subsequent wave function calculations.

In some cases, when the optimized geometry is far from the original one, the series truncation

defined with reference to the starting geometry may be inhomogeneous if applied to the final

geometry (see keyword FIXINDEX for explanation). In those cases, the total energy com-

puted for one geometry, with integrals selected according to a different geometry, may be not

correct.

A single point calculation, with the final optimized geometry, allows to check if that is the

case.
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A safe procedure to check if that geometry corresponds to a real energy minimum, is to per-

form a second optimization process, with same truncation criteria, starting from the geometry

obtained in the first optimization (read from file fort.34, keyword EXTERNAL, page 19).

The keyword FINALRUN starts the process automatically. (it does not work with Pcrystal)

A typical example is the geometry optimization of a surface, described with a slab

model. The optimization process may lead to a structure significantly different

from the one cut from the bulk, when there is surface relaxation. As an exam-

ple, the geometry optimization of the surface (001) of the α -Al2O3 is reported.

. Example - Optimization of surface

α -Al2O3 - (001) surface title
CRYSTAL dimension of the system
0 0 0

167 space group
4.7602 12.9933 lattice parameters
2 number of irreducible atoms
13 0. 0. 0.35216 fractional coordinates of first atom
8 0.30624 0. 0.25 fractional coordinates of second atom
SLABCUT 3D→ 2D
0 0 1 (h, k, l) Miller indices of the surface
1 6 number of layers, starting from the first classified

OPTGEOM Keyword to perform a geometry optimization

FINALRUN keyword to check gradients vs true series truncation

3 new optimization if convergence criteria are not satisfied
ENDOPT end of the geometry optimization input block
END end of the geometry input section

Neighbors analysis on the initial geometry obtained with SLABCUT

N = NUMBER OF NEIGHBORS AT DISTANCE R 11 cycles

ATOM N R/ANG R/AU NEIGHBORS (ATOM LABELS AND CELL INDICES)

1 AL 3 1.8551 3.5057 2 O 0 0 0 3 O 0 0 0 4 O 0 1 0

1 AL 3 3.2192 6.0834 5 AL 0 0 0 5 AL 1 1 0 5 AL 0 1 0

1 AL 3 3.2219 6.0885 2 O -1 0 0 3 O 1 1 0 4 O 0 0 0

1 AL 3 3.4295 6.4808 7 O 0 1 0 8 O 0 1 0 9 O 0 0 0

1 AL 3 3.4990 6.6121 6 AL 0 0 0 6 AL -1 0 0 6 AL 0 1 0

1 AL 1 3.8419 7.2601 10 AL 0 0 0

Total energy E = -1399.7999027 hartree

Series truncation is defined with reference to that geometry. Optimization begins. After 11
cycles convergence on gradients and displacements is satisfied.
Neighbors analysis on the optimized geometry:

N = NUMBER OF NEIGHBORS AT DISTANCE Ra 6 cycles

ATOM N R/ANG R/AU NEIGHBORS (ATOM LABELS AND CELL INDICES)

1 AL 3 1.6886 3.1911 2 O 0 0 0 3 O 0 0 0 4 O 0 1 0

1 AL 1 2.6116 4.9351 10 AL 0 0 0

1 AL 3 2.8198 5.3286 7 O 0 1 0 8 O 0 1 0 9 O 0 0 0

1 AL 3 3.0425 5.7494 5 AL 0 0 0 5 AL 1 1 0 5 AL 0 1 0
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1 AL 3 3.0430 5.7504 6 AL 0 0 0 6 AL -1 0 0 6 AL 0 1 0

1 AL 3 3.1214 5.8987 2 O -1 0 0 3 O 1 1 0 4 O 0 0 0

Total energy E = -1400.1148194 hartree

A large geometrical relaxation occurred during the optimization: the aluminium atoms move
toward the core of the slab. In this case both the total energy and gradients should be recal-
culate using truncation series which refer to the final relaxed geometry.
This crucial step is automatically performed if the keyword FINALRUN is present in the input
file. If this is the case, CRYSTAL03 checks for the numerical consistency and it will find
that the gradients do not match the requested convergence criteria. At the end of the new
optimization the total energy is:

Total energy E = -1400.1193593 hartree

In this case, FINALRUN was followed by the keyword ICODE=3. This means that the geom-
etry optimization restarts from the very last step of the previous geometry optimization with
truncation series criteria defined relative to that geometry. After 6 new optimization cycles,
convergence criteria are satisfied.
Neighbors analysis on the final run optimized geometry

N = NUMBER OF NEIGHBORS AT DISTANCE R

ATOM N R/ANG R/AU NEIGHBORS (ATOM LABELS AND CELL INDICES)

1 AL 3 1.6863 3.1867 2 O 0 0 0 3 O 0 0 0 4 O 0 1 0

1 AL 1 2.5917 4.8976 10 AL 0 0 0

1 AL 3 2.8095 5.3092 7 O 0 1 0 8 O 0 1 0 9 O 0 0 0

1 AL 3 3.0382 5.7414 5 AL 0 0 0 5 AL 1 1 0 5 AL 0 1 0

1 AL 3 3.0387 5.7424 6 AL 0 0 0 6 AL -1 0 0 6 AL 0 1 0

1 AL 3 3.1215 5.8987 2 O -1 0 0 3 O 1 1 0 4 O 0 0 0

Total energy E = -1400.1194545 hartree

The final geometry is printed, and written in file fort.34.
A final check on total energy can be done with the following input:

alpha-Al2O3 (corundum) 001 2 LAYERS (3D-->2D)

EXTERNAL

OPTGEOM

ENDOPT

END

The keyword EXTERNAL routes the basic geometry input stream to file fort.34, written at
the end of the optimization run.
No optimization starts, convergence criteria are already satisfied.

Total energy E = -1400.1194544 hartree

/sectionScanning of vibrational modes - SCANMODE
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Methane molecule

MOLECULE

44

2

6 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00

1 6.252140000000E-01 6.252140000000E-01 6.252140000000E-01

FREQCALC

SCANMODE

-1 -1 0 0.1

12

ENDfreq

END

6 3

0 0 3 2. 1.

172.256000 0.617669000E-01

25.9109000 0.358794000

5.53335000 0.700713000

0 1 2 4. 1.

3.66498000 -0.395897000 0.236460000

0.770545000 1.21584000 0.860619000

0 1 1 0. 1.

0.195857000 1.00000000 1.00000000

1 2

0 0 2 1. 1.

5.44717800 0.156285000

0.824547000 0.904691000

0 0 1 0. 1.

0.183192000 1.00000000

99 0

END

TOLINTEG

20 20 20 20 20

END

TOLDEE

11

END

PbCO3

PBCO3 - frequency calculation

CRYSTAL

1 0 0

P m c n

5.20471446 8.45344758 6.16074145

4

282 2.500000000000E-01 4.175726169487E-01 -2.463557995068E-01

6 2.500000000000E-01 -2.363341497085E-01 -8.558132726424E-02

8 2.500000000000E-01 -8.360585350428E-02 -9.431628799197E-02

8 4.648370653436E-01 -3.129222129903E-01 -8.842925698155E-02

FREQCALC

RESTART

SCANMODE

1 -40 40 0.1

1

END
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END

282 4

HAYWLC

0 1 2 4. 1.

1.335104 -0.1448789 -0.1070612

0.7516086 1.0 1.0

0 1 1 0. 1.

0.5536686 1.0 1.0

0 1 1 0. 1.

0.1420315 1.0 1.0

0 3 1 0. 1.

0.1933887 1.0

6 4

0 0 6 2.0 1.0

3048.0 0.001826

456.4 0.01406

103.7 0.06876

29.23 0.2304

9.349 0.4685

3.189 0.3628

0 1 2 4.0 1.0

3.665 -0.3959 0.2365

0.7705 1.216 0.8606

0 1 1 0.0 1.0

0.26 1.0 1.0

0 3 1 0.0 1.0

0.8 1.0

8 4

0 0 6 2.0 1.0

.5484671660D+04 .1831074430D-02

.8252349460D+03 .1395017220D-01

.1880469580D+03 .6844507810D-01

.5296450000D+02 .2327143360D+00

.1689757040D+02 .4701928980D+00

.5799635340D+01 .3585208530D+00

0 1 3 6.0 1.0

.1553961625D+02 -.1107775490D+00 .7087426820D-01

.3599933586D+01 -.1480262620D+00 .3397528390D+00

.1013761750D+01 .1130767010D+01 .7271585770D+00

0 1 1 0.0 1.0

.2700058226D+00 .1000000000D+01 .1000000000D+01

0 3 1 0.0 1.0

.8000000000D+00 .1000000000D+01

99 0

ENDBS

SCFDIR

DFT

B3LYP

RADIAL

1

4.0

99

ANGULAR

5

0.1667 0.5 0.9 3.5 9999.0

6 10 14 18 14

END
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SHRINK

6 6

LEVSHIFT

5 0

TOLDEE

10

MAXCYCLE

200

ENDSCF
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Chapter 16

Basis set

The most common source of problems with CRYSTAL is probably connected with the basis set.
It should never be forgotten that ultimately the basis functions are Bloch functions, modulated
over the infinite lattice: any attempt to use large uncontracted molecular or atomic basis sets,
with very diffuse functions can result in the wasting of computational resources. The densely
packed nature of many crystalline structures gives rise to a large overlap between the basis
functions, and a quasi-linear dependence can occur, due to numerical limitations.
The choice of the basis set (BS) is one of the critical points, due to the large variety of
chemical bonding that can be found in a periodic system. For example, carbon can be involved
in covalent bonds (polyacetylene, diamond) as well as in strongly ionic situations (Be2C, where
the Mulliken charge of carbon is close to -4).
Many basis sets for lighter elements and the first row transition metal ions have been developed
for use in periodic systems. A selection of these which have been used in published work are
available on WWW:

http://www.crystal.unito.it

We summarize here some general considerations which can be useful in the construction of a
BS for periodic systems.
It is always useful to refer to some standard basis set; Pople’s STO-nG, 3-21G and 6-21G have
proved to be good starting points. A molecular minimal basis set can in some cases be used
as it is; larger basis sets must be re-optimized specifically for the chemical periodic structure
under study.
Let us explore the adequacy of the molecular BS for crystalline compounds and add some
considerations which can be useful when a molecular BS must be modified or when an ex novo
crystalline BS is defined.

16.1 Molecular BSs performance in periodic systems

Two sets of all electron basis sets are included in CRYSTAL (see Chapter 2.2):

1. Minimal STO-nG basis set of Pople and co-workers
obtained by fitting Slater type orbitals with n contracted GTFs (n from 2 to 6, atomic
number from 1 to 54) [120, 119, 169, 168].

The above BSs are still widely used in spite of the poor quality of the resulting wave func-
tion, because they are well documented and as a rule provide quite reasonable optimized
geometries (due to fortuitous cancellation of errors) at low cost.

2. ”Split valence” 3-21 and 6-21 BSs.
The core shells are described as a linear combination of 3 (up to atomic number 54)
or 6 (up to atomic number 18) gaussians; the two valence shells contain two and one
gaussians, respectively [23, 101]. Exponents (s and p functions of the same shell share
the same exponent) and contraction coefficients have been optimized variationally for the
isolated atoms.
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A single set of polarization functions (p,d) can be added without causing numerical problems.
Standard molecular polarization functions are usually also adequate for periodic compounds.

When free basis sets are chosen, two points should be taken into account:

1. From the point of view of CPU time, basis sets with sp shells (s and p functions sharing
the same set of exponents) can give a saving factor as large as 4, in comparison with
basis sets where s and p have different exponents.

2. As a rule, extended atomic BSs, or ’triple zeta’ type BSs should be avoided. Many of
the high quality molecular BSs (Roos, Dunning, Huzinaga) cannot be used in CRYSTAL
without modification, because the outer functions are too diffuse. One should not forget
that the real basis functions are Bloch functions.

Let us consider in more detail the possibility of using molecular BS for periodic systems. We
can refer to five different situations:

Core functions
Valence functions: molecular crystals

covalent crystals
ionic crystals
metals.

16.2 Core functions

In this case standard (contracted) molecular BSs can be adopted without modification, be-
cause even when very strong crystal field effects are present, the deformation of inner states
is small, and can be correctly described through the linear variational parameters in SCF cal-
culation. An adequate description of the core states is important in order to avoid large basis
set superposition errors.

16.3 Valence functions

Molecular crystals

Molecular BSs, minimal and split-valence, are perfectly adequate. Tests have been performed
on bulk urea [55] and oxalic acid, where the molecules are at relatively small distances, with
STO-3G, 6-21, 6-21* and 6-21** BSs presenting no problem.

Covalent crystals.

Standard minimal and split valence BSs are usually adequate. In the split valence case the
best exponent of the most diffuse shell is always slightly higher than the one proposed for
molecules; in general it is advisable to re-optimize the exponent of this shell. This produces a
slightly improved basis, while reducing the cost of the calculation. Let us consider for example
the 6-21 basis set for carbon (in diamond) and silicon (bulk).
At an atomic level, the best exponent of the outer shell is 0.196 and 0.093 for C and Si, respec-
tively. Optimization of the valence shell has been repeated in the two crystalline compounds.
The innermost valence shell is essentially unaltered with respect to the atomic solution; for the
outer single-gaussian shell the best exponent is around 0.22 and 0.11 bohr−2 for carbon and
silicon, as shown in Table 16.1. The last entry of Table 16.1 refers to ”catastrophic” behaviour:
the low value of the exponent generates unphysical states.
A set of 5 polarization single-gaussian d functions can be added to the 6-21G basis (6-21G*
BS); the best exponents for the solid are very close to those resulting from the optimization in
molecular contexts: 0.8 for diamond [113] and 0.45 for silicon.

Basis sets for III-V and IV-IV semiconductors (all electron and valence electron (to be associ-
ated with effective core pseudopotentials) are given in references [153, 43].
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Table 16.1: Total energy per cell and number of computed bielectronic integrals in 106 units
(N), as a function of the exponent α (bohr−2) of the most diffuse shell for carbon and silicon.
____________________________________________________________________

Diamond Silicon

------------------------ --------------------------

a N Et a N Et

___________________________________________________________

0.296 58 -75.6633 0.168 46 -577.8099

0.276 74 -75.6728 0.153 53 -577.8181

0.256 83 -75.6779 0.138 72 -577.8231

0.236 109 -75.6800 0.123 104 -577.8268

0.216 148 -75.6802 0.108 151 -577.8276

0.196 241 -75.6783 0.093 250 -577.8266

0.176 349 catastrophe 0.078 462 catastrophe

____________________________________________________________________

Ionic crystals.

Cations

The classification of covalent or ionic crystals is highly conventional, many systems being
midway. Let us first consider totally ionic compounds, such as LiH, MgO, or similar. For these
systems the cation valence shell is completely empty. Therefore, for cations it is convenient
to use a basis set containing the core functions plus an additional sp shell with a relatively
high exponent. For example, we used for Mg in MgO and for Li in LiH ( Li2 O and Li3 N) a
’valence’ sp shell with exponent 0.4-0.3 and 0.5-0.6, respectively [62, 42].
The crystalline total energies obtained by using only core functions for Li or Mg and by adding
a valence shell to the cation differ by 0.1 eV/atom, or less. This figure is essentially the same
for a relatively large range of exponents of the valence shell (say 0.5-0.2 for Mg) [42].
It can be difficult (or impossible) to optimize the exponents of nearly empty shells: the en-
ergy decreases almost linearly with the exponent. Very low exponent values can give rise to
numerical instabilities, or require the calculation of an enormous number of integrals (selected
on the basis of overlap criteria). In the latter cases, when the energy gain is small (∆E ≤ 1 m
hartree for ∆α = 0.2 bohr−2), it is convenient to use a relatively large exponent.

Anions

Reference to isolated ion solutions is only possible for halides, because in such cases the ions
are stable even at the HF level. For other anions, which are stabilized by the crystalline
field (H−, O2−, N3− and also C4−), the basis set must be re-designed with reference to the
crystalline environment. For example, let us consider the optimization of the O2− BS in Li2O
[62]. Preliminary tests indicated the fully ionic nature of the compound; the point was then to
allow the valence distribution to relax in the presence of the two extra electrons. We started
from a standard STO-6G BS. Two more gaussians were introduced in the 1s contraction, in
order to improve the virial coefficient and total energy, as a check of wave function quality. The
6 valence gaussians were contracted according to a 411 scheme; the exponents of the two outer
independent gaussians and the coefficients of the four contracted ones were optimized. Whereas
the two most diffuse gaussians are more diffuse than in the neutral isolated atom (α=0.45 and
0.15 to be compared with α=0.54 and 0.24 respectively), the rest of the O2− valence shell is
unchanged with respect to the atomic situation. The introduction of d functions in the oxygen
basis-set causes only a minor improvement in energy (1 10−4 hartree/cell, with a population
of 0.02 electrons/atom in the cell). Ionic BSs for H and N can be found in reference 1.
For anions, re-optimization of the most diffuse valence shell is mandatory; when starting from
a standard basis set, the most diffuse (or the two most diffuse) gaussians must be allowed to
relax.
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From covalent to ionics

Intermediate situations must be considered individually, and a certain number of tests must
be performed in order to verify the adequacy of the selected BSs.
Let us consider for example α-quartz (SiO2) and corundum (Al2O3). The exponent of the
outer shell for the 2 cations in the 6-21G BS is 0.093 (Si) and 0.064 (Al), respectively; in both
cases this function is too diffuse (in particular in the Al case it causes numerical catastrophes).
For quartz, re-optimization in the bulk gives α=0.15 bohr−2 for Si (the dependence of total
energy per Si atom on α is much smaller than the one resulting from Table 16.1; note too that
the cost at α=0.15 is only 50% of the one at α=0.09). On the contrary, the best molecular
and crystalline exponent (α=0.37) for oxygen coincide. Corundum is more ionic than quartz,
and about 2 valence electrons are transferred to oxygen. In this case it is better to eliminate
the most diffuse valence shell of Al, and to use as independent functions the two gaussians of
the inner valence shells (α=0.94 and 0.20 bohr−2, respectively [191]).

Metals

Very diffuse gaussians are required to reproduce the nearly uniform density characterizing
simple metallic systems, such as lithium and beryllium. This is the worse situation, where a
full optimization of the atomic basis set is probably impossible. Functions which are too diffuse
can create numerical problems, as will be discussed below.
The optimization procedure can start from 6-21 BS; the most diffuse valence shell (exponent
0.028 for Li and 0.077 for Be) can be dropped and the innermost valence shell (exponents 0.54
and 0.10 for Li, and 1.29 and 0.268 for Be) can be split.

Table 16.2: Example of BS for metallic lithium and beryllium derived from the standard
6-21G BS

.

_______________________________________________________________

Lithium Beryllium

shell Exp. Coeff. shell Exp. Coeff.

_______________________________________________________________

s 642.418 0.00215096 s 1264.50 0.00194336

96.5164 0.0162677 189.930 0.0148251

22.0174 0.0776383 43.1275 0.0720662

6.1764 0.246495 12.0889 0.237022

1.93511 0.467506 3.80790 0.468789

sp 0.640 1. 1. 1.282 1. 1.

sp 0.10 1. 1. 0.27 1. 1.

_______________________________________________________________

At this point the outer gaussian of the 6G core contraction, with very similar exponents (0.64
and 1.28) to those of the innermost valence shell (0.54 and 1.29), can be used as an independent
(sp) function, and the innermost valence shell can be eliminated.
The resulting (reasonable) BS, derived from the split valence standard one, is reported in Table
16.2. Finally, the most diffuse gaussian can be optimized; in the two cases the minimum has
not been found owing to numerical instabilities.
See [56] for a more extensive discussion of the metallic lithium case.

16.4 Hints on crystalline basis set optimization

In the definition of a valence shell BS, each exponent can be varied in a relatively narrow range:
in the direction of higher exponents, large overlaps with the innermost functions may occur
(the rule of thumb is: exponents must be in a ratio not too far from 3; ratios smaller than
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2 can give linear dependence problems); proceeding towards lower exponents, one must avoid
large overlaps with a high number of neighbours (remember: the basis functions are Bloch
functions).
Diffuse gaussian orbitals play a critical role in HF-LCAO calculations of crystals, especially
the three-dimensional ones; they are expensive, not always useful, in some cases dangerous.

• Cost.

The number of integrals to be calculated increases dramatically with decreasing exponents;
this effect is almost absent in molecular calculations. Table 16.1 shows that the cost of the
calculation (number of bielectronic integrals) for silicon (diamond) can increase by a factor
10 (6) simply by changing the exponent of the most diffuse single-gaussian from 0.168 to
0.078 (0.296 to 0.176). The cost is largely dominated by this shell, despite the fact that large
contractions are used for the 1s, 2sp and the innermost valence shell.
A high number of contracted primitives tremendously increases the integrals computation time.

• Usefulness.

In atoms and molecules a large part of the additional variational freedom provided by diffuse
functions is used to describe the tails of the wave function, which are poorly represented by the
e−αr

2

decay of the gaussian function. On the contrary, in crystalline compounds (in particular
3D non-metallic systems), low exponent functions do not contribute appreciably to the wave
function, due to the large overlap between neighbours in all directions. A small split valence
BS such as the 6-21G one, is nearer to the variational limit in crystals than in molecules.

• Numerical accuracy and catastrophic behaviour.

In some conditions, during the SCF (periodic) calculation, the system ’falls’ into non-physical
states, characterized by very low single particle and total energies (see for example the last
entry in Table 16.1 and the above discussion on metals).
This behaviour, generically interpreted in our early papers as due to ’linear dependence’, is
actually due to poor accuracy in the treatment of the Coulomb and exchange series. The
exchange series is much more delicate, for two reasons: first, long range contributions are not
taken into account (whereas the long range Coulomb contributions are included, although in an
approximate way); second, the ”pseudoverlap” criteria associated with the two computational
parameters ITOL4 and ITOL5 mimic only in an approximate way the real behaviour of the
density matrix.
The risks of ”numerical catastrophes” increase rapidly with a decreasing exponent; higher
precision is required in order to obtain physical solutions.
For non-metallic systems, and split-valence type BSs, the default computational conditions
given in section 2.3 are adequate for the optimization of the exponents of the valence shell and
for systematic studies of the energy versus volume curves.
For metallic systems, the optimization of the energy versus exponent curve could require ex-
tremely severe conditions for the exchange series and, as a consequence, for the reciprocal
space net. Reasonable values of the valence shell exponent (say 0.23 for beryllium and 0.10
for lithium, see Table 16.2), though not corresponding to a variational minimum, are reason-
ably adequate for the study of the structural and electronic properties of metallic systems (see
reference 1).

16.5 Check on basis-set quasi-linear-dependence

In order to check the risk of linear dependence of Bloch functions, it is possible to calculate
the eigenvalues of the overlap matrix in reciprocal space by running integrals and entering
the keyword EIGS (input block 3, page 88). Full input (general information, geometry, basis
set, SCF) is to be entered.
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The overlap matrix in direct space is Fourier transformed at all the k points generated in the
irreducible part of the Brillouin zone, and diagonalized. The eigenvalues are printed.
The higher the numerical accuracy obtained by severe computational conditions, the closer
to 0 can be the eigenvalues without risk of numerical instabilities. Negative values indicate
numerical linear dependence. The program stops after the check (even if negative eigenvalues
are not detected).
The Cholesky reduction scheme [130] requires basis functions linearly independent. A symptom
of numerical dependence may produce an error message in RHOLSK or CHOLSK while running
scf.
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Chapter 17

Theoretical framework

17.1 Basic equations

CRYSTAL is an ab initio Hartree-Fock LCAO program for the treatment of periodic systems.
LCAO, in the present case, means that each Crystalline Orbital , ψi(r; k), is a linear combina-
tion of Bloch functions (BF), φµ(r; k), defined in terms of local functions, ϕµ(r) (here referred
to as Atomic Orbitals, AOs).

ψi(r; k) =
∑
µ

aµ,i(k)φµ(r; k) (17.1)

φµ(r; k) =
∑
g

ϕµ(r−Aµ − g) eik·g (17.2)

Aµ denotes the coordinate of the nucleus in the zero reference cell on which ϕµ is centred, and
the

∑
g is extended to the set of all lattice vectors g.

The local functions are expressed as linear combinations of a certain number, nG, of individually
normalized (basis set) Gaussian type functions (GTF) characterized by the same centre, with
fixed coefficients, dj and exponents, αj , defined in the input:

ϕµ(r−Aµ − g) =

nG∑
j

dj G(αj ; r−Aµ − g) (17.3)

The AOs belonging to a given atom are grouped into shells, λ. The shell can contain all AOs
with the same quantum numbers, n and `, (for instance 3s, 2p, 3d shells), or all the AOs with the
same principal quantum number, n, if the number of GTFs and the corresponding exponents
are the same for all of them (mainly sp shells; this is known as the sp shells constraint). These
groupings permit a reduction in the number of auxiliary functions that need to be calculated
in the evaluation of electron integrals and therefore increase the speed of calculation.
A single, normalized, s-type GTF, Gλ, is associated with each shell (the adjoined Gaussian of
shell λ). The α exponent is the smallest of the αj exponents of the Gaussians in the contraction.
The adjoined Gaussian is used to estimate the AO overlap and select the level of approximation
to be adopted for the evaluation of the integrals.
The expansion coefficients of the Bloch functions, aµ,i(k), are calculated by solving the matrix
equation for each reciprocal lattice vector, k:

F(k)A(k) = S(k)A(k)E(k) (17.4)

in which S(k) is the overlap matrix over the Bloch functions, E(k) is the diagonal energy
matrix and F(k) is the Fock matrix in reciprocal space:

F(k) =
∑
g

Fg eik·g (17.5)
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The matrix elements of Fg, the Fock matrix in direct space, can be written as a sum of
one-electron and two-electron contributions in the basis set of the AO:

F g
12 = Hg

12 +Bg
12 (17.6)

The one electron contribution is the sum of the kinetic and nuclear attraction terms:

Hg
12 = T g

12 + Zg
12 = 〈ϕ0

1 | T̂ | ϕ
g
2 〉+ 〈ϕ0

1 | Ẑ | ϕ
g
2 〉 (17.7)

In core pseudopotential calculations, Ẑ includes the sum of the atomic pseudopotentials.
The two electron term is the sum of the Coulomb and exchange contributions:

Bg
12 = Cg

12 +Xg
12 =

∑
3,4

∑
n

Pn
3,4

∑
h

[(ϕ0
1ϕ

g
2 | ϕh

3ϕ
h+n
4 )− 1

2
(ϕ0

1ϕ
h
3 | ϕ

g
2ϕ

h+n
4 )] (17.8)

The Coulomb interactions, that is, those of electron-nucleus, electron-electron and nucleus-
nucleus, are individually divergent, due to the infinite size of the system. The grouping of
corresponding terms is necessary in order to eliminate this divergence.
The Pn density matrix elements in the AOs basis set are computed by integration over the
volume of the Brillouin zone (BZ),

Pn
3,4 = 2

∫
BZ

dkeik·n
∑
j

a∗3j(k)a4j(k)θ(εF − εj(k)) (17.9)

where ain denotes the i-th component of the n-th eigenvector, θ is the step function, εF , the
Fermi energy and εn, the n-th eigenvalue. The total electronic energy per unit cell is given
by:

Eelec =
1

2

∑
1,2

∑
g

P g
12(Hg

12 + F g
12) (17.10)

A discussion of the different contributions to the total energy is presented in [193, 197] and in
Chapter 11 of reference [171].

Ecoul =
1

2

∑
1,2

∑
g

P g
12

∑
3,4

∑
n

Pn
3,4

∑
h

[(ϕ0
1ϕ

g
2 | ϕh

3ϕ
h+n
4 )] (17.11)

Eexch = −1

4

∑
1,2

∑
g

P g
12

∑
34

∑
n

Pn
34

∑
h

[(ϕ0
1ϕ

h
3 | ϕ

g
2ϕ

h+n
4 )] (17.12)

17.2 Remarks on the evaluation of the integrals

The approach adopted for the treatment of the Coulomb and exchange series is based on a few
simple ideas and on a few general tools, which can be summarized as follows:

1. Where possible, terms of the Coulomb series are aggregated so as to reduce the number
of integrals to be evaluated;

2. Exchange integrals which will combine with small density matrix elements are disre-
garded;

3. Integrals between non-overlapping distributions are approximated;

4. Approximations for large integrals must be very accurate; for small integrals large per-
centage errors can be accepted;

5. Selection must be very efficient, because a large number of possible terms must be checked
(adjoined Gaussians are very useful from this point of view).
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17.3 Treatment of the Coulomb series

For the evaluation of the Coulomb contributions to the total energy and Fock matrix, correct
coupling of electron-nucleus and electron-electron interactions is essential. The computational
technique for doing so was presented by Dovesi et al [61] and by Saunders et al. [197]. It may
be summarized as follows.
Consider the Coulomb bielectronic contribution to the Fock matrix (Cg

12) and to the total
energy :

Ecoulee =
1

2

∑
1,2

∑
g

P g
12

∑
3,4

∑
n

Pn
3,4

∑
h

[(ϕ0
1ϕ

g
2 | ϕh

3ϕ
h+n
4 ) (17.13)

Seven indices are involved in equation 17.13; four of them (1, 2, 3 and 4) refer to the AOs
of the unit cell; in principle, the other three (g, n and h) span the infinite set of translation
vectors: for example, ϕg

2 (r) is AO number 2 in cell g. P is the density matrix; the usual
notation is used for the bielectronic integrals. Due to the localized nature of the basis set, the
total charges, q1 and q2, associated with the two pseudo-overlap distributions: {G10G2g} and
{G3hG4h+n}, decay exponentially to zero with increasing |g| and |n| (for example, G1 is the
adjoined gaussian of the shell to which ϕ1 belongs).
A Coulomb overlap parameter, Sc, can be defined in such a way that when either q1 or q2 are
smaller than Sc, the bielectronic integral is disregarded, and the sum over g or n truncated.
The ITOL1 input parameter is defined as ITOL1=−log10Sc. The same parameter value is
used for selecting overlap, kinetic, and multipole integrals.
The problem of the h summation in equation 17.13 is more delicate, h being related to the
distance between the two interacting distributions. The multipolar expansion scheme illus-
trated below is particularly effective when large unit cell or low dimensionality systems are
considered. The electron-electron and electron-nuclei series (Cg

12 and Zg
12 ) can be rearranged

as follows:

1. Mulliken shell net charge distributions are defined as :

ρλ(r− h) ≡ {λ}′ ≡ {λ} − Zλ =
∑
3∈λ

∑
4n

Pn
34 ϕ3(r− h) ϕ4(r− h− n)− Zλ (17.14)

where Zλ is the fraction of nuclear charge formally attributed to shell λ, and {λ} is the
electron charge distribution of shell λ.

2. Z and C contributions are reordered:

Cg
12 + Zg

12 =
∑
λ

∑
h

∫
dr dr′ϕ0

1(r) ϕg
2 (r) |r− r′ − h|−1 ρλ(r′ − h) (17.15)

3. For a given shell λ, there is a finite set Bλ of h vectors for which the two interacting
distributions overlap; in this Bλ zone (bielectronic zone), all the bielectronic integrals are
evaluated explicitly. In the outer, infinite region which we define as Mλ, complementary
to Bλ (the mono-electronic zone), ρλ can be expanded in multipoles and the series can be
evaluated to infinity analytically, using Ewald’s method combined with recursion formulae
[197].

The resulting expression for the Coulomb contribution to the Fock matrix is:

Cg
12 + Zg

12 =
∑
λ{
∑Bλ

h [
∑

3∈λ
∑

4

∑
n P

n
34(ϕ0

1ϕ
g
2 | ϕh

3ϕ
h+n
4 ) +

−
∑
`,m γ

m
` (Aλ; {λ})Φm` (12g;Aλ + h)] + (17.16)

+
∑

h

∑
`,m γ

m
` (Aλ; {λ}′)Φm` (12g; Aλ + h)}

where:

γm` (Aλ; {λ}) =

∫
dr ρλ(r−Aλ)Nm

` X
m
` (r−Aλ) (17.17)

Φm` (12g; Aλ + h) =

∫
drϕ0

1(r)ϕg
2 (r)Xm

` (r−Aλ − h) |r−Aλ − h|−2`−1 (17.18)
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The Ewald term in eq. 17.16 includes zones Bλ + Mλ. The contribution from Bλ is subtracted.
The Xm

` functions entering in the definition of the multipoles and field terms are real, solid
harmonics, and Nm

` , the corresponding normalization coefficients.
The advantage of using equation 17.16 is that many four-centre (long-range) integrals can be
replaced by fewer three-centre integrals.
The attribution of the interaction between ρ1 = {10, 2g} and ρλ to the exact, short-range or
to the approximate, long-range zone is performed by comparing the penetration between ρ1

and ρλ with the ITOL2 input parameter (if ITOL2> − logS1λ, then ρλ is attributed to the
exact Bλ zone).
The multipolar expansion in the approximate zone is truncated at L = `max. The default value
of L is 4; the maximum possible value is 6, the minimum suggested value, 2 (defined via the
input keyword POLEORDR, input block 3, page 106).

17.4 The exchange series

The exchange series does not require particular manipulations of the kind discussed in the
previous section for the Coulomb series, but needs a careful selection of the terms contributing
appreciably to the Fock operator and to the total energy [41]. The exchange contribution to
the total energy can be written as follows:

Eex =
1

2

∑
12

∑
g

P g
12 [−1

2

∑
34

∑
n

Pn
34

∑
h

(ϕ0
1ϕ

h
3 | ϕ

g
2ϕ

h+n
4 )] (17.19)

where the term in square brackets is the exchange contribution to the 12g element of the direct
space Fock matrix. Eex has no counterpart of opposite sign as the Coulomb term has; hence,
it must converge by itself.
The h summation can be truncated after a few terms, since the {ϕ0

1ϕ
h
3 } overlap distribution

decays exponentially as h increases. Similar considerations apply to the second charge distri-
bution. In CRYSTAL, the h summation is, therefore, truncated when the charge associated
with either {G10 G3h} or {G2g G4h + n} is smaller than 10−ITOL3.
The situation is more complicated when g and n summations are analysed. Let us consider
the leading terms at large distance, corresponding to ϕ1=ϕ3, ϕ2=ϕ4, h = 0 and n = g:

eg12 = −1/4(P g
12)2(10 10|2g 2g) = −(pg)2/(4|g|) (17.20)

(Here pg indicates the dominant P matrix element at long range). Since the number of terms
per unit distance of this kind increases as |g|d−1, where d is the dimensionality of the system,
it is clear that the convergence of the series depends critically on the long range behaviour of
the bond order matrix.
Cancellation effects, associated in particular with the oscillatory behaviour of the density ma-
trix in metallic systems, are not predominant at long range. Even if the actual behaviour of
the P matrix elements cannot be predicted because it depends in a complicated way on the
physical nature of the compound [173], on orthogonality constraints and on basis set quality,
the different range of valence and core elements can be exploited by adopting a pseudoverlap
criterion. This consists in truncating g summations when the

∫
drϕ0

1ϕ
g
2 overlap is smaller

than a given threshold, defined as P g
ex (where ITOL4 = -log10 (P g

ex)) and also truncating the
n summation when

∫
drϕ0

3ϕ
n
4 overlap is smaller than the threshold, Pn

ex (ITOL5 = -log10

(Pn
ex)).

Despite its partially arbitrary nature, this criterion presents some advantages with respect to
other more elaborate schemes: it is similar to the other truncation schemes (ITOL1, ITOL2,

ITOL3), and so the same classification tables can be used; it is, in addition, reasonably efficient
in terms of space occupation and computer time.
This truncation scheme is symmetric with respect to the g and n summations. However, if
account is not taken of the different role of the two summations in the SC (Self Consistent)
stage, distortions may be generated in the exchange field as felt by charge distributions ϕ1ϕ

T
2 ,

where T labels the largest (in modulus) g vector taken into account according to ITOL4. This
distortion may be variationally exploited, and unphysically large density matrix elements build
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up progressively along the SC stage, eventually leading to catastrophic behaviour (see Chapter
II.5 of reference [175] for a discussion of this point). In order to overcome this problem, the
threshold, Pn

ex (ITOL5) for n summation must be more severe than that for g summation
(ITOL4). In this way, all the integrals whose second pseudo charge

∫
drϕ0

3ϕ
n
4 is larger than

Pn
ex are taken into account. A difference in the two thresholds ranging from three to eight

orders of magnitude is sufficient to stabilize the SC behaviour in most cases.

17.5 Bipolar expansion approximation of Coulomb and
exchange integrals

We may now return to the partition of the h summation in the Coulomb series shown in
equation 17.13. Consider one contribution to the charge distribution of electron 1, centred in
the reference cell: ρ0 = ϕ0

1ϕ
g
2 ; now consider the charge distribution ρλ(h) of shell λ centred

in cell h (equation 17.14). For small |h| values, ρλ and ρ0 overlap, so that all the related
bielectronic integrals must be evaluated exactly, one by one; for larger values of |h|, ρλ is
external to ρ0, so that all the related bielectronic integrals are grouped and evaluated in an
approximate way through the multipolar expansion of ρλ .
However, in many instances, although ρλ is not external to ρ0, the two-centre ϕh

3ϕ
h+n
4 con-

tributions to ρλ are external to ρ0 = ϕ0
1ϕ

g
2 ; in this case, instead of exactly evaluating the

bielectronic integral, a two-centre truncated bipolar expansion can be used (see Chapter II.4.c
in reference [175] and references therein).
In order to decide to which zone a shell may be ascribed, we proceed as follows: when, for a
given pair of shells λ01λ

g
2 , shell λh3 is attributed to the B (bielectronic) zone, the penetration

between the products of adjoined Gaussians G0
1G

g
2 and Gh

3G
h+n
4 is estimated: the default

value of the penetration parameter is 14, and the block of bielectronic integrals is attributed
accordingly to the be (exact) or to the bb (bipolar) zone. The set of h vectors defining the B
zone of ρ0= {12g} and ρλ ≡ {λ3} is then split into two subsets, which are specific for each
partner λl4 of λ3.
A similar scheme is adopted for the selected exchange integrals (see previous section) whose
pseudo charges do not overlap appreciably. The default value of the penetration parameter is
10.
The total energy change due to the bipolar expansion approximation should not be greater
than 10−4 hartree/atom; exact evaluation of all the bielectronic integrals (obtained by setting
the penetration parameter value > 20000) increases the computational cost by a factor of
between 1.3 and 3. Multipolar expansion is very efficient, because the following two conditions
are fulfilled:

1. A general algorithm is available for reaching high ` values easily and economically [61,
197]. The maximum allowed value is `=6.

2. The multipolar series converges rapidly, either because the interacting distributions are
nearly spherical (shell expansion), or because their functional expression is such that
their multipoles are zero above a certain (low) ` value.

17.6 Exploitation of symmetry

Translational symmetry allows the factorization of the eigenvalue problem in periodic calcula-
tions, because the Bloch functions are a basis for irreducible representations of the translational
group.
In periodic calculations, point symmetry is exploited to reduce the number of points for which
the matrix equations are to be solved. Point symmetry is also explicitly used in the reconstruc-
tion of the Hamiltonian, which is totally symmetric with respect to the point group operators
of the system.
In the HF-CO-LCAO scheme, the very extensive use of point symmetry allows us to evaluate
bielectronic and mono-electronic integrals with saving factors as large as h in the number of
bielectronic integrals to be computed or h2 in the number of those to be stored for the SCF part
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of the calculation, where h is the order of the point group. The main steps of the procedure
[54] can be summarized as follows:

• The set of Coulomb and exchange integrals whose 3,4 indices identify translationally
equivalent pairs of AOs, so that the associated element of the density matrix P34 is the
same, are summed together to give D1234 elements:

D1,2T ;3,4Q =
∑
n

[(ϕ0
1ϕ

g
2 | ϕh

3ϕ
h+n
4 )− 1/2(ϕ0

1ϕ
h
3 | ϕ

g
2ϕ

h+n
4 )] (17.21)

• The products of AOs ϕ1ϕ2 ( and ϕ3ϕ4) are classified in symmetry-related sets; using the
fact that the Fock matrix is totally symmetric, only those quantities are evaluated whose
indices 1, 2 refer to the first member of a symmetry set. The corresponding saving factor
is as large as h.

• Using the symmetry properties of the density matrix, D quantities referring to 3, 4, cou-
ples belonging to the same symmetry set (and with the same 1, 2g index) can be combined
after multiplication by appropriate symmetry matrices, so that a single quantity for each
3, 4 symmetry set is to be stored, with a saving factor in storage of the order of h.

• The symmetry Pn
34 = P−n43 is exploited.

• The symmetry Fg
12 = F−g21 is exploited.

Symmetry-adapted Crystalline Orbitals

A computational procedure for generating space-symmetry-adapted Bloch functions, when BF
are built from a basis of local functions (AO), is implemented in the CRYSTAL98 code. The
method, that applies to any space group and AOs of any quantum number, is based on the
diagonalization of Dirac characters. For its implementation, it does not require character tables
or related data as an input, since the information is automatically generated starting from the
space group symbol and the AO basis set. Formal aspects of the method, not available in
textbooks, are discussed in:

C. M. Zicovich-Wilson and R. Dovesi
On the use of Symmetry Adapted Crystalline Orbitals in SCF-LCAO periodic calculations. I.
The construction of the Symmetrized Orbitals
Int. J. Quantum Chem. 67, 299–310 (1998)

C. M. Zicovich-Wilson and R. Dovesi
On the use of Symmetry Adapted Crystalline Orbitals in SCF-LCAO periodic calculations. II.
Implementation of the Self-Consistent-Field scheme and examples
Int. J. Quantum Chem. 67, 311–320 (1998).

The following table presents the performance obtained with the new method. In all cases
convergence is reached in ten cycles.

System Chabazite Pyrope Faujasite

Space Group R3̄m Ia3d Fd3m
N. of atoms 36 80 144
N. of AOs 432 1200 1728
N. symmetry operators 12 6 3 48 48
CPU time (sec) on IBM RISC-6000/365
integrals 447 900 1945 4286 815
Atomic BF(ABF) scf (total) 1380 2162 4613 24143 50975
Atomic BF scf (diagonalization) 898 898 898 19833 44970
Symmetry Adapted BF (SABF) scf (total) 526 1391 4335 3394 2729
Symmetry Adapted BF scf (diagonalization) 42 97 570 312 523
ABF/SABF scf time 2.62 1.55 1.06 7.11 18.7

354



17.7 Reciprocal space integration

The integration in reciprocal space is an important aspect of ab initio calculations for periodic
structures. The problem arises at each stage of the self-consistent procedure, when determining
the Fermi energy, εF , when reconstructing the one-electron density matrix, and, after self-
consistency is reached, when calculating the density of states (DOS) and a number of observable
quantities. The P matrix in direct space is computed following equation 17.9. The technique
adopted to compute εF and the P matrix in the SCF step is described in reference [80].
The Fourier-Legendre technique presented in Chapter II.6 of reference [175] is adopted in the
calculation of total and projected DOS. The Fermi energy and the integral in equation 17.9 are
evaluated starting from the knowledge of the eigenvalues, εn(k) and the eigenvectors, aµn(k),
at a certain set of sampling points, {κ}. In 3D crystals, the sampling points belong to a lattice
(called the Monkhorst net, [148] ) with basis vectors b1/s1, b2/s2, b3/s3, where b1,b2 and b3

are the ordinary reciprocal lattice vectors; s1, s2 and s3 (input as IS1, IS2 and IS3) are integer
shrinking factors. Unless otherwise specified, IS1=IS2=IS3=IS. In 2D crystals, IS3 is set equal
to 1; in 1D crystals both IS2 and IS3 are set equal to 1. Only points of the Monkhorst net
belonging to the irreducible part of the Brillouin Zone (BZ) are considered, with associated
geometrical weights, wi.
In the selection of the κ points for non-centrosymmetric crystal, time-reversal symmetry is
exploited (εn(κ) = εn(−κ)).
The number of inequivalent sampling points, κi, is asymptotically given by the product of the
shrinking factors divided by the order of the point group. In high symmetry systems and with
small si values, it may be considerably larger because many points lie on symmetry planes or
axes.
Two completely different situations (which are automatically identified by the code) must now
be considered, depending on whether the system is an insulator (or zero gap semiconductor), or
a conductor. In the former case, all bands are either fully occupied or vacant. The identification
of εF is elementary, and the Fourier transform expressed by equation 17.9 is reduced to a
weighted sum of the integrand function over the set {κi} with weights wi, the sum over n being
limited to occupied bands.
The case of conductors is more complicated; an additional parameter, ISP, enter into play.
ISP (or ISP1, ISP2, ISP3) are Gilat shrinking factors which define a net Gilat net [98, 97]
completely analogous to the Monkhorst net. The value of ISP is larger than IS (by up to a
factor of 2), giving a denser net.
In high symmetry systems, it is convenient to assign IS magic values such that all low multi-
plicity (high symmetry) points belong to the Monkhorst lattice. Although this choice does not
correspond to maximum efficiency, it gives a safer estimate of the integral.
The value assigned to ISP is irrelevant for non-conductors. However, a non-conductor may
give rise to a conducting structure at the initial stages of the SCF cycle, owing, for instance,
to a very unbalanced initial guess of the density matrix. The ISP parameter must therefore be
defined in all cases.

17.8 Electron momentum density
and related quantities

Three functions may be computed which have the same information content but different use
in the discussion of theoretical and experimental results; the momentum density itself, π(p) or
EMD; the Compton profile function, J(p) or CP; the autocorrelation function, or reciprocal
space form factor, or internally-folded density, B(r) or BR.
With reference to a Crystalline-Orbital (CO)-LCAO wave function, the EMD can be expressed
as the sum of the squared moduli of the occupied COs in a momentum representation, or
equivalently, as the diagonal element of the six-dimensional Fourier transform of the one-
electron density matrix from configuration to momentum space:
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π(p) =

occ∑
n

∑
µν

eip·(sµ−sν)Cµn(p0)C∗νn(p0) χµ(p)χ∗ν(p) θ(εF − εn(p0)) (17.22)

π(p) =
∑
µν

∑
g

P g
µν e

ip(Sµ−g−sν) χµ(p)χ∗ν(p) (17.23)

In the above equations p0 is the value of momentum in the Brillouin zone (BZ), which is
related to p by a reciprocal lattice vector K, sµ is the fractional coordinate of the χµ centre,
and χµ(p) is the Fourier transform of χµ(r), calculated analytically:

χµ(p) =

∫
dr χµ(r) e−ıp·r (17.24)

The two expressions (17.22) and (17.23) are implemented in Crystal and can be used via
the EMDL (EMDP) and EMDLDM (EMDPDM) keywords, respectively for EMD along
a line (in a plane). Let us note, however, that the default choice for keywords EMDL and
EMDP is that of computing the core band contribution via equation (17.23) and the valence
band contribution via equation (17.22).
At variance with the electron charge density ρ(r), it is generally difficult to fully exploit the
information content of the EMD π(p) due to its “collapsed” character about the origin p = 0
in momentum space. A relatively simple way of extracting information from the total EMD of
a system, is analyzing its anisotropy ∆π(p) with respect to its Spherical Average (SA) function
πSA(p) which is, of course, a “radial” function of a single variable:

∆π(p) = π(p)− πSA(p) where p = |p| (17.25)

The average value πSA(p) of the function π(p) over the surface of a sphere with radius p, can
be computed as the average of the function values at the 60 points pn (with n = 1, . . . , 60)
lying on that surface which form an orbit under the icosahedral group. It is possible to exploit
the smoothed character of the spherically averaged EMD πSA(p) by explicitly evaluating it on
a coarse set of values of p and then by interpolating them (we use a cubic spline). Spherically
averaged EMD and EMD-anisotropies can be evaluated via the EMDLDM and EMDPDM
keywords.
A directional Compton profile Jhkl(p) is related to a particular crystallographic directions [hkl],
identified by the unit vector ehkl where hkl are the Miller indices. The directional CP Jhkl(p)
contains information about the distribution of the electron’s momenta along the [hkl] direction
of the crystal and can be defined as the 2D integration of π(p) over a plane perpendicular to
ehkl through pehkl:

Jhkl(p) =

∫
π(p)δ(p · ehkl − p)dp (17.26)

The weighted average of the directional CPs over all directions is the average CP. Both di-
rectional and average CPs can be computed following the expression (17.26) via the PROF
keyword.
The one-dimensional Fourier transform of a directional CP, gives the so-called directional auto-
correlation function Bhkl(r):

Bhkl(r) =

∫
Jhkl(p) e

−ıp rdp (17.27)

Jhkl(p) =
1

2π

∫
Bhkl(r) e

ıp rdr (17.28)

Directional CPs can be computed from the corresponding directional auto-correlation function
via the keyword BIDIERD.
Within the sudden-impulse approximation, Jhkl(p) is directly comparable to the outcome of
Compton scattering experiments, after correcting the latter for limited resolution and mul-
tiple scattering effects. In particular, the effect of limited resolution can be expressed as a
convolution of the “infinite resolution” data with a normalized Gaussian function g(p;σcp)
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characterized by a given standard deviation σcp (or, equivalently, by the fwhm parameter
wcp = σcp · 2

√
2log2) which quantifies the experimental resolution:

Jσhkl(p) =

∫ +∞

−∞
Jhkl(p

′) g(p− p′; σcp) dp′ =

=
1

2π

∫ +∞

−∞
Bσhkl(r) e−ı p r dr (17.29)

In the last integrand a “finite resolution AF” appears, which is simply the product of the AF
from equation (17.27) by a Gaussian function g(r, σbr), with σbr = 1/σcp, and can be extracted
from the experimental CP simply by Fourier back-transformation.
The expectation value of the kinetic energy operator T̂ (i.e the kinetic energy of the system
Ekin) can be expressed in terms of the second moment of the electron momentum distribution
π(p) as follows:

Ekin = 〈T̂ 〉 =
1

2

∫
π(p)p2dp

virial
= −E0 (17.30)

where the last passage recalls that, if the virial theorem is satisfied, the kinetic energy equals
(apart from the sign that is opposite) the total energy of the system. Let us introduce the
kinetic tensor T whose elements Tuv can be defined as:

Tuv =
1

2

∫
π(p)pu pvdp with u, v = x, y, z (17.31)

The kinetic energy of the system is then the trace of the kinetic tensor:

Ekin = 〈T̂ 〉 = Tr(T) (17.32)

The kinetic tensor can be computed via the KINETEMD keyword of Properties.
A possible strategy for partitioning the electron momentum density (EMD) of a periodic system
into chemically meaningful contributions is that of exploiting the spatially localized character
of Wannier functions (WF).
Let us introduce the so-called Wannier functions that are real-valued, well localized functions of
r, which span altogether the same space as the occupied COs and are translationally equivalent
and mutually orthonormal:

Wi,0(r) = Wi,g(r + g) ; (17.33)∫
Wi,g(r)Wi′,g′(r) dr = δii′δgg′ (17.34)

Such functions are in turn expressed as LCAO:

Wi,g(r) =
∑
µ

∑
g′

wi,g;µg′ χµ(r− sµ − g′) (17.35)

The WFs can be obtained from the set of occupied COs via a unitary transformation that
imposes spatial localization. Let us express the EMD in terms of WFs:

π(p) =
2

L

N0/2∑
i=1

L∑
g

Wi,g(p) Wi,g(p)∗ (17.36)

= 2

N0/2∑
i=1

Wi,0(p) Wi,0(p)∗ (17.37)

=

N0/2∑
i=1

πi(p) with πi(p) = 2 Wi,0(p) Wi,0(p)∗ (17.38)

where N0 is the number of electrons per cell, L the number of cells in the cyclic cluster; in
the second passage we have exploited the translational equivalence of the WFs and in the last

357



passage we make explicit the partition of the total EMD in contributions πi(p) coming from
the different WFs.
Let us define a momentum WF Wi,g(p) as:

Wi,g(p) =

∫
dr Wi,0(r− g) e−ıp·r (17.39)

= e−ıp·g
∫
dr Wi,0(r) e−ıp·r (17.40)

= e−ıp·g
∑
µ

∑
g′

wi,0;µg′ e
−ıp·(sµ+g′)χµ(p) (17.41)

Substitution of equation (17.41) into equation (17.37) gives, for the total EMD:

π(p) = 2

N0/2∑
i=1

∑
µ

∑
ν

∑
g

∑
g′

wi,0;µg wi,0;νg′ e
−ıp·(sµ−sν+g−g′)χµ(p)χ∗ν(p) (17.42)

Also the total anisotropy ∆π(p) can be partitioned into contributions coming from the different
WFs:

∆π(p) =

N0/2∑
i

∆πi(p) with ∆πi(p) = πi(p)− πSA(p)

N0/2
(17.43)

If one considers as negligible the contribution of core electrons to the total anisotropy of the
EMD, can rewrite the previous partitioning as follows:

∆π(p) =

Nv/2∑
i

∆πi(p) with ∆πi(p) = πi(p)− πSA(p)

Nv/2
(17.44)

where Nv is the number of valence electrons. Both EMD and EMD-anisotropies from selected
WFs can be computed via the EMDWF sub-keyword of LOCALWF that activates the
localization of crystalline orbitals into WFs.
Given the contribution πi(p) of WF i to the EMD of the system, a kinetic tensor Ti can be
introduced whose elements T iuv can be defined as:

T iuv =
1

2

∫
πi(p)pu pvdp with u, v = x, y, z (17.45)

The computation of such a tensor can be activated via the EMDWFKIN sub-keyword of
LOCALWF.

17.9 Elastic Moduli of Periodic Systems

The elastic constants are second derivatives of the energy density with respect to strain com-
ponents:

Cij = 1/V · ∂2E

∂εi∂εj
(17.46)

where V is the volume of the cell. The energy derivatives must be evaluated numerically.
Particular care is required in the selection of the computational parameters and of the points
where the energy is evaluated, in order to avoid large numerical errors in the fitting procedure
(FIXINDEX, page 93; OPTGEOM, page 156).

See http://www.crystal.unito.it ⇒ tutorials ⇒ Elastic and piezoelectric tensors

When the unit cell is deformed, the point group is reduced to a subgroup of the original
point group (see examples below). The new point group is automatically selected by the code.
Off-diagonal (partial derivatives) elastic constants can be computed as linear combinations
of single-variable energy curves. For example, for a cubic system, C12 can be obtained from
B=(C11 + 2C12)/3 and (C11 − C12) (see examples below). Following the deformation of the
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unit cell, internal relaxation of the atoms may be necessary (depending on the space group
symmetry) See test 20, referring to Li2 O.
The analysis of the point group at the atomic positions (printed by the ATOMSYMM option,
page 40) is useful in finding the atomic coordinates to be relaxed. Examples of deformation
strategies are discussed in references [62, 40].
In a crystalline system a point r is usually defined in terms of its fractional components:

r = h Lp

where :

Lp =

 l1
l2
l3

 =

 l1x l1y l1z
l2x l2y l2z
l3x l3y l3z

 (17.47)

V = det(Lp)

l1, l2, l3 are the fundamental vectors of the primitive cell, h is the fractional vector and V the
cell volume.
Lp can be computed from the six cell parameters a, b, c, α, β, γ. For instance, the matrix Lp
for a face centred cubic lattice with lattice parameter a has the form:

Lp =

 0 a/2 a/2
a/2 0 a/2
a/2 a/2 0


Under an elastic strain, any particle at r migrates microscopically to r′ according to the relation:

r′ = r (I + ε)

where ε is the symmetric Lagrangian elastic tensor.
In the deformed crystalline system:

r′ = h L′p

L′p = (I + ε)Lp (17.48)

or:
L′p = Lp + Z (17.49)

where
Z = ε Lp

V ′ = det(L′p)

The deformation may be constrained to be volume-conserving, in which case the lattice vectors
of the distorted cell must be scaled as follows:

Lp” = L′p(̇V/V
′)1/3 (17.50)

If a non-symmetric Lagrangian elastic tensor, η, is used, instead of ε, the deformation is the
sum of a strain (ε) and a rotation (ω) of the crystal:

ε = (η + η+)/2

ω = (η − η+)/2

The total energy of the crystal is invariant to a pure rotation, which allows non-symmetric η
matrices to be employed. However, a non-symmetric deformation will lower the symmetry of
the system, and therefore increase the complexity of the calculation, since the cost required is
roughly inversely proportional to the order of the point group.
The elastic constants of a crystal are defined as the second derivatives of the energy with
respect to the elements of the infinitesimal Lagrangian strain tensor ε.
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Let us define, according to the Voigt convention:

ε1 = ε11 ε4 = ε32 + ε23

ε2 = ε22 ε5 = ε13 + ε31

ε3 = ε33 ε6 = ε12 + ε21

A Taylor expansion of the energy of the unit cell to second order in the strain components
yields:

E(ε) = E(0) +

6∑
i

∂E

∂εi
εi + 1/2

6∑
i,j

∂2E

∂εi∂εj
εiεj (17.51)

If E(0) refers to the equilibrium configuration the first derivative is zero, since there is no
force on any atom in equilibrium. The elastic constants of the system can be obtained by
evaluating the energy as a function of deformations of the unit cell parameters. The indices
of the non-zero element(s) (in the Voigt convention) of the ε matrix give the corresponding
elastic constants.

Examples of ε matrices for cubic systems

Consider a face-centred cubic system, for example Li2O, with the Fm3m space group.
For cubic systems there are only three independent elastic constants (C11, C12 and C44), as the
symmetry analysis shows that:

C11 = C22 = C33;
C44 = C55 = C66;
C12 = C13 = C23;
Cij = 0 for i = 1, 6, j = 4, 6 and i 6= j.

Calculation of C11

The ε matrix for the calculation of C11 is

ε =

 δ 0 0
0 0 0
0 0 0


The energy expression is:

E(δ) = E(0) + 1/2
∂2E

∂ε21
δ2 + · · · = a+ bδ2 + cδ3 · · ·

where a, b, c are the coefficients of a polynomial fit of E versus δ, usually truncated to fourth
order (see examples below). Then

C11 = 1/V
∂2E

∂ε21
=

2b

V

The above distortion reduces the number of point symmetry operators to 12 (tetragonal dis-
tortion).
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Calculation of C11 − C12

The ε matrix for the calculation of the C11 − C12 combination has the form:

ε =

 δ 0 0
0 −δ 0
0 0 0


The energy expression is:

E(ε1, ε2) = E(0, 0) + 1/2
∂2E

∂ε21
δ2 + 1/2

∂2E

∂ε22
δ2 − ∂2E

∂ε1∂ε2
δ2 + · · · =

= E(0, 0) + V (C11 − C12)δ2 + · · · = a+ bδ2 + · · ·

Then C11 − C12 = b/V
With the previous form of the ε matrix the number of point symmetry operators is reduced to
8, whereas the following ε matrix reduces the number of point symmetry operators to 16:

ε =

 δ 0 0
0 δ 0
0 0 −2δ


E(ε1, ε2, ε3) = E(0, 0, 0) + 3V (C11 − C12)δ2 + · · · = a+ bδ2 + · · ·

and (C11 − C12) = b/3V

Calculation of C44

Monoclinic deformation, 4 point symmetry operators.

The ε matrix has the form:

ε =

 0 0 0
0 0 x
0 x 0


The energy expression is (δ = 2x) (see Voigt convention and equation 17.51)

E(ε4) = E(0) + 1/2
∂2E

∂ε24
δ2 + · · · = E(0) + 2

∂2E

∂ε24
x2 + · · · = a+ bx2 + · · ·

so that C44 = b/2V .

Calculation of C44

Rhombohedral deformation, 12 point symmetry operators.

The ε matrix has the form:

ε =

 0 x x
x 0 x
x x 0


The energy expression is (δ = 2x,C45 = C46 = C56 = 0)

E(ε4, ε5, ε6) = E(0) + 3/2
∂2E

∂ε24
δ2 + · · · = E(0) + 6

∂2E

∂ε24
x2 + · · · = a+ bx2 + · · ·

so that C44 = b/6V .

361



Bulk modulus

The bulk modulus can be evaluated simply by varying the lattice constant, (1 in cubic systems)
without the use of the ε matrix, and fitting the curve E(V ).
If the ε matrix is used, the relation between B and Cij (cubic systems) must be taken into
account:

B = (C11 + 2C12)/3

The ε matrix has the form:

ε =

 δ 0 0
0 δ 0
0 0 δ


and the energy:

E(ε) = E(0) + 3/2
∂2E

∂ε21
δ2 + 3

∂2E

∂ε1∂ε2
δ2 = (17.52)

= E(0) +
3V

2
[C11 + 2C12]δ2 (17.53)

so that B = 2
9V b

N.B. Conversion factors:
1 hartree Å−3 = 4359.74812 GPa
1 GPa = 1 GN m−2 = 1 GJ m−3 = 1010 dyne cm−2 = 10−2 Mbar.
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17.10 Spontaneous polarization through the Berry phase
approach

The electronic phase of a system λ in the direction 1, ϕ
(λ,1)
el , can be written as:

ϕ
(λ,1)
el =

1

s2s3

∑
j2,j3

∑
j1

∆ϕ
(λ,1)
j1,j2,j3

(k) (17.54)

The electronic contribution to the polarization of a system λ can be written as :

P
(λ)
el =

1

Ω(λ)

(
B(λ)

)−1

ϕ
(λ)
el (17.55)

Where (B(λ))−1 is the reciprocal lattice vectors components inverse matrix and ϕ
(λ)
el the elec-

tronic phase difference vector of a system λ (which components are ϕ
(λ,i)
el ). The nuclear con-

tribution to the polarization of a system λ, P
(λ)
nuc can also be written as:

P(λ)
nuc =

1

Ω(λ)

∑
A

R
(λ)
A · ZA (17.56)

where R
(λ)
A and ZA are the position vector and the nuclear charge of the atom A respectively of

the system λ. The total polarization is the sum of these two contributions and can be written
as

P
(λ)
tot = P(λ)

nuc + P
(λ)
el (17.57)

The spontaneous polarization is the difference between the systems λ = 1 and λ = 0

P = P
(λ)
tot −P

(λ)
tot (17.58)

Spontaneous polarization through the localized crystalline
orbitals approach

The electronic contribution to the polarization of a system λ, P
(λ)
el , can be written as

P
(λ)
el =

e

Ω(λ)

∑
µ

〈rµ〉 (17.59)

Where 〈rµ〉 is the centroid of the Wannier function µ.

The nuclear contribution to the polarization of a system λ, P
(λ)
nuc can also be written as

P(λ)
nuc =

1

Ω(λ)

∑
A

RA · ZA (17.60)

where RA and ZA are the position vector and the nuclear charge of the atom A respectively.
The total polarization is the sum of these two contributions and can be written as

P
(λ)
tot = P(λ)

nuc + P
(λ)
el (17.61)

The spontaneous polarization is the difference between the both systems λ = 1 and λ = 0:

P = P
(1)
tot −P

(2)
tot (17.62)

To calculate the spontaneous polarization, a preliminary run is needed for each of the two
systems λ = 1 and λ = 0. Then a third run with the keyword SPOLWF gives the difference of
polarization between systems λ = 1 and λ = 0.
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17.11 Piezoelectricity through the Berry phase approach

The electronic phase vector of a system λ, is given by (3.1). The nuclear phase vector of a

system λ, ϕ
(λ)
nuc, can be written as

ϕ(λ)
nuc = Ω(λ) B(λ)P(λ)

nuc (17.63)

Where B(λ) reciprocal lattice vectors components matrix.The last equation can be simplified
thanks to (17.56):

ϕ(λ)
nuc = B(λ)

∑
A

R
(λ)
A · ZA (17.64)

So the phase vector of a system λ, ϕ(λ) is:

ϕ(λ) = ϕ(λ)
nuc + ϕ

(λ)
el (17.65)

The proper piezoelectric constants can be obtained by:

ẽijk = − 1

2π

1

Ω

∑
α

dϕα
dεjk

aα,i (17.66)

Where ϕα is projection of the phase ϕ along the α direction and aα,i is the component of a
lattice vector aα along the cartesian axis i . To obtain the improper piezoelectric constants,
the following correction must done:

eijk = ẽijk + δijPk − δjkPi (17.67)

In the piezoelectric constants calculations the dϕα
dεjk

term is evaluated numerically. The calcu-

lated term is:
dϕα
dεjk

' ∆ϕα
∆εjk

=
ϕ

(1)
α − ϕ(0)

α

ε
(1)
jk − ε

(0)
jk

(17.68)

Piezoelectricity through the localized crystalline orbitals
approach

The electronic phase vector of a system λ, is given by:

ϕ
(λ)
el = Ω(λ) B(λ)P

(λ)
el (17.69)

Where B(λ) reciprocal lattice vectors components matrix. The nuclear phase vector of a system

λ, ϕ
(λ)
nuc, can be written as

ϕ(λ)
nuc = Ω(λ) B(λ)P(λ)

nuc (17.70)

The last equation can be simplified thanks to 17.56:

ϕ(λ)
nuc = B(λ)

∑
A

R
(λ)
A · ZA (17.71)

So the phase vector of a system λ, ϕ(λ) is:

ϕ(λ) = ϕ(λ)
nuc + ϕ

(λ)
el (17.72)

The proper piezoelectric constants can be obtained by:

ẽijk = − 1

2π

1

Ω

∑
α

dϕα
dεjk

aα,i (17.73)

Where ϕα is projection of the phase ϕ along the α direction and aα,i is the component of a
lattice vector aα along the cartesian axis i . To obtain the improper piezoelectric constants,
the following correction must done:

eijk = ẽijk + δijPk − δjkPi (17.74)

364



In the piezoelectric constants calculations the dϕα
dεjk

term is evaluated numerically. The calcu-

lated term is:
dϕα
dεjk

' ∆ϕα
∆εjk

=
ϕ

(1)
α − ϕ(0)

α

ε
(1)
jk − ε

(0)
jk

(17.75)

17.12 Eckart Conditions to the Hessian (Purifying Rota-
tional and Translational Degrees of Freedom)

As the calculation of the Hessian matrix is a numerical procedure, eigenvalues and eigenvectors
might be affected by a certain degree of numerical noise, which should be reduced as much as
possible, especially if anharmonic calculations are going to be performed on top of the harmonic
solution. From an operational point of view, it is important to carefully optimize the structure
and to use accurate computational parameters. Some tools are also available to enhance the
numerical quality of the Hessian matrix. Sometimes translational and rotational eigensolutions
can mix with low frequency modes. In such cases, it is important to project translations and
rotations out of the Hessian. This is equivalent to imposing Eckart’s conditions to the nuclear
motion problem (applied by default; the NOECKART option of the FREQCALC block
switches this option off). We have to generate a projection matrix P so that translations and
rotations (for molecules and polymers) are separated out. Being Na the number of atoms
of the system (in the unit cell for periodic systems), there are 3Na − Ne internal degrees of
freedom, where Nc is the number of conditions we have to impose, which is 3 for 3D systems,
6 for non-linear molecules, 5 for linear molecules and 1 for polymers. We define a D matrix
of dimensions Nc × 3Na, which is the row representation of translations and rotations in
the Cartesian frame. The first three vectors (rows) of D correspond to the three Cartesian
translations along x, y and z and are just the list of the square root of the isotopic mass of
the atoms times the corresponding Cartesian unit vector (x̂, ŷ and ẑ, for the first, second and
third rows, respectively). For example, in the case of water, assuming mH = 1 and mO = 16,
we would have

D1 = (1, 0, 0, 4, 0, 0, 1, 0, 0)

D2 = (0, 1, 0, 0, 4, 0, 0, 1, 0) (17.76)

D3 = (0, 0, 1, 0, 0, 4, 0, 0, 1)

In order to build a representation for the rotational degrees of freedom, we have first to translate
the system so that the origin corresponds to the center of mass (CoM), whose position is given
by:

rCoM =

∑Na
α=1mαrα∑Na
α=1mα

(17.77)

Then, we build the inertia axes tensor:

I =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 =

 ∑
αmα

(
y2
α + z2

α

)
−
∑
αmαxαyα −

∑
αmαxαzα

−
∑
αmαyαxα

∑
αmα

(
x2
α + z2

α

)
−
∑
αmαyαzα

−
∑
αmαzαxα −

∑
αmαzαyα

∑
αmα

(
x2
α + y2

α

)


(17.78)
Matrix I is diagonalized to obtain the eigenvector matrix X (eigenvectors are organized in
columns). For non-linear molecules, the elements of the three additional rotational constraints,
D4, D5 and D6, are obtained as:

D4,αi =
1
√
mα

((Sα)2Xi,3 − (Sα)3Xi,2)

D5,αi =
1
√
mα

((Sα)3Xi,1 − (Sα)1Xi,3) (17.79)

D6,αi =
1
√
mα

((Sα)1Xi,2 − (Sα)2Xi,1)
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where Sα is an atomic vector obtained as the scalar product of the transpose of X with the
vector of the Cartesian coordinates of atom α:

Sα = XT rα (17.80)

For linear molecules, one of the above conditions is skipped (the one related to the null eigen-
value). Once all the rows of D are computed, they are ortho-normalized via a Gram-Schmidt
procedure. We then build the projector matrix P (whose dimensions are 3Na × 3Na) as

P = DTD (17.81)

and we define the complementary projector matrix, P′ = 1−P, so that we project out the Nc
degrees of freedom from the Hessian matrix H:

H′ = P′THP′ (17.82)

By diagonalizing the H′ matrix, the translational and rotational eigenvalues are exactly zero.
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Appendix A

Symmetry groups

A.1 Labels and symbols of the space groups

The labels are according to the International Tables for Crystallography [111]. The symbols
are derived by the standard SHORT symbols, as shown in the following examples:

Symbol Input to CRYSTAL
P 6̄ 2 m → P -6 2 M ;
P 63 m → P 63 M.

For the groups 221-230 the symbols are according to the 1952 edition of the International
Tables, not to the 1982 edition. The difference involves the 3 axis: 3 (1952 edition); 3̄ (1982
edition) (Example group 221: 1952 ed. → P m 3 m ; 1982 ed. → P m 3̄ m)
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IGR symbol

Triclinic lattices
1 P1
2 P 1̄

Monoclinic lattices
3 P2
4 P21

5 C2
6 Pm
7 Pc
8 Cm
9 Cc
10 P2/m
11 P21/m
12 C2/m
13 P2/c
14 P21/c
15 C2/c

Orthorhombic lattices
16 P222
17 P2221

18 P21212
19 P212121

20 C2221

21 C222
22 F222
23 I222
24 I212121

25 Pmm2
26 Pmc21

27 Pcc2
28 Pma2
29 Pca21

30 Pnc2
31 Pmn21

32 Pba2
33 Pna21

34 Pnn2
35 Cmm2
36 Cmc21

IGR symbol

37 Ccc2
38 Amm2
39 Abm2
40 Ama2
41 Aba2
42 Fmm2
43 Fdd2
44 Imm2
45 Iba2
46 Ima2
47 Pmmm
48 Pnnn
49 Pccm
50 Pban
51 Pmma
52 Pnna
53 Pmna
54 Pcca
55 Pbam
56 Pccn
57 Pbcm
58 Pnnm
59 Pmmn
60 Pbcn
61 Pbca
62 Pnma
63 Cmcm
64 Cmca
65 Cmmm
66 Cccm
67 Cmma
68 Ccca
69 Fmmm
70 Fddd
71 Immm
72 Ibam
73 Ibca
74 Imma

IGR symbol

Tetragonal lattices
75 P4
76 P41

77 P42

78 P43

79 I4
80 I41

81 P 4̄
82 I 4̄
83 P4/m
84 P42/m
85 P4/n
86 P42/n
87 I4/m
88 I41/a
89 P422
90 P4212
91 P4122
92 P41212
93 P4222
94 P42212
95 P4322
96 P43212
97 I422
98 I4122
99 P4mm
100 P4bm
101 P42cm
102 P42nm
103 P4cc
104 P4nc
105 P42mc
106 P42bc
107 I4mm
108 I4cm
109 I41md
110 I41cd
111 P 4̄2m
112 P 4̄2c
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IGR symbol

113 P 4̄21m
114 P 4̄21c
115 P 4̄m2
116 P 4̄c2
117 P 4̄b2
118 P 4̄n2
119 I 4̄m2
120 I 4̄c2
121 I 4̄2m
122 I 4̄2d
123 P4/mmm
124 P4/mcc
125 P4/nbm
126 P4/nnc
127 P4/mbm
128 P4/mnc
129 P4/nmm
130 P4/ncc
131 P42/mmc
132 P42/mcm
133 P42/nbc
134 P42/nnm
135 P42/mbc
136 P42/mnm
137 P42/nmc
138 P42/ncm
139 I4/mmm
140 I4/mcm
141 I41/amd
142 I41/acd

Trigonal lattices
143 P3
144 P31

145 P32

146 R3
147 P 3̄
148 R3̄
149 P312
150 P321
151 P3112
152 P3121
153 P3212
154 P3221

IGR symbol

155 R32
156 P3m1
157 P31m
158 P3c1
159 P31c
160 R3m
161 R3c
162 P 3̄1m
163 P 3̄1c
164 P 3̄m1
165 P 3̄c1
166 R3̄m
167 R3̄c

Hexagonal lattices
168 P6
169 P61

170 P65

171 P62

172 P64

173 P63

174 P 6̄
175 P6/m
176 P63/m
177 P622
178 P6122
179 P6522
180 P6222
181 P6422
182 P6322
183 P6mm
184 P6cc
185 P63cm
186 P63mc
187 P 6̄m2
188 P 6̄c2
189 P 6̄2m
190 P 6̄2c
191 P6/mmm
192 P6/mcc
193 P63/mcm
194 P63/mmc

IGR symbol

Cubic lattices
195 P23
196 F23
197 I23
198 P213
199 I213
200 Pm3̄
201 Pn3̄
202 Fm3̄
203 Fd3̄
204 Im3̄
205 Pa3̄
206 Ia3̄
207 P432
208 P4232
209 F432
210 F4132
211 I432
212 P4332
213 P4132
214 I4132
215 P 4̄3m
216 F 4̄3m
217 I 4̄3m
218 P 4̄3n
219 F 4̄3c
220 I 4̄3d
221 Pm3̄m
222 Pn3̄n
223 Pm3̄n
224 Pn3̄m
225 Fm3̄m
226 Fm3̄c
227 Fd3̄m
228 Fd3̄c
229 Im3̄m
230 Ia3̄d
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A.2 Labels of the layer groups (slabs)

The available layer groups belong to a subset of the 230 space groups. Therefore they can be
identified by the corresponding space group.
The first column gives the label to be used in the input card (IGR variable).
The second column gives the Hermann-Mauguin symbol of the corresponding space group
(generally the short one; the full symbol is adopted when the same short symbol could refer
to different settings). The third column gives the Schoenflies symbol. The fourth column the
number of the corresponding space group, according to the International Tables for Crystal-
lography. The number of the space group is written in parentheses when the orientation of the
symmetry operators does not correspond to the first setting in the I. T.

IGR Hermann
Mauguin

Schoenflies N

Oblique lattices (P)
1 P1 C1

1 1
2 P 1̄ C1

i 2
3 P112 C1

2 (3)
4 P11m C1

s (6)
5 P11a C2

s (7)
6 P112/m C1

2h (10)
7 P112/a C4

2h (13)

Rectangular lattices (P or C)
8 P211 C1

2 (3)
9 P2111 C2

2 (4)
10 C211 C3

2 (5)
11 Pm11 C1

s (6)
12 Pb11 C2

s (7)
13 Cm11 C3

s (8)
14 P2/m11 C1

2h (10)
15 P21/m11 C2

2h (11)
16 C2/m11 C3

2h (12)
17 P2/b11 C4

2h (13)
18 P2/b11 C5

2h (14)
19 P222 D1

2 16
20 P2212 D2

2 (17)
21 P21212 D3

2 18
22 C222 D6

2 21
23 Pmm2 C1

2v 25
24 Pma2 C4

2v 28
25 Pba2 C8

2v 32
26 Cmm2 C1

2v 35
27 P2mm C1

2v (25)
28 P21am C2

2v (26)
29 P21ma C2

2v (26)
30 P2mb C4

2v (28)
31 P21mn C7

2v (31)
32 P2aa C3

2v (27)
33 P21ab C5

2v (29)
34 P2an C6

2v (30)
35 C2mm C1

2v (38)
36 C2mb C5

2v (39)
37 Pmmm D1

2h 47
38 Pmam D5

2h (51)
39 Pmma D5

2h 51
40 Pmmn D3

2h 59

IGR Hermann
Mauguin

Schoenflies N

41 Pbam D9
2h 55

42 Pmaa D3
2h (49)

43 Pman D7
2h (53)

44 Pbma D1
2h (57)

45 Pbaa D8
2h (54)

46 Pban D4
2h 50

47 Cmmm D9
2h 65

48 Cmma D2
2h 67

Square lattices (P)
49 P4 C1

4 75
50 P 4̄ S1

4 81
51 P4/m C1

4h 83
52 P4/n C3

4h 85
53 P422 D1

4 89
54 P4212 D2

4 90
55 P4mm C1

4v 99
56 P4bm C2

4v 100
57 P 4̄2m D1

2d 111
58 P 4̄21m D3

2d 113
59 P 4̄m2 D5

2d 115
60 P 4̄b2 D7

2d 117
61 P4/mmm D1

4h 123
62 P4/nbm D3

4h 125
63 P4/mbm D5

4h 127
64 P4/nmm D7

4h 129

Hexagonal lattices (P)
65 P3 C1

3 143
66 P 3̄ C1

3i 147
67 P312 D1

3 149
68 P321 D2

3 150
69 P3m1 C1

3v 156
70 P31m C2

3v 157
71 P 3̄1m D1

3d 162
72 P 3̄m1 D3

3d 164
73 P6 C1

6 168
74 P 6̄ C1

3h 174
75 P6/m C1

6h 175
76 P622 D1

6 177
77 P6mm C1

6v 183
78 P 6̄m2 D1

3h 187
79 P 6̄2m D3

3h 189
80 P6/mmm D1

6h 191
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A.3 Labels of the rod groups (polymers)

The available rod groups belong to a subset of the 230 space groups; the symmetry operators
are generated for the space groups (principal axis z) and then rotated by 90◦ through y, to
have the polymer axis along x (CRYSTAL convention).
In the table, the first column gives the label to be used in the input card for identifying the
rod group (IGR variable).
The second column gives the ”polymer” symbol, according to the the following convention: x
is the first symmetry direction, y the second.
The third column gives the Schoenflies symbol.
The fourth column gives the Hermann-Mauguin symbol (generally the short one; the full symbol
is adopted when the same short symbol could refer to different settings) of the corresponding
space group (principal axis z).
The fifth column gives the number of the corresponding space group, according to the Interna-
tional Tables for Crystallography; this number is written in parentheses when the orientation
of the symmetry operators does not correspond to the first setting in the I. T.

”Polymer” Hermann Number of
IGR symbol Schoenflies Mauguin space group

(x direction) (z direction)

1 P1 C1
1 P1 1

2 P 1̄ C1
i P 1̄ 2

3 P211 C1
2 P112 (3)

4 P2111 C2
2 P1121 (4)

5 P121 C1
2 P121 (3)

6 P112 C1
2 P211 (3)

7 Pm11 C1
s P11m (6)

8 P1m1 C1
s P1m1 (6)

9 P1a1 C2
s P1c1 (7)

10 P11m C1
s Pm11 (6)

11 P11a C2
s Pc11 (7)

12 P2/m11 C1
2h P112/m (10)

13 P21/m11 C2
2h P1121/m (11)

14 P12/m1 C1
2h P12/m1 (10)

15 P12/a1 C4
2h P12/c1 (13)

16 P112/m C1
2h P2/m11 (10)

17 P112/a C4
2h P2/c11 (13)

18 P222 D1
2 P222 16

19 P2122 D2
2 P2221 17

20 P2mm C1
2v Pmm2 25

21 P21am C2
2v Pmc21 26

22 P21ma C2
2v Pcm21 (26)

23 P2aa C3
2v Pcc2 27

24 Pm2m C1
2v Pm2m (25)

25 Pm2a C4
2v Pc2m (28)

26 Pmm2 C1
2v P2mm (25)

27 Pma2 C4
2v P2cm (28)

28 Pmmm D1
2h Pmmm 47

29 P2/m2/a2/a D3
2h Pccm 49

30 P21/m2/m2/a D5
2h Pcmm (51)

31 P21/m2/a2/m D5
2h Pmcm (51)
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”Polymer” Hermann Number of
IGR symbol Schoenflies Mauguin space group

(x direction) (z direction)

32 P4 C1
4 P4 75

33 P41 C2
4 P41 76

34 P42 C3
4 P42 77

35 P43 C4
4 P43 78

36 P 4̄ S1
4 P 4̄ 81

37 P4/m C1
4h P4/m 83

38 P42/m C2
4h P42/m 84

39 P422 D1
4 P422 89

40 P4122 D3
4 P4122 91

41 P4222 D5
4 P4222 93

42 P4322 D7
4 P4322 95

43 P4mm C1
4v P4mm 99

44 P42am C3
4v P42cm 101

45 P4aa C5
4v P4cc 103

46 P42ma C7
4v P42mc 105

47 P 4̄2m D1
2d P 4̄2m 111

48 P 4̄2a D2
2d P 4̄2c 112

49 P 4̄m2 D5
2d P 4̄m2 115

50 P 4̄a2 D6
2d P 4̄c2 116

51 P4/mmm D1
4h P4/mmm 123

52 P4/m2/a2/a D2
4h P4/mcc 124

53 P42/m2/m2/a D9
4h P42/mmc 131

54 P42/m2/a2/m D10
4h P42/mcm 132

55 P3 C1
3 P3 143

56 P31 C2
3 P31 144

57 P32 C3
3 P32 145

58 P 3̄ C1
3i P 3̄ 147

59 P312 D1
3 P312 149

60 P3112 D3
3 P3112 151

61 P3212 D5
3 P3212 153

62 P321 D2
3 P321 150

63 P3121 D4
3 P3121 152

64 P3221 D6
3 P3221 154

65 P3m1 C1
3v P3m1 156

66 P3a1 C3
3v P3c1 158

67 P31m C2
3v P31m 157

68 P31a C4
3v P31c 159

69 P 3̄1m D1
3d P 3̄1m 162

70 P 3̄1a D2
3d P 3̄1c 163

71 P 3̄m1 D3
3d P 3̄m1 164

72 P 3̄a1 D4
3d P 3̄c1 165
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”Polymer” Hermann Number of
IGR symbol Schoenflies Mauguin space group

(x direction) (z direction)

73 P6 C1
6 P6 168

74 P61 C2
6 P61 169

75 P65 C3
6 P65 170

76 P62 C4
6 P62 171

77 P64 C5
6 P64 172

78 P63 C6
6 P66 173

79 P 6̄ C1
3h P 6̄ 174

80 P6/m C1
6h P6/m 175

81 P63/m C2
6h P63/m 176

82 P622 D1
6 P622 177

83 P6122 D2
6 P6122 178

84 P6522 D3
6 P6522 179

85 P6222 D4
6 P6222 180

86 P6422 D5
6 P6422 181

87 P6322 D6
6 P6322 182

88 P6mm C1
6v P6mm 183

89 P6aa C2
6v P6cc 184

90 P63am C3
6v P63cm 185

91 P63ma C4
6v P63mc 186

92 P 6̄m2 D1
3h P 6̄m2 187

93 P 6̄a2 D2
3h P 6̄c2 188

94 P 6̄2m D3
3h P 6̄2m 189

95 P 6̄2a D4
3h P 6̄2c 190

96 P6/mmm D1
6h P6/mmm 191

97 P6/m2/a2/a D2
6h P6/mcc 192

98 P63/m2/a2/m D3
6h P63/mcm 193

99 P63/m2/m2/a D4
6h P63/mmc 194
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A.4 Labels of the point groups (molecules)

The centre of symmetry is supposed to be at the origin; for the rotation groups the principal
axis is z.
The first column gives the label to be used in the input card for identifying the point group
(IGR variable). The second column gives the short Hermann-Mauguin symbol. The third
column gives the Schoenflies symbol; for the C2 , C2h and Cs groups the C2 direction or the
direction orthogonal to the plane is indicated. The fourth column gives the number of pure
rotations for molecules (σ).

IGR Hermann Schoenflies σ
Mauguin

1 1 C1 1
2 1̄ Ci 1
3 2 (x) C2 (x) 2
4 2 (y) C2 (y) 2
5 2 (z) C2 (z) 2
6 m (x) Cs (x) 1
7 m (y) Cs (y) 1
8 m (z) Cs (z) 1
9 2/m (x) C2h (x) 2
10 2/m (y) C2h (y) 2
11 2/m (z) C2h (z) 2
12 222 D2 4
13 2mm C2v (x) 2
14 m2m C2v (y) 2
15 mm2 C2v (z) 2
16 mmm D2h 4
17 4 C4 4
18 4̄ S4 2
19 4/m C4h 4
20 422 D4 8
21 4mm C4v 4
22 4̄2m D2d (σv planes along x+y and x-y) 4
23 4̄m2 D2d (σv planes along x and y) 4
24 4/mmm D4h 8
25 3 C3 3
26 3̄ C3i 3
27 321 D3 (one C2 axis along y) 6
28 312 D3 (one C2 axis along x) 6
29 3m1 C3v (one σv plane along x) 3
30 31m C3v (one σv plane along y) 3
31 3̄m1 D3d (one σd plane along x) 6
32 3̄1m D3d (one σd plane along y) 6
33 6 C6 6
34 6̄ C3h 3
35 6/m C6h 6
36 622 D6 12
37 6mm C6v 6
38 6̄m2 D3h (one C2 axis along x) 6
39 6̄2m D3h (one C2 axis along y) 6
40 6/mmm D6h 12
41 23 T 12
42 m3̄ Th 12
43 432 O 24
44 4̄3m Td 12
45 m3̄m Oh 24
46 235 I 60
47 m3̄5̄ Ih 60
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A.5 From conventional to primitive cells:
transforming matrices

The matrices describing the transformations from conventional (given as input) to primitive
(internally used by CRYSTAL) cells of Bravais lattices are coded in CRYSTAL. A point called x
in the direct lattice has xP coordinates in a primitive cell and xC coordinates in a conventional
cell. The relation between xP and xC is the following:

WxP = xC (A.1)

Likewise, for a point in the reciprocal space the following equation holds:

W̃−1x∗P = x∗C (A.2)

The W transforming matrices adopted in CRYSTAL, and reported below, satisfy the following
relation between the two metric tensors GP and GC :

GP = WGCW̃ (A.3)

The values of the elements of the metric tensors GP and GC agree with those displayed in
Table 5.1 of the International Tables of Crystallography (1992 edition).

P → A P → B A→ P B → P
1 0 0

0 1
2

1̄
2

0 1
2

1
2




1
2

0 1
2

0 1 0

1̄
2

0 1
2




1 0 0

0 1 1

0 −1 1




1 0 −1

0 1 0

1 0 1


P → C P → F C → P F → P
1
2

1̄
2

0

1
2

1
2

0

0 0 1




0 1
2

1
2

1
2

0 1
2

1
2

1
2

0




1 1 0

−1 1 0

0 0 1



−1 1 1

1 −1 1

1 1 −1


P → I R→ H I → P H → R

1̄
2

1
2

1
2

1
2

1̄
2

1
2

1
2

1
2

1̄
2




2
3

1̄
3

1̄
3

1
3

1
3

2̄
3

1
3

1
3

1
3




0 1 1

1 0 1

1 1 0




1 0 1

−1 1 1

0 −1 1



Table A.1: W matrices for the transformation from conventional to primitive and from prim-
itive to conventional cells. P stands for primitive, A, B and C for A-, B- and C-face centred,
I for body centred, F for all-face centred, R for primitive rhombohedral (‘rhombohedral axes’)
and H for rhombohedrally centred (‘hexagonal axes’) cell (Table 5.1, ref. [111]).
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Appendix B

Summary of input keywords

All the keywords are entered with an A format; the keywords must be typed left-justified, with
no leading blanks. The input is not case sensitive.

Geometry (Input block 1)

Symmetry information

ATOMSYMM printing of point symmetry at the atomic positions 40 –
MAKESAED printing of symmetry allowed elastic distortions (SAED) 51 –
PRSYMDIR printing of displacement directions allowed by symmetry. 62 –
SYMMDIR printing of symmetry allowed geom opt directions 70 –
SYMMOPS printing of point symmetry operators 70 –
TENSOR print tensor of physical properties up to order 4 70 I

Symmetry information and control

BREAKELAS symmetry breaking according to a general distortion 41 I
BREAKSYM allow symmetry reduction following geometry modifications 41 –
KEEPSYMM maintain symmetry following geometry modifications 51 –
MODISYMM removal of selected symmetry operators 52 I
PURIFY cleans atomic positions so that they are fully consistent with the

group
62 –

SYMMREMO removal of all symmetry operators 70 –
TRASREMO removal of symmetry operators with translational components 71 –

Modifications without reduction of symmetry

ATOMORDE reordering of atoms in molecular crystals 38 –
NOSHIFT no shift of the origin to minimize the number of symmops with

translational components before generating supercell
59 –

ORIGIN shift of the origin to minimize the number of symmetry operators
with translational components

59 –

PRIMITIV crystallographic cell forced to be the primitive cell 61 –
ROTCRY rotation of the crystal with respect to the reference system cell 63 I

Atoms and cell manipulation - possible symmetry reduction (BREAKSYMM)
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ATOMDISP displacement of atoms 38 I
ATOMINSE addition of atoms 38 I
ATOMREMO removal of atoms 39 I
ATOMROT rotation of groups of atoms 39 I
ATOMSUBS substitution of atoms 40 I
ELASTIC distortion of the lattice 44 I
POINTCHG point charges input 61 I
SCELCONF generation of supercell for configuration counting 66 I
SCELPHONO generation of supercell for phonon dispersion 66 I
SUPERCEL generation of supercell - input refers to primitive cell 67 I
SUPERCON generation of supercell - input refers to conventional cell 67 I
USESAED given symmetry allowed elastic distortions, reads δ 71 I

From crystals to slabs (3D→2D)

SLABINFO definition of a new cell, with xy ‖ to a given plane 65 I
SLABCUT generation of a slab parallel to a given plane (3D→2D) 64 I

From slabs to nanotubes (2D→1D)

NANOTUBE building a nanotube from a slab 56 I
SWCNT building a nanotube from an hexagonal slab 69 I

From periodic structures to clusters

CLUSTER cutting of a cluster from a periodic structure (3D→0D) 42 I
CLUSTSIZE maximum number of atoms in a cluster 43 I
FULLE building a fullerene from an hexagonal slab (2D→0D) 49 I
HYDROSUB border atoms substituted with hydrogens (0D→0D) 51 I

Molecular crystals

MOLECULE extraction of a set of molecules from a molecular crystal
(3D→0D)

53 I

MOLEXP variation of lattice parameters at constant symmetry and molec-
ular geometry (3D→3D)

53 I

MOLSPLIT periodic structure of non interacting molecules (3D→3D) 54 –
RAYCOV modification of atomic covalent radii 62 I

BSSE correction

MOLEBSSE counterpoise method for molecules (molecular crystals only)
(3D→0D)

52 I

ATOMBSSE counterpoise method for atoms (3D→0D) 38 I

Systematic analysis of crystal planes

PLANES Prints the possible crystal planes 61 I

Gibbs-Wulff construction

WULFF Building the Gibbs-Wulff polihedron 71 I

From crystals to nanorods (3D→1D)

NANORODS Building a nanorod from a crystal 55 I

From crystals to nanocrystals (3D→0D)

NANOCRYSTAL building a nanocrystal from a crystal 54 I

Auxiliary and control keywords
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ANGSTROM sets input units to Ångstrom 37 –
BOHR sets input units to bohr 40 –
BOHRANGS input bohr to Å conversion factor (0.5291772083 default value) 40 I
BOHRCR98 bohr to Å conversion factor is set to 0.529177 (CRY98 value) –
END/ENDG terminate processing of geometry input –
FRACTION sets input units to fractional 49 –
LATVEC maximum number of classified lattice vectors 51 I
MAXNEIGHB maximum number of equidistant neighbours from an atom 51 I
NEIGHBOR number of neighbours in geometry analysis 59 I
PRINTCHG printing of point charges coordinates in geometry output 61
PRINTOUT setting of printing options by keywords 62 –
SETINF setting of inf array options 64 I
SETPRINT setting of printing options 64 I
STOP execution stops immediately 65 –
TESTGEOM stop after checking the geometry input 71 –

Output of data on external units

COORPRT coordinates of all the atoms in the cell 44 –
EXTPRT write file in CRYSTAL geometry input format 46 –
FINDSYM write file in FINDSYM input format 49 –
STRUCPRT cell parameters and coordinates of all the atoms in the cell 65 –

External electric field - modified Hamiltonian

FIELD electric field applied along a periodic direction 46 I
FIELDCON electric field applied along a non periodic direction 48 I

Geometry optimization - see index for keywords full list
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OPTGEOM Geometry optimization input block - closed by END 156 I

Type of optimization (default: atom coordinates)

FULLOPTG full geometry optimization –
CELLONLY cell parameters optimization –
INTREDUN optimization in redundant internal coordinates 166 –
ITATOCEL iterative optimization (atom/cell) –
CVOLOPT full geometry optimization at constant volume 171 –

Initial Hessian
HESSIDEN initial guess for the Hessian - identity matrix –
HESSMOD1 initial guess for the Hessian - model 1 (default) –
HESSMOD2 initial guess for the Hessian - model 2 –
HESSNUM initial guess for the Hessian - numerical estimate –

Convergence criteria modification

TOLDEG RMS of the gradient [0.0003] I
TOLDEX RMS of the displacement [0.0012] I
TOLDEE energy difference between two steps [10−7] I
MAXCYCLE max number of optimization steps I

Optimization control

FRAGMENT partial geometry optimization 174 I
RESTART data from previous run –
FINALRUN Wf single point with optimized geometry I

Gradient calculation control
NUMGRATO numerical atoms first derivatives 165 –
NUMGRCEL numerical cell first derivatives 165 –
NUMGRALL numerical atoms and cell first derivatives 165 –

External stress
EXTPRESS apply external hydrostatic pressure 176 I

Printing options

PRINTFORCES atomic gradients –
PRINTHESS Hessian –
PRINTOPT optimization procedure –
PRINT verbose printing –

Vibrational Frequencies - see index for keywords full list
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FREQCALC Harmonic Γ-frequencies calculation input - closed by END 181 I

Normal modes analysis

ANALYSIS 183 –
COMBMODE TO combination modes and overtones 184 I
MODES printing eigenvectors [default] 186 –
SCANMODE scan geometry along selected modes 194 I

LO/TO splitting

DIELISO isotropic dielectric tensor 184 I
DIELTENS anisotropic dielectric tensor 184 I

Vibrational spectrum simulation

INTENS intensities calculation active 189 –
INTCPHF IR (and Raman) intensities via CPHF 191 I
INTLOC IR intensities through Wannier functions 190 –
INTPOL IR intensities through Berry phase [default] 189 –
INTRAMAN Raman intensities calculation 191 I
IRSPEC IR spectrum production 197 I
RAMSPEC Raman spectrum production 199 I

Calculation control
ECKART Hessian freed by translations and rotations [default] 184 I
FRAGMENT partial frequency calculation 185 I
ISOTOPES isotopic substitution 185 I
NORMBORN normalized Born tensor 186 –
NUMDERIV technique to compute numerical 2nd derivatives 187 I
PRINT verbose printing –
RESTART data from previous run –
STEPSIZE set size of cartesian displacements [0.003 Å] 187 I
TEST[FREQ] frequency test run –
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USESYMM full-symmetry exploitation at each point [default] –

Phonon dispersion

DISPERSION frequencies calculated at ~k 6= Γ points 201 –

Thermodynamics

ADP anisotropic displacement parameters 187 I
PRESSURE set pressure range 187 I
TEMPERAT set temperature range I

ANHARM Anharmonic frequencies calculation input block - closed by END 206 I
ISOTOPES isotopic substitution 207 I
KEEPSYMM displace all symmetry equivalent atoms ?? –
NOGUESS 207 –
POINTS26 X-H distance varied 26 times around the equilibrium 207 –
PRINT verbose printing –
TEST[ANHA] test run –

Configurations counting and characterization

CONFCNT configurations counting and cluster expansion 232 I
CONFRAND symmetry-adapted uniform at random Monte Carlo 234 I
RUNCONFS single-point calculations and geometry optimizations 235 I

CPHF - Coupled Perturbed Hartree-Fock 225

ELASTCON - Second order elastic constants 243

EOS - Equation of state 237

Basis set input (Input block 2)

Symmetry control

ATOMSYMM printing of point symmetry at the atomic positions 40 –

Basis set modification

CHEMOD modification of the electronic configuration 72 I
GHOSTS eliminates nuclei and electrons, leaving BS 74 I

Auxiliary and control keywords

CHARGED allows non-neutral cell 72 –
NOPRINT printing of basis set removed 74 –
PRINTOUT setting of printing options 62 I
SETINF setting of inf array options 64 I
SETPRINT setting of printing options 64 I
STOP execution stops immediately 65 –
SYMMOPS printing of point symmetry operators 70 –
END/ENDB terminate processing of basis set definition keywords –

Output of data on external units
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GAUSS98 printing of an input file for the GAUSS94/98 package 74 –

General information, hamiltonian, SCF (Input block 3)

All DFT related keyword are collected under the heading ”DFT”, closed b END[DFT]

Single particle Hamiltonian

RHF Restricted Closed Shell 107 –
UHF Unrestricted Open Shell 115 –
MP2 Electron correlation energy 104 –

382



DFT DFT Hamiltonian 115 –
SPIN spin-polarized solution 124 –

Choice of the exchange-correlation functionals

EXCHANGE exchange functional 118 I
LDA functionals

LDA Dirac-Slater [53] (LDA)
VBH von Barth-Hedin [220] (LDA)

GGA functionals
BECKE Becke 1988[18] (GGA)
PBE Perdew-Becke-Ernzerhof 1996 [160] (GGA)
PBESOL GGA. PBE functional revised for solids [162]
mPW91 modified Perdew-Wang 91 (GGA)
PWGGA Perdew-Wang 91 (GGA)
SOGGA second order GGA. [238]
WCGGA GGA - Wu-Cohen [229]

CORRELAT correlation functional 118 I
LDA functionals

PZ Perdew-Zunger [166] (LDA)
VBH von Barth-Hedin [220] (LDA)
VWN Vosko,-Wilk-Nusair [221] (LDA)

GGA functionals
LYP Lee-Yang-Parr [133] (GGA)
P86 Perdew 86 [158] (GGA)
PBE Perdew-Becke-Ernzerhof [160] (GGA)
PBESOL GGA. PBE functional revised for solids [162]
PWGGA Perdew-Wang 91 (GGA)
PWLSD Perdew-Wang 92 [164, 165, 163] (GGA)
WL GGA - Wilson-Levy [227]

Standalone keywords: exchange+correlation
SVWN see [53, 221] 118
BLYP see [18, 133] 118
PBEXC see [160] 118
PBESOLXC see [162] 118
SOGGAXC see [238] 118

Global Hybrid functionals
Standalone keywords
B3PW B3PW parameterization 119 –
B3LYP B3LYP parameterization 119 –
PBE0 Adamo and Barone [6] 119
PBESOL0 Derived from PBE0 119
B1WC see [22] 119
WC1LYP see [51] 119
B97H see [5, 81] 119
PBE0-13 see [36] 119
User defined global hybrids
HYBRID hybrid mixing 119 I
NONLOCAL local term parameterization 119 I
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Range-Separated Hybrid functionals
Short-range Corrected RSH functionals
HSE06 Screened-Coulonb PBE XC functional [3, 160] 121 –
HSESOL Screened-Coulomb PBESOL XC functional [132, 162] 121 –
SC-BLYP SC-RSH BLYP functional based on ITYH scheme [110,
231]

121 –

Middle-range Corrected RSH functionals
HISS MC based on PBE XC functional [210, 211] 121 –
Long-range Corrected RSH functionals
RSHXLDA LC LDA XC functional [2, 123] 121 –
wB97 Chai/Head-Gordon LC functional [124, 5] 121 –
wB97X Chai/Head-Gordon SC/LC functional [124, 5] 121 –
LC-wPBE LC hybrid based on PBE XC functional [67] 121 –
LC-wPBESOL LC hybrid based on PBESOL XC functional [67] 121 –
LC-wBLYP LC hybrid based on BLYP XC functional [67] 121 –
LC-BLYP LC-RSH BLYP functional based on ITYH scheme [110,
231]

121 –

CAM-B3LYP Coulomb-Attenuating method)[214] based on the BLYP
XC functional

121 –

User defined range separated hybrids
SR-OMEGA setting of ωSR for SC hybrids 122 –
MR-OMEGA setting of ωSR and ωLR for MC hybrids 122 –
LR-OMEGA setting of ωLR for LC hybrids 122 –
SR-HYB WB97XOption to change the amount of SR-HF exchange in the
ωB97-X functional

122 –

LSRSH-PBE User-controllable RSH x-functional based on the PBE
functional

122 –

meta-GGA functionals
Pure mGGA functionals
M06L pure mGGA M06-type functional [233] 122 –
Global hybrid mGGA functionals
M05 Minnesota 2005 functional [237] 122 –
M052x M05-2X functional [236] 122 –
M06 Minnesota 2006 functional [235] 122 –
M062X M06-2X functional [235] 122 –
M06HF M06-type functional with 100% HF [233] 122 –

Double Hybrid functionals
B2PLYP DH method based on BLYP functional [190] 123 –
B2GPPLYP General purpose variant of B2PLYP [1] 123 –
mPW2PLYP DH method based on mPW91-LYP functional [213] 123 –
DHYBRID HF exchange and MP2-like mixing for double hybrids 123 I
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Numerical accuracy control

ANGULAR definition of angular grid 126 I
RADIAL definition of radial grid 126 I
[BECKE] selection of Becke weights (default) 126 –
SAVIN selection of Savin weights 126 –
OLDGRID ”old” default grid 129
LGRID ”large” predefined grid 129
[XLGRID] ”extra large” predefined grid (new default)
XXLGRID ”extra extra large” predefined grid 129
RADSAFE safety radius for grid point screening I

TOLLDENS density contribution screening 6 130 I

TOLLGRID grid points screening 14 130 I
[BATCHPNT] grid point grouping for integration 130 I
CHUNKS max n. points in a batch for numerical int. 130 I
DISTGRID distribution of DFT grid across nodes 131

LIMBEK size of local arrays for integration weights 400 131 I

Atomic parameters control

RADIUS customized atomic radius 131 I
FCHARGE customized formal atomic charge 131 I

Auxiliary

END close DFT input block

Numerical accuracy and computational parameters control

BIPOLAR Bipolar expansion of bielectronic integrals 85 I
BIPOSIZE size of coulomb bipolar expansion buffer 85 I
EXCHSIZE size of exchange bipolar expansion buffer 85 I
EXCHPERM use permutation of centers in exchange integrals 90 –
ILASIZE Maximum size of array ILA for 2-electron integral calculation

6000
101 I

INTGPACK Choice of integrals package 0 102 I

MADELIND reciprocal lattice vector indices for Madelung sums 50 103 I
NOBIPCOU Coulomb bielectronic integrals computed exactly 105 –
NOBIPEXCH Exchange bielectronic integrals computed exactly 105 –
NOBIPOLA All bielectronic integrals computed exactly 105 –

POLEORDR Maximum order of multipolar expansion 4 106 I

TOLINTEG Truncation criteria for bielectronic integrals 6 6 6 6 12 114 I

TOLPSEUD Pseudopotential tolerance 6 114 I

Type of run

ATOMHF Atomic wave functions 83 I
SCFDIR SCF direct (mono+biel int computed) 107 –
EIGS S(k) eigenvalues - basis set linear dependence check 88 –
FIXINDEX Reference geometry to classify integrals 93 –

Basis set - AO occupancy

FDAOSYM f and d degeneracies analysis 91 I
FDAOCCUP f and d orbital occupation guess 92 I
GUESDUAL Density matrix guess - different Basis set 97 I

Integral file distribution

BIESPLIT writing of bielectronic integrals in n files n = 1 ,max=10 84 I

MONSPLIT writing of mono-electronic integrals in n file n = 1 , max=10 104 I
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Numerical accuracy control and convergence tools

ANDERSON Fock matrix mixing 83 I
BROYDEN Fock matrix mixing 85 I
DIIS Fock matrix mixing/convergence accelerator 86 I

FMIXING Fock/KS matrix (cycle i and i-1) mixing 0 95 I
LEVSHIFT level shifter no 102 I

MAXCYCLE maximum number of cycles 50 103 I
SMEAR Finite temperature smearing of the Fermi surface no 110 I

TOLDEE convergence on total energy 6 114 I

Initial guess

EIGSHIFT alteration of orbital occupation before SCF no 88 I
EIGSHROT rotation of the reference frame no 89 I
GUESSP density matrix from a previous run 99 –

GUESSPAT superposition of atomic densities 100 –

Spin-polarized system

ATOMSPIN setting of atomic spin to compute atomic densities 83 I
BETALOCK beta electrons locking 84 I
SPINLOCK spin difference locking 113 I
SPINEDIT editing of the spin density matrix used as SCF guess 112 I

Auxiliary and control keywords

END terminate processing of block3 input –
FULLTIME detailed report on running time 95 –
KSYMMPRT printing of Bloch functions symmetry analysis 102 –
LOWMEM inhibits allocation of large arrays 103 –
NOLOWMEM allows allocation of large arrays 103 –
MAXNEIGHB maximum number of equidistant neighbours from an atom 51 I
NEIGHBOR number of neighbours to analyse in PPAN 59 I
MEMOPRT Synthetic report about dynamic memory usage 103 –
MEMOPRT2 Detailed report about dynamic memory usage 104 –
PRINTOUT setting of printing options 62 I

QVRSGDIM maximum size of mutipole moment gradient array 90000000 107 I
NOSYMADA No Symmetry Adapted Bloch Functions 106 –
SYMADAPT Symmetry Adapted Bloch Functions (default) 113 –
SETINF setting of inf array options 64 I
SETPRINT setting of printing options 64 I
STOP execution stops immediately 65 –
TESTPDIM stop after symmetry analysis 113 –
TEST[RUN] stop after integrals classification and disk storage estimate 113 –

Restricted to MPPcrystal

CMPLXFAC Overloading in handling matrices at “complex” k points with

respect to “real” k points 2.3

86 I

REPLDATA to run MPPcrystal as Pcrystal 107 –
STDIAG Enable standard diagonalization method (D&C method dis-

abled)
113 –

Output of data on external units

NOFMWF wave function formatted output not written in file fort.98. 105 –
SAVEWF wave function data written every two SCF cycles 107 –
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Post SCF calculations

POSTSCF post-scf calculations when convergence criteria not satisfied 106 –
EXCHGENE exchange energy evaluation (spin polarized only) 90 –
GRADCAL analytical gradient of the energy 95 –
PPAN population analysis at the end of the SCF no 106

Properties

RDFMWF wave function data conversion formatted-binary (fort.98 → fort.9)

Preliminary calculations

NEWK Eigenvectors calculation 299 I
COMMENS Density Matrix commensurate to the Monchorst net 270 I
NOSYMADA No symmetry Adapted Bloch Functions 106 –
PATO Density matrix as superposition of atomic (ionic) densities 301 I
PBAN Band(s) projected density matrix (preliminary NEWK) 301 I
PGEOMW Density matrix from geometrical weights (preliminary NEWK) 302 I
PDIDE Energy range projected density matrix (preliminary NEWK) 302 I
PSCF Restore SCF density matrix 308 –

Properties computed from the density matrix

ADFT Atomic density functional correlation energy 261 I
BAND Band structure 263 I
BIDIERD Reciprocal form factors 264 I
CLAS Electrostatic potential maps (point multipoles approximation) 270 I
ECHG Charge density and charge density gradient - 2D grid 277 I
ECH3 Charge density - 3D grid 276 I
EDFT Density functional correlation energy (HF wave function only) 278 I
EMDLDM Electron momentum distribution (along a line) 279 I
EMDPDM Electron momentum distribution (in a plane) 280 I
HIRSHCHG Hirshfeld population analysis 100 I
KINETEMD Kinetic tensor from electron momentum density 284 I
PMP2 MP2 correction to the Valence Density Matrix 302
POLI Atom and shell multipoles evaluation 303 I
POTM Electrostatic potential - 2D grid 306 I
POT3 Electrostatic potential - 3D grid 304 I
POTC Electrostatic properties 305 I
PPAN Mulliken population analysis 106
XFAC X-ray structure factors 309 I

Properties computed from the density matrix (spin-polarized systems)

ANISOTRO Hyperfine electron-nuclear spin tensor 262 I
HIRSHCHG Hirshfeld spin population analysis 100 I
ISOTROPIC Hyperfine electron-nuclear spin interaction - Fermi contact 283 I
POLSPIN Atomic spin density multipoles 304 I

Properties computed from eigenvectors (after keyword NEWK)
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ANBD Printing of principal AO component of selected CO 261 I
BWIDTH Printing of bandwidth 270 I
DOSS Density of states 274 I
EMDL Electron momentum distribution - line 279 I
EMDP Electron momentum distribution - plane maps 282 I
PROF Compton profiles and related quantities 307 I
BOLTZTRA Transport Properties (electron conductivity, Seebeck) within the

semiclassical Boltzmann theory
268 I

New properties

SPOLBP Spontaneous polarization (Berry phase approach) 314 –
SPOLWF Spontaneous polarization (localized CO approach) 315 –
LOCALWF Localization of Wannier functions 285 I
DIEL Optical dielectric constant 272 I
ISO+POTC Mössbauer isomer shift and quadrupolar effects 315 I
TOPO Topological analysis of the electron density 318 I

Auxiliary and control keywords

ANGSTROM Set input unit of measure to Ångstrom 37 –
BASISSET Printing of basis set, Fock/KS, overlap and density matrices 264 –
BOHR Set input unit of measure to bohr 40 –
CHARGED Non-neutral cell allowed (PATO) 72 –
END Terminate processing of properties input keywords –
FRACTION Set input unit of measure to fractional 49 –
MAPNET Generation of coordinates of grid points on a plane 297 I
MAXNEIGHB maximum number of equidistant neighbours from an atom 51 I
NEIGHBOR Number of neighbours to analyse in PPAN 59 I
PRINTOUT Setting of printing options 62 I
RAYCOV Modification of atomic covalent radii 62 I
SETINF Setting of inf array options 64 I
SETPRINT Setting of printing options 64 I
STOP Execution stops immediately 65 –
SYMMOPS Printing of point symmetry operators 70 –

Info - Output of data on external units

ATOMIRR Coordinates of the irreducible atoms in the cell 262 –
ATOMSYMM Printing of point symmetry at the atomic positions 40 –
COORPRT Coordinates of all the atoms in the cell 44 –
CRYAPI OUT geometry, BS, direct lattice information 271 –
CRYAPI OUT Reciprocal lattice information + eigenvalues 271 –
EXTPRT Explicit structural/symmetry information 46 –
FMWF Wave function formatted outputi in file fort.98. Section 13.10 282 –
INFOGUI Generation of file with wf information for visualization 283 –
XML generation of XML file for electron transport with WanT ?? –
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Appendix C

Printing options

Extended printing can be obtained by entering the keywords PRINTOUT (page 62) or SET-
PRINT (page 64).
In the scf (or scfdir) program the printing of quantities computed is done at each cycle if the
corresponding LPRINT value is positive, only at the last cycle if the LPRINT value is negative.
The LPRINT options to obtain intermediate information can be grouped as follows. The follow-
ing table gives the correspondence between position number, quantity printed, and keyword.

crystal Keyword inp

• direct lattice - geometry information: 1 GLATTICE –

• symmetry operators : 4, 2 SYMMOPS –

• atomic functions basis set : 72 BASISSET –

• DF auxiliary basis set for the fitting: 79 DFTBASIS –

• scale factors and atomic configuration: 75 SCALEFAC –

• k-points geometrical wheight: 53 KWEIGHTS –

• shell symmetry analysis : 5, 6, 7, 8, 9

• Madelung parameters: 28

• multipole integrals: 20

• Fock/KS matrix building - direct lattice: 63, 64, 74 FGRED FGIRR N

• Total energy contributions: 69 ENECYCLE –

crystal - properties

• shell and atom multipoles: 68 MULTIPOLE N

• reciprocal space integration to compute Fermi energy: 51, 52, 53, 54, 55, 78

• density matrix - direct lattice: irreducible (58); reducible (59) PGRED PGIRR N
(reducible P matrix in crystal if PPAN requested only)

• Fock/KS eigenvalues : 66 EIGENVAL N
EIGENALL –

• Fock/KS eigenvectors : 67 EIGENVEC N

• symmetry adapted functions : 47 KSYMMPRT –
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• Population analysis: 70, 73, 77 MULLIKEN N

• Atomic wave-function: 71

properties

• overlap matrix S(g) - direct lattice: 60 (keyword PSIINF) OVERLAP N

• Densities of states: 105, 107 DOSS –

• Projected DOSS for embedding: 36, 37, 38

• DF correlation correction to total energy: 106

• Compton profile and related quantities: 116, 117, 118

• Fermi contact tensor : 18 FTENSOR –

• rotated eigenvectors (keyword ROTREF): 67 EIGENVEC –

• Charge density and electrostatic potential maps: 119 MAPVALUES –

Example

To print the eigenvalues at each scf cycle enter:

PRINTOUT
EIGENALL
END

To print the eigenvalues at the first 5 k points at the end of scf only, enter in any input block:

SETPRINT
1
66 -5

Eigenvectors printed by default are from the first valence eigenvector up to the first 6 virtual
ones. Core and virtual eigenvectors are printed by ”adding” 500 to the selected value of
LPRINT(67). To obtain print all the eigenvectors at the end of scf insert in any input block:

SETPRINT
1
66 -505
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Printing options LPRINT array values

subroutine value printed information keyword input
1 GCALCO N up N=6 stars of direct lattice vectors GLATTICE
2 CRYSTA 6= 0 crystal symmetry operators SYMMOPS
3 EQUPOS 6= 0 equivalent positions in the reference cell EQUIVAT
4 CRYSTA 6= 0 crystal symmops after geometry editing
5 GILDA1 N>0 g vector irr- first n set type of couples

N<0 g vector irr- n-th set type of couples
6 GROTA1 6= 0 information on shells symmetry related
7 GV N>0 stars of g associated to the first n couples
7 N<0 stars of g associated to the n-th couple
8 GORDSH 6= 0 information on couples of shells symmetry related
9 GSYM11 6= 0 intermediates for symmetrized quantities
10 GMFCAL 6= 0 nstatg, idime, idimf, idimcou
11 MAIN2U 6= 0 exchange energy EXCHGENE

MAIND EXCHGENE
12 IRRPR 6= 0 symmops (reciprocal lattice) SYMMOPSR
13 MATVIC N n stars of neighbours in cluster definition
14 GSLAB 6= 0 coordinates of the atoms in the slab
15 symdir 6= 0 print symmetry allowed directions PRSYMDIR
18 TENSOR 6= 0 extended printing for hyperfine coupling cost FTENSOR
19
20 MONIRR N multipole integrals up to pole l=n
21
24 POINTCH printing of point charges coordinates
28 MADEL2 6= 0 Madelung parameters
29
30 CRYSTA 6= 0 write file FINDSYM.DAT
31 6= 0 values of the dimension parameters PARAMETERS
32 N > 0 printing of ccartesian coordinates of the atoms
33 COOPRT N > 0 cartesian coordinates of atoms in file fort.33 ATCOORDS
34 FINE2 N > 0 KNETOUT

READ2 output of reciprocal space information KNETOUT
35 N > 0 printing of symmops in short fomr
36 XCBD 6= properties - exchange correlation printing
37
38
39
40
41 SHELL* 6=0 printing of bipolar expansion parameters
47 KSYMBA n Symmetry Adapted Bloch Functions printing level
48 KSYMBA 6=0 Symmetry Adapted Bloch Functions printing active KSYMMPRT
51 AB 6= 0 B functions orthonormality check
52 DIF > 0 Fermi energy - Warning !!!! Huge printout !!!
53 SCFPRT 6= 0 k points geometrical weights KWEIGHTS
54 CALPES > 0 k points weights- Fermi energy
55 OMEGA > 0 f0 coefficients for each band
56
57 PDIG N p(g) matrices-first n g vectors PGIRR N
58 PROT1 6= 0 mvlu, ksh, idp4
59 RROTA N > 0 P(g) matrices - first N vectors at the end of SCF PGRED N

NEWK N P(g) matrices - first N vectors PGRED N
PSIINF > 0 P(g) matrices - first N vectors PGRED N

N <0 P(g) matrix for g=N PGRED N
60 PSIINF > 0 overlap matrix S(g) - first N vectors OVERLAP N

N <0 overlap matrix S(g) for g = N N
61
63 TOTENY 6= 0 bielectronic contribution to irred. F(g) matrix
64 FROTA N F(g) matrix - first N g vectors FGRED N

PSIINF N> 0 FGRED N
N <0 f(g) matrix - for g = N (N-th g vector only) FGRED N
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subroutine value printed information keyword input
65
66 AOFK N e(k)- fock eigenvalues- first N k vectors EIGENVAL N

ADIK N
BANDE N
DIAG N EIGENALL
FDIK N
FINE2 N
NEWK N

67 AOFK N a(k) - fock eigenvectors - first N k vectors EIGENVEC N
ADIK N
DIAG N
FINE2 N
NEWK N

68 POLGEN N <0 shell and atom multipoles up to pole l=N MULTIPOL N
POLGEN N >0 atom multipoles up to pole l=N MULTIPOL N

QGAMMA N shell multipoles up to pole l=N MULTIPOL N
69 TOTENY 6= 0 contributions to total energy at each cycle ENECYCLE

70
FINE2 6= 0 Mulliken population analysis

NEIGHB at the end of scf cycles
POPAN calls PPBOND, to perform Mulliken analysis
PDIBAN

71 PATIRR 6= 0 atomic wave function ATOMICWF
PATIR1 6= 0 ” ” ATOMICWF

72 INPBAS 6= 0 basis set BASISSET
INPUT2 6= 0 basis set BASISSET
READFG SET

= 1
73 POPAN 6= 0 Mulliken matrix up to N direct lattice vector MULLIKEN N

PPBOND
PDIBAN N

74 TOTENY N f(g) irreducible up to g=N FGIRR N
DFTTT2 N FGIRR N

75 INPBAS 6= 0 printing of scale factor and SCALEFAC
atomic configuration CONFIGAT

76
77 PPBOND 0 printing of neighbouring relationship

6= 0 no printing of neighbours relationship
78 FERMI 6= 0 informations on Fermi energy calculation

EMIMAN 6= 0
79

! 79 DFGPRT 6= 0 dft auxiliary basis set - default no printing DFTBASIS
! 80 ROTOP > 0 printing of atoms coord. in rotated ref. frame ROTREF

92 INPBAS G94 deck on ft92 GAUSS94

93
MOLDRW input deck to MOLDRAW

105 DENSIM < 0 DOSS along energy points DOSS

106
DFFIT3 > 0 DFT intermediate printout

(keyword PRINT in dft input)
107 STARIN 6= 0 DOSS information
112 PROFCA 6= 0 projected DOSS coefficients
116 PROFI 6= 0 Compton profile information
117 PROFI 6= 0
118 PROFI N
119 INTEG 6= 0 charge density at grid points MAPVALUES

JJTEG 6= 0 charge density at grid points MAPVALUES
MAPNET 6= 0 electrostatic potential at grid points MAPVALUES
NAPNET 6= 0 charge density gradient components MAPVALUES

120 LIBPHD 6= 0 extended printing in berny optimizer
121 reserved for geometry optimizer
122 reserved for geometry optimizer
123 reserved for geometry optimizer
124 reserved for geometry optimizer
125 reserved for geometry optimizer

392



Appendix D

External format

Formatted data are written in files according to the following table:
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program keyword ftn filename pg

OPTGEOM 34 optaxxx Geometry input - opt atoms coord. only -
See EXTPRT

46

OPTGEOM 34 optcxxx Geometry input - opt cell [atoms] - See
EXTPRT

46

66 HESSOPT.DAT Hessian matrix
68 OPTINFO.DAT Information to restart optimization

crystal GAUSS98 92 GAUSSIAN.DAT Input for GAUSS98 74
FINDSYM 26 FINDSYM.DAT data in crystallographic format - read by

program findsym(IUCR)
44

STRUCPRT 33 STRUC.INCOOR Cell parameters, coordinates of atoms 65

COORPRT 33 fort.33 Coordinates of the atoms in the cell 44
crystal EXTPRT 34 fort.34 Geometry input 46
properties PPAN 24 PPAN.DAT Mulliken population analysis 106

properties BAND 25 fort.25 Bands (Crgra2006) 263
24 BAND.DAT Bands data 263

CLAS 25 fort.25 Classical potential 270
DIEL 24 DIEL.DAT Dielectric constant 272
DOSS 25 fort.25 Density of states (IPLOT=1) 274

24 DOSS.DAT Density of states (IPLOT=2) 274
ECHG 25 fort.25 Electronic charge density - 2D grid 277

25 RHOLINE.DAT Electronic charge density - 1 grid 277
ECH3 31 — Electronic charge density - 3D grid 276

DENS CUBE.DAT Electronic charge density - 3D grid CUBE
format

276

SPIN CUBE.DAT Spin density - 3D grid CUBE format 276
POT3 POT CUBE.DAT Electostatic potential - 3D grid CUBE for-

mat
304

EMDLDM 25 fort.25 EMD along a line 279
24 EMDLDM.DAT EMD along a line 279

EMDPDM 25 fort.25 EMD map on a plane 280
94 3DEMDTOTAL.DATEMD map on a plane (3D format) 280
65 3DEMDANISO.DATEMD-anisotropy map on a plane (3D for-

mat)
280

EMDL 25 fort.25 EMD line (IPLOT=1) 279
24 EMDL.DAT EMD line(IPLOT=2) 279

EMDP 25 EMD - 2D grid 397
INFOGUI 32 Data for the graphical user interface 283
IRSPEC — Infrared spectra 197

IRSPEC.DAT IR Absorbance and Reflectance 197
IRREFR.DAT IR Refractive index 197
IRDIEL.DAT IR Dielectric function 197

RAMSPEC — Raman spectra 199
RAMSPEC.DAT Raman spectra for polycrystalline powder

and single crystal
199

POTC 24 POTC.DAT Electrostatic potential V, Electric field,
Electric field gradient

305

POTM 25 fort.25 Electrostatic potential - 2D grid 306
PROF 25 fort.25 Compton profile and related quantities

(IPLOT=1)
307

24 PROF.DAT Compton profile and related quantities
(IPLOT=2)

307

Please refer to the standard script for running CRYSTAL09 as to handle input/output file

names. See:

http://www.crystal.unito.it/tutorials =¿ How to run

Data in file fort.25 are read by the programs maps06, doss06, band06 of the package

Crgra2006. In the same run bands, density of states, value of a function in a 2D grid of points

can be computed. The appropriate command (maps06, doss06, band06) selects and plots
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the selected data .

The package can be downloaded from:

http://www.crystal.unito.it/Crgra2006/Crgra2006.html

CLAS - ECHG - POTM - EMDPDM - Isovalue maps

The value of the function chosen (classic electrostatic potential (CLAS), charge(+spin) den-

sity (ECHG), electrostatic potential (POTM), electron momentum density (EMDPDM)) is

computed in a given net of points. The data are written in file fort.25.

If the system is spin polarized, total density data are followed by spin density data.

Structure of the file fort.25

1ST RECORD : -%-,IHFERM,TYPE,NROW,NCOL,DX,DY,COSXY format: A3,I1,A4,2I5,3E12.5
2ND RECORD : XA,YA,ZA,XB,YB,ZB format: 1P,6E12.5
3RD RECORD : XC,YC,ZC,NAF,LDIM format: 1P,3E12.5,4X,2I4
4TH RECORD
AND FOLLOWING : ((RDAT(I,J),I=1,NROW),J=1,NCOL) format: 1P,6E12.5

Meaning of the variables:

1 ’-%-’ 3 character string marks the beginning of a block of data;
1 IHFERM: 0 : closed shell, insulating system

1 : open shell, insulating system
2 : closed shell, conducting system - Fermi level can be drawn
3 : open shell, conducting system - Fermi level can be drawn

1 TYPE 4 characters string corresponding to the type of data "MAPN"
1 NROW number of rows of the data matrix RDAT
1 NCOL number of columns of the data matrix RDAT
1 DX increment of x (\AA ngstrom) in the plane of the window
1 DY increment of y (\AA ngstrom) in the plane of the window
1 COSXY cosine of the angle between x and y axis;
2 XA,YA,ZA coordinates of the points A,B (see keyword MAPNET) (\AA ngstrom)
2 XB,YB,ZB defining the window where the functions is computed (\AA ngstrom)
3 XC,YC,ZC coordinates of point C (\AA ngstrom)
3 NAF number of atoms in the cell
3 LDIM dimensionality (0 molecule; 1 polymer, 2 slab, 3 bulk)
4-> ncol*nrow values of the function (a.u.) at the nodes of the grid

naf records follow, with atomic number, symbol, coordinates (Ångstrom) of the atoms in the cell:

NAT,SYMBAT,XA,YA,ZA format: I4,1X,A,1P,3E20.12

NAT atomic number
SYMBAT Mendeleev symbol
XA,YA,ZA cartesian coordinates of the atoms in the cell (\AA ngstrom)

Cartesian components of cell parameters follow (Ångstrom)

AX, AY, AZ cartesian component of vector a format: 3E20.12
BX, BY, BZ cartesian component of vector b format: 3E20.12
CX, CY, CZ cartesian component of vector c format: 3E20.12

The program maps06 looks for the atoms lying in the windows used to compute the function, and it
can draw the symbol of the atoms, the van der Waals sphere, or the bonds between atoms closer than
the sum of their vdW radii.

ECHG Charge (spin) density - 1D profile

When points B and C coincides in ECHG 13.9 input, coordinates relative to the origin of the segment
and charge density value [coordinate along the line, charge density: charge density derivative x,y,z
components] are written with format (2E20.12:3E20.12) in file RHOLINE.DAT. A second set of data,
spin density, is written for spin polarized systems, after a blank line.
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BAND - Band structure
Hamiltonian eigenvalues are computed at k points corresponding to a given path in the Brillouin zone.
Data are written in file BAND.DAT and processed by DLV; see http://www.cse.clrc.ac.uk/cmg/DLV)
and in file fort.25 (processed by Crgra2006/band06)

Structure of the file fort.25
One block is written for each segment of the path in k reciprocal space: the segment is defined by two
k points, whose crystallographic coordinates (I1,I2,I3) and (J1,J2,J3) are given as integers in ISS units
(see keyword BAND).
If the system is spin polarized, α electrons bands are followed by β electrons bands.
For each segment:

1ST RECORD : -%-,IHFERM,TYPE,NBAND,NKP,DUM,,DK,EF format: A3,I1,A4,2I5,3E12.5

2ND RECORD : EMIN,EMAX format: 1P,6E12.5

3RD RECORD : I1,I2,I3,J1,J2,J3 format: 6I3

4TH RECORD

AND FOLLOWING : ((RDAT(I,J),I=1,NROW),J=1,NCOL) format: 1P,6E12.5

Meaning of the variables:

1 ’-%-’ 3 character string marks the beginning of a block of data;
1 IHFERM: 0 : closed shell, insulating system

1 : open shell, insulating system
2 : closed shell, conducting system
3 : open shell, conducting system

1 TYPE 4 characters string corresponding to the type of data "BAND"
1 NBAND number of bands

NKP number of k points along the segment
DUM not used
DK distance in k space between two adjacent sampling points

along the segment
EF Fermi energy (hartree)

2 EMIN minimum energy of the bands in the explored path (hartree)
EMAX maximum energy (hartree)

3 I1,I2,I3,J1,J2,J3 : coordinates of the segment extremes in iunit of ISS
4 EPS(I,J) eigenvalues (hartree): eps(i,j) corresponds to the i-th
.. band, and the j-th k point of the segment.

DIEL

The data computed are written in file DIEL.DAT according to the following format:

#
@ XAXIS LABEL "DISTANCE(BOHR)"
@ YAXIS LABEL "MACRORHO MACROE MACROV RHOPLANE"
5 columns - format(08E15.7)
last record is blank

DOSS Density of states

Total and projected density of states are written in file DOSS.DAT (processed by DLV; see

http://www.cse.clrc.ac.uk/cmg/DLV) and in file fort.25 (processed by Crgra2006).

One block is written for each projected density of states, including the total one: so NPRO

(number pf projections) +1 blocks are written per each run.

If the system is spin polarized, α electrons bands are followed by β electrons bands.
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Structure of the file written in file fort.25
1ST RECORD : -%-,IHFERM,TYPE,NROW,NCOL,DX,DY,COSXY

format : A3,I1,A4,2I5,1P,(3E12.5)
2ND RECORD : X0,Y0 format : 1P,6E12.5
3RD RECORD : I1,I2,I3,I4,I5,I6 format : 6I3
4TH RECORD
AND FOLLOWING : ((RDAT(I,J),I=1,NROW),J=1,NCOL) format : 1P,6E12.5

Meaning of the variables:

1 NROW 1 (DOSS are written one projection at a time)
NCOL number of energy points in which the DOS is calculated
DX energy increment (hartree)
DY not used
COSXY Fermi energy (hartree)

2 X0 energy corresponding to the first point
Y0 not used

3 I1 number of the projection;
I2 number of atomic orbitals of the projection;
I3,I4,I5,I6 not used

4 RO(J),J=1,NCOL DOS: density of states ro(eps(j)) (atomic units).

Structure of the file written in file DOSS.DAT

Data written in file DOSS.DAT:

1ST RECORD : NPUNTI, NPRO1, IUHF

format : ’# NEPTS’,1X,I5,1X,’NPROJ’,1X,I5,1X,’NSPIN’,1X,I5

2ND RECORD : ’#’

3RD RECORD : ’@ YAXIS LABEL "DENSITY OF STATES (STATES/HARTREE/CELL)"’

4TH RECORD : (ENE(I),DOSS(IPR,I),IPR=1,NPRO1)

AND FOLLOWING :

format : 1P,15E12.4

PROF

The computed quantities are written following the same sequence of the printout. Each record
contains:

4F coordinate, all electron, core, valence contribution

EMDL

The computed quantities are written following the same sequence of the printout.
NPUNTI records are written. Each records contains (FORMAT: 10E12.4)

p (emdl(p,ipro), ipro=1,nprojections))

EMDP

1ST RECORD : -%-,IHFERM,TYPE,NMAX1,NMAX2,PMAX1,PMAX2,COS12

format : A3,I1,A4,2I5,1P,(3E12.5)

2ND RECORD : XDUM,YDUM format : 1P,6E12.5

3RD RECORD : I11,I12,I13,I21,I22,I23 format : 6I3

4TH RECORD

AND FOLLOWING : ((RDAT(I,J),I=1,NMAX1),J=1,NMAX2) format : 1P,6E12.5

Meaning of the variables:

1 ’-%-’ 3 character string marks the beginning of a block of data;

1 IHFERM: 0 : closed shell, insulating system

1 : open shell, insulating system

2 : closed shell, conducting system

3 : open shell, conducting system
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1 TYPE 4 characters string corresponding to the type of data "EMDP"

1 NMAX1 number of points in the first direction

NMAX2 number of points in the second direction

PMAX1 maximum p value along the first direction

PMAX2 maximum p value along the first direction

COSXY angle between the two vectors defining the plane

2 X0 not used

Y0 not used

3 I11,I12,I13 fractional coordinates of the first reciprocal lattice

vector defining the plane

I21,I22,I23 fractional coordinates of the second reciprocal lattice

vector defining the plane

4 RO(J),J=1,NMAX1*NMAX2 electron momentum density at the grid points

(atomic units).

POTC

When ICA 6= 0; NPU 6= 0 (2D or 3D systems) the data computed are written in file POTC.DAT
according to the following format:

#

@ XAXIS LABEL "Z (AU)"

@ YAXIS LABEL "ELECTROSTATIC PROPERTIES (AU)"

@ TITLE "String in the first record in crystal input "

@ SUBTITLE "ELECTRIC FIELD INTENSITY: 0.100 AU" ! if external field applied

@ LEGEND ON

@ LEGEND LENGTH 3

@ LEGEND X1 0.87

@ LEGEND Y1 0.8

@ LEGEND STRING 0 "V"

@ LEGEND STRING 1 "E"

@ LEGEND STRING 2 "DE/DZ"

@ LEGEND STRING 3 "RHO"

@ LEGEND STRING 4 "V+VEXT" ! if external field applied

@ LEGEND STRING 5 "VEXT" ! if external field applied

NPU records of 5 (7 when external field applied) columns - format 08E15.7

COORPRT

The keyword COORPRT, entered in geometry input or in properties writes in file fort.33
(append mode) the following data:

record
#

data
type

content

1 I number of atoms (NAF)
2 A Title - If written after an SCF calculation, on the same line; totalenergy,

convergence on energy, number of cycles
3 A,3F Mendeleev symbol of the atom; x, y, z cartesian coordinates (Å)
· · · · · ·
NAF+2 A,3F Mendeleev symbol of the atom; x, y, z cartesian coordinates (Å)

The coordinates of the atoms are written at each geometry optimization cycle (keyword OPT-
GEOM
The file ”fort.33” is read by the program MOLDEN [199] which can be downloaded from:
www.cmbi.kun.nl/ schaft/molden/molden.html
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STRUCPRT

The file STRUC.INCOOR is written according to the format given in the example (output for
bulk MgO, 2 atoms per cell).

$cell vectors cartesian components of cell parameters (bohr)

0.00000000000000 3.97787351190423 3.97787351190423

3.97787351190423 0.00000000000000 3.97787351190423

3.97787351190423 3.97787351190423 0.00000000000000

$coordinates cartesian coordinates of atoms (bohr)

MG 0.00000000000000 0.00000000000000 0.00000000000000 12

O 0.00000000000000 0.00000000000000 -3.97787351190423 8

$END

PPAN

# Mulliken Populations:

# NSPIN,NATOM n. determinants, number of atoms

---- for each atom

# IAT,NSHELL atomic number, number o shells

# Xiat,Yiat,Ziat (AU) cartesian coordinates (bohr)

# QTOT, QSHELL,I=1,NSHELL atom total electronic charge, (shell charges)

# NORB, QORB, I=1,NORB number of orbitals, (orbital electronic charges)

Example:

graphite STO-3G basis set, RHF (1 eterminant)

2 atoms, 2 shells per atom, 5 AO per atom

1 2 | 1 determinant, 2 atoms

6 2 | 1st atom: atomic number 6, 2 shells

-1.320 -2.287 0.000 | cartesian coordinates 1st atom

6.000 1.993 4.007 | 6, electronic charge of 1st atom

| 1.993 electronic charge of 1st shell (1s)

| 4.007 electronic charge of 2nd shell (2sp)

5 | 5 atomic orbitals

1.993 1.096 0.956 0.956 1.000| 1.993 electronic charge of 1st AO (1s)

| 1.096 electronic charge of 2nd AO (2s)

| 0.956 electronic charge of 3rd AO (px)

| 0.956 electronic charge of 4th AO (py)

| 1.000 electronic charge of 5th AO (pz)

6 2 | 2nd atom: atomic number 6, 2 shells

-2.640 0.000 0.000 | cartesian coordinates 2nd atom

6.000 1.993 4.007 | 6, electronic charge of 1st atom

| 1.993 electronic charge of 1st shell (1s)

| 4.007 electronic charge of 2nd shell (2sp)

5 | 5 atomic orbitals

1.993 1.096 0.956 0.956 1.000| 1.993 electronic charge of 1st AO (1s)

| 1.096 electronic charge of 2nd AO (2s)

| 0.956 electronic charge of 3rd AO (px)

| 0.956 electronic charge of 4th AO (py)

| 1.000 electronic charge of 5th AO (pz)

6 2 | second atom: atomic number 6, 2 shells

-2.640 0.000 0.000 | cartesian coordinates 2nd atom
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EXTPRT / EXTERNAL - file fort.34

Geometry information can be read from an external file, fort.34, by entering the keyword
EXTERNAL. The system can be a molecule, a polymer, a slab or a crystal. The file is
written by entering the keyword EXTPRT in the input block 1. The file is written at the end
of successful geometry optimization. The ”history” of the optimization process is written in
files optaxxx (xxx number of optimization cycle) or optcxxx. //[0.2cm] The structure of the
file is as follow:

rec # data type
}

contents

2 3I
}

dimensionality, centring and crystal type

3 3F

4 3F

5 3F

 cartesian components of the direct lattice vectors

6 1I
}

number of symmetry operators

For each symmetry operator 4 records:

7 3F

8 3F

9 3F

 symmetry operators matrices in cartesian coordinates

10 3F
}

cartesian components of the translation

n 1I
}

number of atoms in the primitive cell (up to CRYSTAL14, irreducible atoms
only)

For each atom, 1 record:

n+1 I,3F
}

conventional atomic number, cartesian coordinates of the atoms

2 3I
}

space group number and initial number of symmetry operators if symmetry was not
modified, otherwise 0

The keyword EXTERNAL and END must be inserted at the top and bottom of the deck

to use it as CRYSTAL geometry input.

Example - Test05 - Graphite 2D - standard geometry input

SLAB dimensionality
77 layer group number
2.42 lattice parameter
1 number of irreducible atoms in the cell
6 -0.33333333333 0.33333333333 0. coordinates of the atoms
EXTPRT
TESTGEOM
END

Data written in file fort.34 (Ångstrom):

2 1 5 ! dimensionality, centring and crystal type
0.2095781E+01 -0.1210000E+01 0.0000000E+00 ! cartesian components of direct lattice vectors
0.0000000E+00 0.2420000E+01 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.5000000E+03 ! 2D system - formal value 500. \AA

12 ! number of symmetry operators
0.1000000E+01 0.0000000E+00 0.0000000E+00 ! 1st symmetry operator - 3x3 transformation matrix
0.0000000E+00 0.1000000E+01 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 ! 1st symmetry operator - 3x1 translation component

-0.1000000E+01 0.0000000E+00 0.0000000E+00 ! 2nd symmetry operator
0.0000000E+00 -0.1000000E+01 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !

-0.5000000E+00 -0.8660254E+00 0.0000000E+00 ! 3rd symmetry operator
0.8660254E+00 -0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !

-0.5000000E+00 0.8660254E+00 0.0000000E+00 ! 4th symmetry operator
-0.8660254E+00 -0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
0.5000000E+00 -0.8660254E+00 0.0000000E+00 ! 5th symmetry operator
0.8660254E+00 0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
0.5000000E+00 0.8660254E+00 0.0000000E+00 ! 5th symmetry operator

-0.8660254E+00 0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
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-0.5000000E+00 0.8660254E+00 0.0000000E+00 ! 7th symmetry operator
0.8660254E+00 0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
0.1000000E+01 0.0000000E+00 0.0000000E+00 ! 8th symmetry operator
0.0000000E+00 -0.1000000E+01 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !

-0.5000000E+00 -0.8660254E+00 0.0000000E+00 ! 9th symmetry operator
-0.8660254E+00 0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
0.5000000E+00 0.8660254E+00 0.0000000E+00 ! 10th symmetry operator
0.8660254E+00 -0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !

-0.1000000E+01 0.0000000E+00 0.0000000E+00 ! 11th symmetry operator
0.0000000E+00 0.1000000E+01 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
0.5000000E+00 -0.8660254E+00 0.0000000E+00 ! 12th symmetry operator

-0.8660254E+00 -0.5000000E+00 0.0000000E+00 !
0.0000000E+00 0.0000000E+00 0.1000000E+01 !
0.0000000E+00 0.0000000E+00 0.0000000E+00 !
1 ! number of irreducible atoms in the primitive cell

6 -0.6985938 -1.2100000 0.0000000 ! conventional atomic number, cartesian coordinate

ECH3/POT3/GRID3D

Functions values computed at 3D grid of points by the keywords ECH3 (page 276), POT3

(page304), GRID3D (page283) are written according to two formats: . All data in atomic

units.

1. Fortran unit 31 is written According to the following format. All data in atomic units.

rec # data type
}

contents

1 A
}

title: charge density /spin density

2 3I
}

npa,npb,npc, number of points along the 3 directions

3 3E
}

x,y,z cartesian coordinates of the point (1,1,1)

4 3E
}

dxa, dya, dza cartesian components of the step along a

5 3E
}

dxb, dyb, dzb cartesian components of the step along b

6 3E
}

dxc, dyc, dzc cartesian components of the step along c

7 ... 5E
}

npa*npb*npc floating point data, 5/record

2. Function data computed at 3D grid points are written according to GAUSSIAN CUBE

format in files:

DENS CUBEḊAT charge density

SPIN CUBEḊAT spin density

POT CUBEḊAT electrostatic potential

INFOGUI

Fortran unit 32 is written through the keyword INFOGUI (page 283). The format is almost
self-explaining. The following data are written for MgO bulk (test11).

2 atom(s) per cell
6 shells

18 atomic orbitals
20 electrons per cell
12 core electrons per cell
No eigenvalue level shifting
No Alpha-Beta Spin locking
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No N. Beta Spin locking
Type of Calculation: RESTRICTED CLOSED SHELL
Total Energy = -0.27466415E+03H
Fermi Energy = -0.31018989E+00H
1 -0.31018989E+00
6 18 20 12 | # shells, # AO, # electrons, # core electrons
2 | # atoms
1 12 1 0.000000 0.000000 0.000000 | sequence number, atomic number,?,cartesian coor(bohr)
3 # shells attributed to the first atom
0 shell type (s) of the 1st shell
1 shell type (sp) of the 2nd shell
1 shell type (sp) of the 3rd shell
2 8 2 3.977874 3.977874 3.977874 | sequence number, atomic number,?,cartesian coor(bohr)
3 # shells attributed to the second atom
0 shell type (s) of the 1st shell
1 shell type (sp) of the 2nd shell
1 shell type (sp) of the 3rd shell

IRSPEC

IRSPEC in FREQCALC input block writes the files IRSPEC.DAT, IRREFR.DAT and

IRDIEL.DAT.

IRSPEC.DAT contains: 1 column with frequency ν in cm−1, 1 column with wavelength λ in

nm, 4 columns for the 4 different models of absorbance A, 1 column for reflectance R along

each inequivalent polarization direction.

IRREFR.DAT contains: 1 column with frequency ν in cm−1, 1 column with wavelength λ in

nm, 2 columns for Re(n) and Im(n) along each direction (n being the refractive index).

IRDIEL.DAT contains: 1 column with frequency ν in cm−1, 1 column with wavelength λ in nm,

3 columns for Re(ε), Im(ε) and Im(1/ε) along each direction (ε being the dielectric function).

Suppose we have the following input block, for a compound with three inequivalent polarization

directions:

. . . .

FREQCALC

INTENS

[options for INTENS]

DIELTENS or DIELISO

. . . .

[optional FREQCALC keywords]

. . . .

IRSPEC

END

ENDFREQ

The first two columns in the generated IRSPEC.DAT contain frequencies and wavelengths,

columns from 3 to 6 the raw absorbance, the classical absorbance, the two Rayleigh scattering

absorbances, and column 7-9 the reflectance curves for the three directions.

Suppose we want to plot the raw absorbance with respect to frequency. Once gnuplot is opened

on the terminal (type gnuplot), it is sufficient to type

plot ’IRSPEC.DAT’ using 1:3

where 1:3 stands for ”first column assigned to x axis and third column to y axis”. The plot of

the raw absorbance appears on the screen and can be saved with the command
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save ’name_plot’

If we want to save the plot as a Post-Script

set size 1.0, 0.6

set terminal postscript portrait enhanced mono dashed lw 1 "Helvetica" 14

set output "my-plot.ps"

replot

In a similar way, we can type

plot ’IRSPEC.DAT’ using 1:7

in order to obtain the reflectance along the first polarization direction, and

plot ’IRSPEC.DAT’ using 1:8

for the reflectance along the second direction.

Further details about these commands and manipulation of files at http://www.duke.edu/ hp-

gavin/gnuplot.html and http://www.gnuplot.info/documentation.html.

RAMSPEC

RAMSPEC in FREQCALC input block writes the file RAMSPEC.DAT.

RAMSPEC.DAT contains: 1 column with frequency ν in cm−1, 3 columns for intensities of

polycrystalline powders (total intensity, parallel polarization, perpendicular polarization), 6

columns for spectra of single crystals (1 for each inequivalent polarization direction: xx, xy,

xz, yy, yz, zz).

Suppose we want to plot the total Raman intensity of a polycrystalline powder with respect

to frequency. Once gnuplot is opened on the terminal (type gnuplot), it is sufficient to type

plot ’RAMSPEC.DAT’ using 1:2

where 1:2 stands for ”first column assigned to x axis and second column to y axis”. The plot

of the total polycrystalline Raman intensity appears on the screen and can be saved with the

command

save ’name_plot’

If we want to save the plot as a Post-Script

set size 1.0, 0.6

set terminal postscript portrait enhanced mono dashed lw 1 "Helvetica" 14

set output "my-plot.ps"

replot

In a similar way, we can type

plot ’RAMSPEC.DAT’ using 1:5

in order to obtain the Raman spectrum of a single crystal along the first polarization direction,

i.e. xx.

Further details about these commands and manipulation of files at http://www.duke.edu/ hp-

gavin/gnuplot.html and http://www.gnuplot.info/documentation.html.
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Interface to external programs

The keyword CRYAPI OUT, present into properties input stream writes formatted wave

function information, both in direct and reciprocal space, in file GRED.DAT and KRED.DAT

The scripts runcry06 and runprop06 save them in the current directory as inpfilename.GRED

and inpfilename.KRED .

The program cryapi inp, written in fortran 90, is distributed as source code

(http://www.crystal.unito.it => documentation => utilities). It reads and prints the data,

showing the meaning of the variables and the organization of data

cryapi inp should be compiled by any fortran 90 compiler: comments and request for more

information are welcome (mail to crystal@unito.it).

GRED.DAT

The file GRED.DAT contains:

• Geometry, symmetry operators;

• Local functions basis set (including ECP)

• Overlap matrix in direct lattice

• Hamiltonian matrix in direct lattice

• Density matrix in direct lattice

• Wannier functions (if file fort.80, written by LOCALWF when localization is successful,

is present)

Overlap, hamiltonian, density matrices are written as arrays of non-zero elements. GRED.DAT

contains the information to build full matrices.

All data are printed executing cryapi inp

KRED.DAT

The file KRED.DAT is written if eigenvectors have been computed (keyword NEWK 13.11)

by properties.

CRYSTAL works in the irreducible Brillouin (IBZ) zone only: eigenvectors in the full Brillouin

zone (BZ) are computed by rotation, and by time reversal symmetry, when necessary. The file

KRED.DAT contains:

• Coordinates of k points in irreducible Brillouin zone, according to Pack-Monkhorst net

• Symmetry operators in reciprocal lattice

• Geometrical weight of k points

• Hamiltonian eigenvalues

• Weight of k points for each band (computed by Fermi energy calculation)

• Eigenvectors in full Brillouin zone
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Structure of matrices in direct lattice

Overlap, hamiltonian, and density matrices in direct lattice are arrays of non-zero elements:

cryapi inp prints the matrices as triangular (hamiltonian) or square matrices of size (local BS

x local BS), for a limited number of direct lattice vectors, to show the structure of the arrays.

From IBZ to BZ

CRYSTAL works on irreducible Brillouin zone (IBZ), full information is generated by applying

rotation operators.

Time reversal symmetry is exploited in reciprocal lattice: the inversion symmetry is always

present, even if the inversion operator is not present in direct lattice.

Given a shrinking factor according to Pack-Monkhorst sampling, to total number of k points

is for instance:

System n. symmops shrink factors IBZ NOSYMM BZ

graphite (2D) 12 3 3 5 9
SiC (3D) 24 4 8 36 64
MgO (3D) 48 4 8 36 64

IBZ number of points in IBZ

NOSYMM number of points removing direct lattice symmetry

BZ number of points in Brillouin zone

405



Appendix E

Normalization coefficients

A. Bert - Thesis 2002

The aim of this appendix is to show how normalization coefficients of the basis functions are

defined in CRYSTAL and to describe how they are stored in the program.

Basic Definitions

Let us consider a function, f(r); we have in general:∫
dr |f(r)|2 6= 1; (E.1)

however, we can always define a related f ′(r), multiplying f(r) by a constant N :

f ′(r) = Nf(r), (E.2)

such that: ∫
dr |f ′(r)|2 = 1. (E.3)

f ′(r) is said to be a normalized function and N is its Normalization Coefficient (NC). Substi-

tuting eq. E.2 in E.3, we have:

N =

(∫
dr |f(r)|2

)−1/2

. (E.4)

Gaussians: Product Theorem and Normalization

Let us define Gaussian functions as:

G(αi; r−A) = exp(−αi(r−A)2), (E.5)

where A is the centroid of the function.

The Gaussian product theorem states that the product of two Gaussians, is still a Gaussian

function:1

G(α; r−A)G(β; r−B) = exp

(
−αβ
ξ
|R|2

)
G(ξ; r−P); (E.8)

1Let us prove the Gaussian product theorem:

G(α; r−A)G(β; r−B) = exp(−αi(r−A)2) exp(−αj(r−B)2

= exp
(
−α(r2 + A2 + 2rA)− β(r2 + B2 + 2rB)

)
= exp

[
−ξ
(

(r−P)2 + P2 −
αA2 + βB2

ξ

)]
. (E.6)
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with:

ξ = α+ β, (E.9)

P =
αA + βB

ξ
, (E.10)

R = A−B. (E.11)

From eq. E.4, the NC of Gaussian functions, gi, can be written as:

gi =

(∫
dr (G(αi; r))

2

)−1/2

=

(∫
drG(2αi; r)

)−1/2

=

(
π

2αi

)−3/4

, (E.12)

where the Gaussian product theorem and the Gaussian integral [224] have been used. G′(αi; r),

defined as:

G′(αi; r) = giG(αi; r), (E.13)

is a normalized function.

Harmonic Gaussians

The Definition

The Solid Harmonic Functions, Y m` , [192] are defined as:

Y m` (r) = r`P
|m|
` (cosϑ)eimφ, (E.14)

where Pm` is the Legendre Polynomial Function characterized by the integers ` and m, such

that: ` ≥ 0 and −` ≤ m ≤ `. [4]

Starting from Y m` , the Real Solid Harmonic, Xm
` , can be defined:

X
|m|
` (r) = <(Y

|m|
` ) =

Y
|m|
` (r) + Y

−|m|
` (r)

2
, (E.15)

X
−|m|
` (r) = =(Y

|m|
` ) =

Y
|m|
` (r)− Y −|m|` (r)

2i
. (E.16)

We report some examples of X functions.

` = 0:

X0
0 (r) = 1; (E.17)

` = 1:

X0
1 (r) = z, X1

1 (r) = x, X−1
1 (r) = y; (E.18)

` = 2:

X0
2 (r) = z2 − 0.5(x2 − y2), X1

2 (r) = 3zx, X−1
2 (r) = 3zy, (E.19)

X2
2 (r) = 3(x2 + y2), X−2

2 (r) = 3xy. (E.20)

Using eqs. E.9, E.10 and E.11, eq. E.6 can be rewritten as:

G(α; r−A)G(β; r−B) = exp

(
−
αβ

ξ
|R|2

)
G(ξ; r−P). (E.7)
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We have now the tools required to define the Solid Harmonic Gaussian, [192] ξ:

ξn`m(αi; r) = |r|2nY m` (r)Gi(αi; r), (E.21)

where n is a non-negative integer number (n ≥ 0). We are interested here only in n = 0

harmonic Gaussians (that is, ξ0`m), so we shall simply write (omitting the n = 0 index):

ξ`m(αi; r) = Y m` (r)G(αi; r). (E.22)

Substituting Y with X (eqs. E.15 and E.16) in eq. E.22, Real Harmonic Gaussians, γ, can be

defined:

γ`m(αi; r) = Xm
` (r)G(αi; r). (E.23)

γ are used as basis functions in the CRYSTAL program and are related to the ξ ones by

followings relations:

γ`|m| =
ξ`|m| + ξ`−|m|

2
, (E.24)

γ`−|m| =
ξ`|m| − ξ`−|m|

2i
, (E.25)

where eqs. E.15 and E.16 have been used.

Note that, when ` is equal to 0, ξ and γ functions degenerate to simple Gaussians:

ξ00 = γ00 = G, (E.26)

where eq. E.17 has been used and ξ degenerates to γ when m = 0:

ξ`0 = γ`0, (E.27)

where eqs. E.24 and E.25 have been used.

The Normalization Coefficient

Let us consider now ξ and γ’s normalization coefficients (b and c, respectively), from eq. E.4,

follows:

b`mi = (Ξ)
−1/2

(E.28)

c`mi = (Υ)
−1/2

, (E.29)

where

Ξ =

∫
dr
∣∣ξ`m(αi; r)

∣∣2 (E.30)

Υ =

∫
dr
(
γ`m(αi; r)

)2
. (E.31)

Using eqs. E.5, E.8, E.14, E.22 and a spherical polar coordinate system,2 the Ξ integral can be

factorized as:

Ξ =

∫
dr [Y m` (r)G(αi; r)]

∗
Y m` (r)G(αi; r)

=

∫
drY −m` (r)Y m` (r)G(2αi; r)

= Ξr Ξϑ Ξφ, (E.32)

2dr = r2sinϑ dr dϑ dφ
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with:

Ξr =

∫ ∞
0

dr exp(−2αir
2)r2`+2

=
Γ(`+ 3/2)

2(2αi)`+3/2

=
π1/2(2`+ 1)!!

2`+2(2αi)`+3/2
, (E.33)

where we have used the Γ function’s properties; [4]

Ξϑ =

∫ π

0

dϑ
(
P
|m|
` (cosϑ)

)2

sinϑ

=
2(`+ |m|)!

(2`+ 1)(`− |m|)!
, (E.34)

where the Legendre polynomials’ properties have been used, [4] and

Ξφ =

∫ 2π

0

dφ = 2π. (E.35)

Substituting eqs. E.32, E.33, E.34 and E.35 in the b definition (eq. E.28) we obtain:

b`mi =
π1/2(2`+ 1)!!

2`+2(2αi)`+3/2

2(`+ |m|)!
(2`+ 1)(`− |m|)!

2π

=

(
π3/2 (2`− 1)!! (`+ |m|)!
22`+3/2 α

`+3/2
i (`− |m|)!

)−1/2

. (E.36)

Note that b is independent from the sign of m (as Ξ is), that is:

b
`|m|
i = b

`−|m|
i . (E.37)

In order to deduce the explicit expression for c, we are interested now in solving the integral

of eq. E.31:

Υ =

∫
dr (Xm

` (r))
2
G(2αi; r), (E.38)

where eqs. E.8 and E.23 have been used. Substituting eq. E.24 (γ functions with m ≥ 0) in

previous equation, we have:

Υm≥0 =
1

4

(∫
dr
∣∣∣ξ`|m|(αi; r)

∣∣∣2 +

∫
dr
∣∣∣ξ`−|m|(αi; r)

∣∣∣2 +

+ 2

∫
dr ξ`|m|(αi; r)ξ`−|m|(αi; r)

)
. (E.39)

The first two integrals in eq. E.39 can be recognized as Ξ (eq. E.32, reminding that Ξ is

independent from the m sign); the last one, if m 6= 0, is null for the orthogonality properties

of the Harmonic functions, [4] therefore:

Υm>0 =
Ξ

2
. (E.40)

The same result is found for negative m, substituting eq. E.25 (instead of eq. E.24, as done)

in eq. E.31:

Υm<0 =
Ξ

2
, (E.41)
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so Υ (as Ξ is) is independent from the m sign. If m = 0, the last integral in eq. E.39 is equal

to Ξ, as the first two ones:

Υm=0 = Ξ; (E.42)

the previous equation can be deduced also from eq. E.27.

Summarizing, from eqs. E.40, E.41 and E.42, we get:

Υ =
Ξ

2− δm0
(E.43)

and, finally, substituting eqs. E.32 and E.43 in eq. E.29, we obtain:

c`mi =

(
π3/2 (2`− 1)!! (`+ |m|)!

22`+3/2(2− δm0)α
`+3/2
i (`− |m|)!

)−1/2

. (E.44)

The c expression (eq. E.44) can be reorganized in a two factors formula:

c`mi = a`i f
`m, (E.45)

with:

a`i =

(
π3/2

(2αi)`+3/2

)−1/2

, (E.46)

the α-dependent term, and

f `m =

(
(2`− 1)!! (`+ |m|)!

2`(2− δm,0)(`− |m|)!

)−1/2

, (E.47)

the m dependent term.

Note that,

• If ` = 0, γ degenerates in a simple Gaussian (eq. E.26),

f00 = 1 and c00
i = a0

i = gi, (E.48)

where gi is the G’s NC (eq. E.12).

• If ` = 1, f1m = 1/2 for the three m-values:

f1m = 1/2 and c1mi =
a1
i

2
=
α

5/4
i 27/4

π3/4
, ∀ m = −1, 0, 1. (E.49)

• If ` = 2, we have:

c20
i =

α
7/4
i 211/4

π3/4
√

3
; c21

i = c2−1
i =

α
7/4
i 211/4

π3/43
; c22

i = c2−2
i =

α
7/4
i 27/4

π3/43
. (E.50)

Let us verify, for two examples, that

γ′ = c γ (E.51)

is a normalized function, proving that the following integral, I, is equal to 1,

I`mi =

∫
dr
(
c`mi γ`m(αi; r)

)2
. (E.52)
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The s Case (` = 0, m = 0)

I00
i =

(
c00
i

)2 ∫
dr
(
γ00(αi; r)

)2
= (gi)

2

∫
dr (G(αi; r))

2

=

(∫
(G(αi; r))

2
dr

)−1 ∫
(G(αi; r))

2
dr = 1, (E.53)

where eqs. E.48, E.27 and E.12 have been used.

A d Case (` = 2, m = 1)

I21
i =

∫
dr
(
c21
i γ

21(αi; r)
)2

=
(
c21
i

)2
J, (E.54)

with:

J =

∫
dr (3zxG(2αi; r))

2
, (E.55)

where eqs. E.23 and E.19 have been used.

Gaussians are separable functions, that is:

G(αi; r) = Gx(αi;x)Gy(αi; y)Gz(αi; z), (E.56)

with:

Gx(αi;x) = exp(−αix2) (E.57)

and similarly for y and z. Substituting eq. E.56 in eq. E.55, we have:

J = 9JxJyJz, (E.58)

with:

Jx =

∫
x2Gx(2αi;x)dx =

√
π

2
(2αi)

−3/2, (E.59)

Jy =

∫
Gy(2αi; y)dy =

(
π

2αi

)1/2

, (E.60)

Jz =

∫
z2Gz(2αi; z)dz =

√
π

2
(2αi)

−3/2, (E.61)

where ref. [224] has been used in solving the integrals. Substituting now eqs. E.49 and E.58 in

eq. E.54, we obtain:

I21
i =

α
7/2
i 211/2

π3/2 9
9

(√
π

2
(2αi)

−3/2

)2(
π

2αi

)1/2

= 1. (E.62)

Atomic Orbitals Normalization

The variational basis functions of the CRYSTAL program (AOs), ϕµ, are normalized contrac-

tions (fixed linear combinations) of normalized real solid harmonic Gaussian type functions

(primitive functions), γ′ (eq. E.51). The AOs are organized in shells, ϕµ belonging to the

same shell, λ, have same radial part, that is, same contraction coefficients, dλi , same Gaussian

exponents, αλi and different angular part, Xm
` :

ϕ`mλ = Nλ
∑
i

dλi c
`m
i γ`m(αλi ; r) = Nλ

∑
i

dλi c
`m
i Xm

` (r)G(αλi ; r). (E.63)

411



The index i runs over the primitive functions of the contraction, dλi is the contraction coefficient

of the i-th primitive in shell λ and, as we have seen, it is the same for all the AOs of λ, that

is, it does not depend on ` or m. γ and c are the primitive function and its NC (eq. E.29),

respectively. Nλ is the NC of AOs belonging to λ and is defined as:

Nλ =

∫ dr

(∑
i

dλi c
`m
i γ`m(αλi ; r)

)2
−1/2

, (E.64)

in the following will be shown that N depends only on the shell, λ.

We report, as an example, the three AOs of a p-type shell (` = 1), supposing that λ is classified

as the fourth shell of the unitary cell and each AO is a contraction of two primitives.

pz = ϕ10
4 = N4

(
d4

1 c
10
1 γ10(α4

1; r) + d4
2 c

10
2 γ10(α4

2; r)
)
, (E.65)

px = ϕ11
4 = N4

(
d4

1 c
11
1 γ11(α4

1; r) + d4
2 c

11
2 γ11(α4

2; r)
)
, (E.66)

py = ϕ1−1
4 = N4

(
d4

1 c
1−1
1 γ1−1(α4

1; r) + d4
2 c

1−1
2 γ1−1(α4

2; r)
)
. (E.67)

Let us put our attention on Nλ. Eq. E.64 can be rewritten as:

Nλ =

∑
i,j

dλi d
λ
j c

`m
i c`mj Υ′

−1/2

, (E.68)

with:

Υ′ =

∫
dr γ`m(αi; r) γ`m(αj ; r), (E.69)

where the shell index on α has been omitted for simplicity. Substituting eq. E.23 in eq. E.69,

we have:

Υ′ =

∫
Xm
` (r)G(αi; r)Xm

` (r)G(αj ; r)dr =

∫
(Xm

` (r))
2
G[(αi + αj); r]dr, (E.70)

where the Gaussian product theorem (eq. E.8) has been used.

From eq. E.31, it can be seen that Υ′ differs from Υ only in the Gaussian exponent (αi + αj

instead of 2αi), using then eqs. E.43, E.32, E.34 and E.35, Υ′ is rewritten as:

Υ′ =
Υ′r Ξϑ Ξϕ
2− δm0

, (E.71)

with:

Υ′r =

∫ ∞
0

dr exp[−(αi + αj)r
2]r2`+2

=
Γ(`+ 3/2)

2(αi + αj)`+3/2

=
π1/2(2`+ 1)!!

2`+2(αi + αj)`+3/2
. (E.72)

Substituting eqs. E.44, E.71 and E.72 in eq. E.68, we obtain:

Nλ =

∑
i,j

dλi d
λ
j

2
√
αλi α

λ
j

αλi + αλj

`+3/2
−1/2

, (E.73)

where it is clear that N depends only on λ.
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The Code

In order to explain easily the organization of NCs in CRYSTAL, eq. E.63 is reorganized as

follows:

ϕ`mλ =
∑
i

n`mλ,i γ
`m(αλi ; r), (E.74)

with:

n`mλ,i = Nλ d
λ
i c

`m
i . (E.75)

Note that, while the AO is normalized, the function γ′′ = nγ is not; in fact n is not a

normalization factor, and it will be referred as the pre-Gaussian factor.

At the moment the CRYSTAL code is able to treat four type of shells: s, sp, p and d.3 An

s shell has only an AO, that is a contraction of simple Gaussians (` = 0); in a p one there

are three AOs (different for the m value, px, py and pz) with ` = 1 primitives; d shells are

obviously formed by five ` = 2 AOs. The three basis functions of a sp shell are contractions of

one s primitive function and several ps’.

In the calculation of the integrals required in the SCF process, n must be very often multiplied

by the constant factor π5/8 21/4; [175] therefore, in the code, pre-Gaussian factors are not

stored, but the following quantities, that we shall call code pre-Gaussian constants:

Sλi = π5/8 21/4 n00
λ,i (E.76)

Pλi = π5/8 21/4 n1m
λ,i ∀ m = 0, 1,−1 (E.77)

Dλ
i = π5/8 21/4

√
(2 + |m|)!

(2− δm0)(2− |m|)!
n2m
λ,i ∀ m = 0, 1,−1, 2,−2. (E.78)

Note that the square root in eq. E.78 (the inverse of the m-dependent part of c, eq. E.44)

makes D independent from the m value, whereas n2m
λ,i depends from it. In such a way, S, P

and D are m-independent

In the inpbas routine, contraction coefficients (as defined in input), dλi , related to s, p and d

AOs, are loaded in the two dimension packed arrays c1, c2 and c3, respectively (they are stored

in the module basato module). Their length corresponds to the total number of primitives

in the unit cell and is the same for the three arrays. The first elements are the contraction

coefficients for the first shell (d1
i ), then the d2

i s (second shell) follows, and so on; the contraction

index, i, is the internal one. For an s shell, for example, the elements of c2 and c3 are null, of

course.

In the gaunov routine, c1, c2 and c3 are redefined and loaded with the code pre-Gaussian

constants S, P and D, respectively; naturally they maintain the described organization and

module basato module is overwritten.

In gaunov two further arrays, c2w and c3w (that follow the convention used in the ATMOL

program) are also defined and loaded in basato module. They have the same organization as

c1, c2 and c3 and contain P′λi and D′λi coefficients, respectively:

P′λi =
π5/8 21/4

2αi
n1m
λ,i ∀ m = 0, 1,−1 (E.79)

D′λi =
π5/8 21/4

(2αi)2

√
(2 + |m|)!

(2− δm0)(2− |m|)!
n2m
λ,i ∀ m = 0, 1,−1, 2,−2. (E.80)

3The implementation of higher polynomial functions is now in progress.
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We give an example of evaluation of an overlap integral Sµν over an s and a m = 0 d AO

(ϕµ ≡ ϕλ00, ϕν ≡ ϕσ20) sitting in the reference cell:

Sµν =

∫
drϕλ00(r)ϕσ20(r). (E.81)

Substituting eq. E.74 in the previous equation, we have:

Sµν =
∑
ij

n00
λ,i n

20
σ,j

∫
dr γ00(αλi ; r)γ20(ασj ; r). (E.82)

Since in the code, S and D are available (but not the n coefficients), we express n as a function

of code pre-Gaussian constants, using eqs. E.76 and E.78, and we rewrite the overlap integral

as:

Sµν =
(
π5/8 21/4

)−2

√
(2− δm0)(2− |m|)!

(2 + |m|)!
∑
ij

Sλi Dσ
i

∫
dr γ00(αλi ; r)γ20(ασj ; r). (E.83)

Note that the m-dependent term contained in n, for d shells, must be multiplied a posteriori,

because is not included in D. This operation is performed in the dfac3 routine, that provides

McMurchie-Davidson coefficients multiplied by code pre-Gaussian constants and, when λ is a

d shell, by the m-dependent part of n2m
λ,i .
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Appendix F

CRYSTAL09 versus CRYSTAL06

Geometry

• Roto-translational symmetry

In the case of polymers it can treat helical structures (translation followed by a rota-

tion around the periodic axis). See keyword HELIX (page 19) and examples therein.

CRYSTAL06 allowed commensurate rotations only, by adopting a suitably large unit cell.

• Nanotubes

A special input option allows generation of 1D structures (nanotubes) from 2D one. See

keyword NANOTUBE (page 56).

Geometry optimization

• Default choice modified: TRUSTRADIUS scheme active.

Use keyword NOTRUSTR in OPTGEOM input block (page 162) to run geometry

optimization with CRYSTAL06 default.

Frequencies calculation

• default value for SCF convergence on total energy is 10−9

• default choice for numerical integration grid (DFT Hamiltonian): XLGRID. To run

DFT Hamiltonian cases with CRYSTAL06 numerical integration accuracy insert LGRID

in DFT input block (page 129)

• default choice to compute IR intensities: Berry phase approach. To compute IR intensi-

ties with CRYSTAL09 as with CRYSTAL06 insert keyword INTLOC in FREQCALC

input block.

Basis set

• f orbitals

- f orbitals (local functions basis set) with non-zero occupancy allowed. This new feature

allows study of systems with Lanthanides.

d and f orbitals occupation guess

- FDOCCUP (input block3, page 92) defines the occupation of specific f or d orbitals
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in a given shell in the SCF initial guess, according to the local atomic symmetry in the

crystal lattice.

• - Effective core pseudo potentials Projector operators up to angular quantum number

` = 4 are allowed. Input deck has been changed
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Test cases
crystal09 versus crystal06 total energies (hartree)

CRYSTAL06 CRYSTAL09 diff

TEST 0 -110.7649354541 -110.7649354541 0.00E+00

TEST 1 -39.7267242374 -39.7267242374 0.00E+00

TEST 2 -223.7874756819 -223.7874756819 0.00E+00

TEST 3 -893.8746580004 -893.8746580004 0.00E+00

TEST 4 -1400.1776585535 -1400.1776585535 0.00E+00

TEST 5 -74.8333583570 -74.8333583570 1.01E-12

TEST 6 -58.4208255980 -58.4208255980 1.00E-12

TEST 7 -2800.7355953744 -2800.7355953744 0.00E+00

TEST 8 -571.3207540595 -571.3207540595 3.00E-11

TEST 9 -29.2566111179 -29.2566111179 0.00E+00

TEST10 -577.8265583253 -577.8265583271 -1.86E-09

TEST11 -274.6641530559 -274.6641530559 -3.00E-11

TEST12 -447.6810664796 -447.6810664796 -6.00E-11

TEST13 -23.9856901143 -23.9856901143 0.00E+00

TEST14 -159.6970601598 -159.6970601598 0.00E+00

TEST15 -5229.8366027793 -5229.8366027783 1.00E-09

TEST16 -2995.2869386583 -2995.2869386582 1.00E-10

TEST17 -2674.3752958019 -2674.3752958111 -9.20E-09

TEST18 -679.2766564082 -679.2766564082 0.00E+00

TEST19 -223.8070777853 -223.8070777853 0.00E+00

TEST20 -89.9552981103 -89.9552981101 1.79E-10

TEST21 -447.5749511978 -447.5749511978 0.00E+00

TEST22 -460.7186326563 -460.7186326563 -3.00E-11

TEST23 -8.0613160317 -8.0613160317 0.00E+00

TEST24 -1400.1776188146 -1400.1776188146 0.00E+00

TEST25 -74.8442039913 -74.8442039913 -9.95E-13

TEST26 -58.4208255860 -58.4208255860 0.00E+00

TEST27 -2800.7355409839 -2800.7355409839 0.00E+00

TEST28 -8.0115274157 -8.0115274157 -9.95E-14

TEST29 -2047.6430862971 -2047.6430862970 9.98E-11

TEST30 -109.0441458665 -109.0441458665 0.00E+00

TEST31 -4095.2867581787 -4095.2867581681 1.06E-08

TEST32 -92.1408103960 -92.1408103960 0.00E+00

TEST33 -92.1416129818 -92.1416129818 0.00E+00

TEST34 -1117.5230436113 -1117.5230436113 0.00E+00

TEST35 -936.5017511475 -936.5017511475 3.00E-11

TEST36 -112.5648952230 -112.5648952230 1.00E-11

TEST37 -3028.3682392877 -3028.3682392877 0.00E+00

TEST38 -2279.1395902376 -2279.1395902366 1.00E-09
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Appendix G

CRYSTAL14 versus CRYSTAL09

Old Settings

• Some default computational parameters have changed with respect to the
Crystal09 version of the program (see below). The keyword OLDREF09,
to be inserted in the geometry input block, switches back them all;

Geometry optimization

• Full geometry optimizations (atomic coordinates and lattice parameters) are
now performed as a default option when the OPTGEOM keyword is used.
The sub-keyword ATOMONLY switches back to an atomic positions only
optimization;

• The FINALRUN = 4 option is now set by default (before it was 0). See
page 163 for details;

Density Functional Theory

• The size of the default numerical integration grid has changed. Now it
corresponds to the XLGRID option. The option OLDGRID has been
added to set back the old grid size;

• By default, an unlocked energy shifting of 0.6 hartree is applied to separate
apart occupied from virtual orbitals, which corresponds to option LEV-
SHIFT with parameters 6 0.

Frequencies calculation

• Eckart conditions for cleaning the Hessian matrix as regards translational
and rotational vibration modes are now activated by default. See page 184
for details;

418



SCF Parameters

• A Fock (Kohn-Sham) matrix mixing of 30 % between subsequent SCF cycles
is now active by default (see keyword FMIXING);

• A full direct approach for the computation of the integrals (keyword
SCFDIR) is now used as a default. Use keyword NODIRECT for switch-
ing this option off;

• The tresholds governing the bipolar approximation have changed from 14
10 to 18 14. See keyword BIPOLA for details;
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Test cases
CRYSTAL14 versus CRYSTAL09 total energies (hartree)

CRYSTAL09 CRYSTAL14 CRYSTAL14 CRY14-CRY09

v.2.0.1 Old settings New defaults Old settings

Etot Etot Etot DEtot

test00 -110.76493545 -110.76493545 -110.76493545 0.00000000

test01 -39.72672424 -39.72672424 -39.72672424 0.00000000

test02 -223.78747568 -223.78747568 -223.78754817 0.00000000

test03 -893.87465800 -893.87465800 -893.87461008 0.00000000

test04 -1400.17765855 -1400.17765855 -1400.17840956 0.00000000

test05 -74.83335836 -74.83335836 -74.83336244 0.00000000

test06 -58.42082558 -58.42082558 -58.42098571 0.00000000

test07 -2800.73559537 -2800.73559537 -2800.73725678 0.00000000

test08 -571.32075406 -571.32075406 -571.32081226 0.00000000

test09 -29.25661159 -29.25661159 -29.25662600 0.00000000

test10 -577.82655833 -577.82655832 -577.82670817 0.00000000

test11 -274.66415306 -274.66415306 -274.66419189 0.00000000

test12 -447.68106648 -447.68106648 -447.68124595 0.00000000

test13 -23.98569011 -23.98569011 -23.98569013 0.00000000

test14 -159.69706016 -159.69706016 -159.69729413 0.00000000

test15 -5229.83660278 -5229.83660278 -5229.83555014 0.00000000

test16 -2995.28693866 -2995.28693866 -2995.28683802 0.00000000

test17 -2674.37529581 -2674.37529581 -2674.37559033 0.00000000

test18 -679.27665641 -679.27665641 -679.27667659 0.00000000

test19 -223.80707779 -223.80707779 -223.80715189 0.00000000

test20 -89.95529811 -89.95529811 -89.95529811 0.00000000

test21 -447.57495120 -447.57495120 -447.57509617 0.00000000

test22 -460.71863266 -460.71863266 -460.71872430 0.00000000

test23 -8.06131603 -8.06131603 -8.06132051 0.00000000

test24 -1400.17761881 -1400.17761881 -1400.17836984 0.00000000

test25 -74.84420399 -74.84420399 -74.84419555 0.00000000

test26 -58.42082557 -58.42082557 -58.42098569 0.00000000

test27 -2800.73554098 -2800.73554098 -2800.73720223 0.00000000

test28 -8.01152742 -8.01152742 -8.01152780 0.00000000

test29 -2047.64308630 -2047.64308630 -2047.64342093 0.00000000

test30 -109.04414587 -109.04414587 -109.04434229 0.00000000

test31 -4095.28675817 -4095.28675818 -4095.28742264 -0.00000001

test32 -92.14081040 -92.14081040 -92.14081024 0.00000000

test33 -92.14161298 -92.14161298 -92.14161286 0.00000000

test34 -1117.52304361 -1117.52304361 -1117.52300498 0.00000000

test35 -936.50175115 -936.50175115 -936.50185912 0.00000000

test36 -112.56489522 -112.56489522 -112.56490316 0.00000000

test37 -3028.36823929 -3028.36823929 -3028.36857687 0.00000000

test38 -2279.13959024 -2279.13959024 -2279.14018803 0.00000000

test43 -1613.25523877 -1613.25523877 -1613.25545994 0.00000000

test47 -4394.62644451 -4394.62644451 -4394.62706583 0.00000000

test01_dft -40.32096680 -40.32096680 -40.32090900 0.00000000
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test02_dft -224.92502981 -224.92502981 -224.92495090 0.00000000

test03_dft -895.51814784 -895.51814784 -895.51821309 0.00000000

test04_dft -1403.86073017 -1403.86073017 -1403.86074899 0.00000000

test05_dft -75.25763976 -75.25763976 -75.25766593 0.00000000

test08_dft -573.30069771 -573.30069771 -573.30058383 0.00000000

test11_dft -275.43123078 -275.43123078 -275.43126854 0.00000000

test39_dft -485.38270022 -485.38270022 -485.38264752 0.00000000

test40_dft -337.10879536 -337.10879536 -337.10946296 0.00000000

test41_dft -1313.33749919 -1313.33749919 -1313.33738975 0.00000000

test42_dft -7.53085315 -7.53085315 -7.53085381 0.00000000

test44_dft -1421.65733745 -1421.65733745 -1421.65785507 0.00000000

test45_dft -5280.86118400 -5280.86118400 -5280.86080258 0.00000000

test46_dft -5280.43937642 -5280.43937642 -5280.43953416 0.00000000

test47_dft -4406.89968860 -4406.89968860 -4406.90099322 0.00000000

test48_dft -37.61966054 -37.61966054 -37.61967775 0.00000000

test49_dft -37.61966059 -37.61966059 -37.61967828 0.00000000

test50_dft -37.61966059 -37.61966059 -37.61967828 0.00000000

test51_dft -1020.29088144 -1020.29088144 -1020.29350751 0.00000000
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Appendix H

CRYSTAL17 versus CRYSTAL14

Old Settings

• Some default computational parameters have changed with respect to the
Crystal14 version of the program (see below). The keyword OLDREF14,
to be inserted in the geometry input block, switches back them all;

SCF Parameters

• The DIIS scheme for convergence acceleration is now active by default for
all SCF and CPHF calculations. The keyword NODIIS, to be inserted in
the third input block for SCF and within the CPHF input block for CPHF,
switches it off.

Density Functional Theory

• A new default value of 200 is set for the CHUNKS option, which enables a
better load balance for DFT numerical integration in replicated-data parallel
calculations (Pcrystal);

Geometry Optimization

• New system-dependent default values for the FIXDELTE, FIXDELTX
and FIXDELTN options are set, which control the updating of the indexes
for integral evaluation during the optimization process;

Equation-of-State

• The “Trust-radius” strategy for step control during the constant-volume
optimizations has been turned off by default;

• The pre-screening for the integrals to be computed is now performed on the
most compressed rather than on the equilibrium configuration;
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Strain-related Properties

• The “Trust-radius” strategy for step control during the geometry optimiza-
tions for the calculation of the nuclear-relaxed term of the elastic, piezoelec-
tric and photo-elastic tensors has been turned off by default;
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Test cases
CRYSTAL17 versus CRYSTAL14 total energies (hartree)

CRYSTAL14 CRYSTAL17 CRY17-CRY14 CRYSTAL17

[default] [Old settings] [Old settings] [New defaults]

Etot Etot DEtot Etot

test00 -110.76493545 -110.76493545 0.00000000 -110.76493545

test01 -39.72672424 -39.72672424 0.00000000 -39.72672424

test02 -223.78754817 -223.78754817 0.00000000 -223.78754821

test03 -893.87461008 -893.87461008 0.00000000 -893.87461011

test04 -1400.17840956 -1400.17840956 0.00000000 -1400.17840968

test05 -74.83336244 -74.83336244 0.00000000 -74.83336244

test06 -58.42098571 -58.42098571 0.00000000 -58.42082558

test07 -2800.73725678 -2800.73725678 0.00000000 -2800.73725684

test08 -571.32081226 -571.32081226 0.00000000 -571.32081224

test09 -29.25662600 -29.25662580 0.00000020 -29.25662575

test10 -577.82670817 -577.82670817 0.00000000 -577.82670839

test11 -274.66419189 -274.66419189 0.00000000 -274.66419186

test12 -447.68124595 -447.68124595 0.00000000 -447.68124599

test13 -23.98569013 -23.98569013 0.00000000 -23.98569013

test14 -159.69729413 -159.69729413 0.00000000 -159.69729410

test15 -5229.83555014 -5229.83555014 0.00000000 -5229.83555019

test16 -2995.28683802 -2995.28683802 0.00000000 -2995.28683806

test17 -2674.37559033 -2674.37559033 0.00000000 -2674.37559036

test18 -679.27667659 -679.27667659 0.00000000 -679.27667667

test19 -223.80715189 -223.80715189 0.00000000 -223.80715191

test20 -89.95529811 -89.95529811 0.00000000 -89.95529813

test21 -447.57509617 -447.57509617 0.00000000 -447.57509621

test22 -460.71872430 -460.71872430 0.00000000 -460.71872433

test23 -8.06132051 -8.06132051 0.00000000 -8.06132047

test24 -1400.17836984 -1400.17836984 0.00000000 -1400.17836996

test25 -74.84419555 -74.84419555 0.00000000 -74.84420399

test26 -58.42098569 -58.42098569 0.00000000 -58.42098616

test27 -2800.73720223 -2800.73720223 0.00000000 -2800.73720229

test28 -8.01152780 -8.01152780 0.00000000 -8.01152475

test29 -2047.64342093 -2047.64342093 0.00000000 -2047.64342095

test30 -109.04434229 -109.04434229 0.00000000 -109.04434299

test31 -4095.28742264 -4095.28742263 0.00000001 -4095.28742264

test32 -92.14081024 -92.14081024 0.00000000 -92.14081075

test33 -92.14161286 -92.14161286 0.00000000 -92.14161323

test34 -1117.52300498 -1117.52300498 0.00000000 -1117.52300500

test35 -936.50185912 -936.50185912 0.00000000 -936.50185910

test36 -112.56490316 -112.56490316 0.00000000 -112.56490317

test37 -3028.36857687 -3028.36857687 0.00000000 -3028.36857693

test38 -2279.14018803 -2279.14018803 0.00000000 -2279.14018803

test43 -1613.25545994 -1613.25545994 0.00000000 -1613.25546005

test47 -4394.62706583 -4394.62706583 0.00000000 -4394.62706582
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test01_dft -40.32090900 -40.32090900 0.00000000 -40.32090900

test02_dft -224.92495090 -224.92495090 0.00000000 -224.92495093

test03_dft -895.51821309 -895.51821309 0.00000000 -895.51821314

test04_dft -1403.86074899 -1403.86074899 0.00000000 -1403.86074926

test05_dft -75.25766593 -75.25766593 0.00000000 -75.25766595

test08_dft -573.30058383 -573.30058383 0.00000000 -573.30058387

test11_dft -275.43131232 -275.43131232 0.00000000 -275.43131232

test39_dft -485.38264752 -485.38264752 0.00000000 -485.38264774

test40_dft -337.10946296 -337.10946296 0.00000000 -337.10946311

test41_dft -1313.33738975 -1313.33738975 0.00000000 -1313.33738951

test42_dft -7.52368726 -7.52368726 0.00000000 -7.52368748

test44_dft -1421.65785507 -1421.65785507 0.00000000 -1421.65785497

test45_dft -5280.86080258 -5280.86080258 0.00000000 -5280.86080182

test46_dft -5280.43953416 -5280.43953416 0.00000000 -5280.43953374

test47_dft -4406.90099322 -4406.90099322 0.00000000 -4406.90099348

test48_dft -37.61967832 -37.61967832 0.00000000 -37.61967832

test49_dft -37.61967828 -37.61967828 0.00000000 -37.61967832

test50_dft -37.61967828 -37.61967828 0.00000000 -37.61967832

test51_dft -1020.28687445 -1020.28687453 -0.00000008 -1020.28687390
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Appendix I

Acronyms

AFM – Anti ferromagnetic
AO – Atomic Orbital
APW – Augmented Plane Wave
a.u. – atomic units
BF – Bloch Function
BS – Basis set
BSSE – Basis Set Superposition Error
BZ – Brillouin Zone (first)
B3PW – Becke Perdew Wang
B3LYP – Becke - Lee - Yang - Parr
CO – Crystalline Orbital
CPU – Central Processing Unit
DF(T) – Density Functional (Theory)
DM – Dipole Moment (see Wannier Functions)
DOS – Density of States
ECP – Effective Core Potentials
EFG – Electric Field Gradient
EMD – Electron Momentum Density
FM – Ferromagnetic
GC – Gradient-Corrected
GGA – Generalised Gradient Approximation
GS(ES) – Ground State (Electronic Structure)
GT(O) – Gaussian Type (Orbital)
GT(F) – Gaussian Type (Function)
GUI – Graphical User Interface
KS – Kohn and Sham
HF – Hartree-Fock
IBZ – Irreducible Brillouin zone
IR – Irreducible Representation
LAPW – Linearized Augmented Plane Wave
LCAO – Linear Combination of Atomic Orbitals
LDA – Local Density Approximation
LP – Local Potential
LSDA – Local Spin Density Approximation
LYP – GGA Lee-Yang-Parr
MO – Molecular Orbital
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MPP – Massive Parallel Processor
MSI – Molecular Simulation Inc.
NLP – Non-local potential (correlation)
PBE – GGA Perdew-Burke-Ernzerhof
PDOS – Projected Density of States
PP – Pseudopotential
PVM – Parallel Virtual Machine
PW – Plane Wave
PWGGA – GGA. Perdew-Wang
PWLSD – LSD Perdew-Wang
PZ – Perdew-Zunger
P86 – GGA Perdew 86
P91 – Perdew 91
QM – Quantum Mechanics
RCEP – Relativistic Compact Effective Potential
RHF – Restricted Hartree-Fock
ROHF – Restricted Open-shell Hartree-Fock
SAED – Symmetry Allowed Elastic Distortions
SABF – Symmetry Adapted Bloch Functions SC – Supercell
SCF – Self-Consistent-Field
STO – Slater Type Orbital

UHF – Unrestricted Hartree-Fock
VBH – von Barth-Hedin
VWN – Vosko-Wilk-Nusair
WnF – Wannier Functions 0D – no translational symmetry
1D – translational symmetry in 1 direction (x, CRYSTAL convention)
2D – translational symmetry in 2 directions (x,y, CRYSTAL convention)
3D – translational symmetry in 3 directions (x,y,z CRYSTAL convention)
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electricity of srtio3: An ab initio description. Phys. Rev. B, 88:035102,
2013.

[72] A. Erba, M. Ferrabone, J. Baima, R. Orlando, M. Rérat, and R. Dovesi.
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[142] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi. Ab ini-
tio analytical Raman intensities for periodic systems through a coupled
perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I.
Theory. J. Chem. Phys., 139:164101, 2013.

[143] L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi. Ab initio
analytical Raman intensities for periodic systems through a coupled per-
turbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II.
Validation and comparison with experiments. J. Chem. Phys., 139:164102,
2013.
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CONFNEIG, 199
CONV(BIDIERD), 230
CONV(PROF), 270
COORDINA(MAPNET) , 260
COORPRT, 44, 233
CORRELAT(DFT), 188
COVRAD(OPTGEOM), 122
CPHF, 188

DYNAMIC, 189
END, 189
FMIXING2, 189
FMIXING, 189
FOURTH, 189
MAXCYCLE2, 189
MAXCYCLE, 189
RESTART, 189
THIRD, 189

TOLALPHA, 189
TOLGAMMA, 189
TOLUDIK, 189

CP(PROF), 270
CRYAPI OUT, 234
CRYDEF(OPTGEOM), 125
CRYSTAL, 17
CUSTOM(BASISSET), 27
CVOLOPT(OPTGEOM), 133
CYCTOL(LOCALWF), 249
Coupled-Perturbed Hartree-Fock, 188
DAMPFAC(IRSPEC), 162
DAMPFAC(RAMSPEC), 164
DBANGLIST(OPTGEOM), 130
DEFANGLS(OPTGEOM), 130
DEFLNGS(OPTGEOM), 130
DEFORM(ELAPIEZO), 206
DEFORM(ELASTCON), 206
DEFORM(PHOTOELA), 206
DEFORM(PIEZOCON), 206
DENSMAT, 234
DFT

B1WC, 189
B3LYP, 189
B3PW, 189
B97H, 189
BECKE, 188
CAM-B3LYP, 189
CORRELAT, 188
END[DFT], 87
EXCHANGE, 188
HYBRID, 189
LC-BLYP, 189
LDA, 188
LYP, 188
PBE0, 189
PBESOL0, 189
PBESOL, 188
PBE, 188
PWGGA, 188
PWLSD, 188
RSHXLDA, 189
SC-BLYP, 189
SOGGA, 188
VWN, 188
WC1LYP, 189
WCGGA, 188
wB97X, 189
wB97, 189
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DIELFUN(IRSPEC), 162
DIELISO(FREQCALC), 148
DIELTENS(FREQCALC), 148
DIEL/DIELECT, 235
DIFF(BIDIERD), 230
DIFF(PROF), 270
DIIS, 86
DIPOMOME(FREQCALC), 154
DIR(BIDIERD), 230
DISPERSION(FREQCALC), 164
DLVINPUT, 19
DOPING, 87
DOSS, 237
DURAND, 75
DYNAMIC(CPHF), 189
DYNAMIC(PHOTOELA), 206
ECH3, 239

RANGE, 239
SCALE, 239

ECHG, 240
ECKART(FREQCALC), 148
EDFT, 241

ANGULAR, 224, 241
BECKE, 224, 241
PRINTOUT, 224, 241
PRINT, 224, 241
RADIAL, 224, 241
SAVIN, 224, 241

EIGSHIFT, 88
EIGSHROT, 89

ATOMS, 89
MATRIX, 89

EIGS, 88
ELAPIEZO, 206

CLAMPION, 206
DEFORM, 206
END, 206
NUMDERIV, 206
PREOPTGEOM, 206
PRINT, 206
RESTART, 206
STEPSIZE, 206
TOLDEG, 206
TOLDEX, 206

ELASTCON, 206
CLAMPION, 206
DEFORM, 206
END, 206
NUMDERIV, 206

PREOPTGEOM, 206
PRINT, 206
RESTART, 206
SEISMDIR, 206
STEPSIZE, 206
TOLDEG, 206
TOLDEX, 206

ELASTIC, 44
EMDLDM, 242
EMDL, 242
EMDPDM, 243
EMDP, 245
EMDWFKIN(LOCALWF), 252
EMDWF(LOCALWF), 251
END

DFT, 87
ENDB basis set input, 73
ENDG geometry input, 45
general information input, 90
properties input, 245

END(ANHARM), 169
END(BIDIERD), 230
END(CPHF), 189
END(ELAPIEZO), 206
END(ELASTCON), 206
END(EOS), 200
END(FREQCALC), 146
END(OPTGEOM), 118
END(PHOTOELA), 206
END(PIEZOCON), 206
END(PROF), 270
END(SYMMWF), 254
EOS, 200

END, 200
PRANGE, 200
PREOPTGEOM, 200
PRINT, 200
RANGE, 200
RESTART2, 200
RESTART, 200
VRANGE, 200

EXCHANGE(DFT), 188
EXCHGENE, 90
EXCHPERM, 90
EXCHSIZE, 90
EXPDE(OPTGEOM), 125
EXTERNAL, 19, 363
EXTPRESS(OPTGEOM), 139
EXTPRT, 46, 245
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EXTSTRESS(OPTGEOM), 139
FDAOSYM, 91
FDOCCUP, 92
FIELDCON, 48
FIELD, 46
FINALRUN (OPTGEOM), 125, 301
FINDSYM, 49
FITDEGR(OPTGEOM), 126
FITTOPATH(OPTGEOM), 141
FIXCELL(OPTGEOM), 132
FIXCOOR(OPTGEOM), 135
FIXDEF(OPTGEOM), 134
FIXDEIND(OPTGEOM), 125
FIXDELTE(OPTGEOM), 125
FIXDELTX(OPTGEOM), 125
FIXINDEX, 93

BASE, 93
GEBA, 94
GEOM, 93

FMIXING2(CPHF), 189
FMIXING, 95
FMIXING(CPHF), 189
FMIXING(PHOTOELA), 206
FMWF, 245
FOURTH(CPHF), 189
FRACTCOOR(OPTGEOM), 125
FRACTION, 246

geometry input, 49
FRACTION(OPTGEOM), 125
FRACTIOO(OPTGEOM), 125
FRAGMENT(FREQCALC), 148
FRAGMENT(OPTGEOM), 136, 300
FREEZDIH(OPTGEOM), 138
FREEZINT(OPTGEOM), 137
FREQCALC, 144

ADP, 166
ANALYSIS, 147
BETAVIB, 156
BUNITSDECO, 151
CHI2TENS, 147
COMBMODE, 147
DIELISO, 148
DIELTENS, 148
DIPOMOME, 154
DISPERSION, 164
ECKART, 148
END, 146
FRAGMENT, 148
INS, 168

INTCPHF, 154
INTENS, 152
INTLOC, 153
INTPOL, 153
INTRAMAN, 155
IRSPEC, 160
ISOTOPES, 148
MODES, 149
NOANALYSIS, 149
NOECKART, 149, 328
NOINTENS, 149
NOKSYMDISP, 165
NOMODES, 149
NOOPTGEOM, 145
NORMBORN, 150
NOUSESYMM, 150
NUMDERIV, 150
PDOS, 168
PREOPTGEOM, 145
PRESSURE, 150
PRINT, 150
RAMANEXP, 150
RAMSPEC, 162
RESTART, 150
SCANMODE, 157
STEPSIZE, 150
TEMPERAT, 150
TEST[FREQ], 150
USESYMM, 150

FULLBOYS(LOCALWF), 258
FULLEJMOL, 50
FULLESPHE, 50
FULLE, 49
FULLOPTG(OPTGEOM), 121
FULLTIME, 95
GAUSS98, 73
GAUSS(IRSPEC), 162
GEBA(FIXINDEX), 94
GEOM(FIXINDEX), 93
GHOSTS, 74
GRADCAL, 95
GRID3D, 246

CHARGE, 246
POTENTIAL, 246

GRIMME, 95
GUESDUAL, 97
GUESSPAT, 100
GUESSP, GUESSP0, 99
GUESSYMP, 100
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HAYWLC, 75
HAYWSC, 75
HELIX, 17
HESEVLIM(OPTGEOM), 126
HESSFREQ(OPTGEOM), 121
HESSIDEN(OPTGEOM), 122
HESSMOD1(OPTGEOM), 122
HESSMOD2(OPTGEOM), 122
HESSNUM(OPTGEOM), 122
HESSOPT(OPTGEOM), 122
HIRSHBLK, 100, 246
HIRSHCHG, 100, 246
HYBRID(DFT), 189
HYDROSUB, 51
IGSSBNDS(LOCALWF), 253
IGSSCTRL(LOCALWF), 253
IGSSVCTS(LOCALWF), 253
ILASIZE, 101
INFOGUI, 246
INFO see INFOGUI, 246
INIFIBND(LOCALWF), 249
INPUT(ECP input), 75
INS

INS, 169
INS(FREQCALC), 168
INTCPHF(FREQCALC), 154
INTENS(FREQCALC), 152
INTERPHESS

INTERPHESS, 166
INTGPACK, 102
INTLMIXED(OPTGEOM), 129
INTLOC(FREQCALC), 153
INTPOL(FREQCALC), 153
INTRAMAN(FREQCALC), 155
INTREDUN(OPTGEOM), 128
IONRAD(OPTGEOM), 122
IRSPEC

ANGLE, 162
DAMPFAC, 162
DIELFUN, 162
GAUSS, 162
LENSTEP, 162
NUMSTEP, 162
RANGE, 162
REFRIND, 162

IRSPEC(FREQCALC), 160
ISOTOPES(ANHARM), 170
ISOTOPES(FREQCALC), 148
ISOTROPIC, 246

ITACCONV(OPTGEOM), 126
ITATOCEL(OPTGEOM), 121
KEEPSYMM, 32, 51
KEEPSYMM(ANHARM), 170
KINETEMD, 247
KNETOUT (obsolete), 248
KSYMMPRT, 102
LATVEC, 51
LC-BLYP(DFT), 189
LDA(DFT), 188
LENSTEP(IRSPEC), 162
LENSTEP(RAMSPEC), 164
LEVSHIFT, 102
LNGSFROZEN(OPTGEOM), 137
LOCALWF, 248

BANDLIST, 249
BOYSCTRL, 251
CAPTURE, 254
CLUSPLUS, 257
CYCTOL, 249
EMDWFKIN, 252
EMDWF, 251
FULLBOYS, 258
IGSSBNDS, 253
IGSSCTRL, 253
IGSSVCTS, 253
INIFIBND, 249
MAXCYCLE, 251
OCCUPIED, 248
ORTHNDIR, 258
PHASETOL, 249
PRINTPLO, 255
RESTART, 249
SYMMWF, 254
VALENCE, 248
WANDM, 258

LOWMEM, 103
LYP(DFT), 188
MADELIND, 103
MAKESAED, 51
MAPNET, 260

ATOMS, 260
COORDINA, 260
MARGINS, 260
PRINT, 260
RECTANGU, 260

MARGINS(MAPNET), 260
MATRIX(EIGSHROT), 89
MATROT(ROTCRY), 63
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MAXCYCLE2(CPHF), 189
MAXCYCLE

scf, 103
MAXCYCLE(CPHF), 189
MAXCYCLE(LOCALWF), 251
MAXCYCLE(OPTGEOM), 126
MAXCYCLE(scf), 103
MAXITACE(OPTGEOM), 126
MAXNEIGHB, 51
MAXTRADIUS(OPTGEOM), 124
MEMOPRT2, 104
MEMOPRT, 103
MODEFOLLOW(OPTGEOM), 141
MODES(FREQCALC), 149
MODINTCOOR(OPTGEOM), 132
MODISYMM, 52
MOLDRAW, 52
MOLEBSSE, 52
MOLECULE, 17

from 3D structure, 53
MOLEXP, 53
MOLSPLIT, 54
MONSPLIT, 104
MOSSBAUER, 278
MP2, 104
MULPOPAN, 106, 246, 270
MULTITASK

MULTITASK, 149
MYBIPOLA, 105
NANOCRYSTAL, 54
NANOJMOL, 55
NANORE, 55
NANOROD, 55
NANOTUBE, 56
NEGLEFRE

NEGLEFRE, 149
NEIGHBOR, 59, 105, 261
NEIGHPRT see NEIGHBOR, 59
NEWBASIS(ADFT), 224
NEWK, 262
NOANALYSIS(FREQCALC), 149
NOBICOU, 105
NOBIPEXC, 105
NOBIPOLA, 105
NODIRECT, 107
NOECKART(FREQCALC), 149
NOFMWF, 105
NOGUESS(ANHARM), 170
NOGUESS(OPTGEOM), 126

NOINTENS(FREQCALC), 149
NOLOWMEM, 106
NOMODES(FREQCALC), 149
NOMONDIR, 106
NOOPTGEOM(FREQCALC), 145
NOPRINT, 74
NORENORM(RAMSPEC), 163
NORMBORN(FREQCALC), 150
NOSHIFT, 59
NOSYMADA, 106, 263
NOSYMAP(SYMMWF), 254
NOSYMMOPS(OPTGEOM), 127
NOTRUSTR(OPTGEOM), 124
NOUSESYMM(FREQCALC), 150
NOXYZ(OPTGEOM), 127
NRSTEPS(OPTGEOM), 126
NUMDERIV(ELAPIEZO), 206
NUMDERIV(ELASTCON), 206
NUMDERIV(FREQCALC), 150
NUMDERIV(PHOTOELA), 206
NUMDERIV(PIEZOCON), 206
NUMGRALL(OPTGEOM), 127
NUMGRATO(OPTGEOM), 127
NUMGRCEL(OPTGEOM), 127
NUMSTEP(IRSPEC), 162
NUMSTEP(RAMSPEC), 164
Nanotube rebuild, 59, 70
OCCUPIED(LOCALWF), 248
OLDCG(OPTGEOM), 123
ONELOG(OPTGEOM), 127
OPTGEOM, 117

ALLOWTRUSTR, 124
ANGSFROZEN, 137
ANGTODOUBLE, 129
ATOMONLY, 121
BERNY, 123
BFGS, 123
BKTRNSF2, 130
CELLONLY, 121
CHNGTSFOL, 141
COVRAD, 122
CRYDEF, 125
CVOLOPT, 133
DBANGLIST, 130
DEFANGLS, 130
DEFLNGS, 130
END, 118
EXPDE, 125
EXTPRESS, 139
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EXTSTRESS, 139
FINALRUN, 125, 301
FITDEGR, 126
FITTOPATH, 141
FIXCELL, 132
FIXCOOR, 135
FIXDEF, 134
FIXDEIND, 125
FIXDELTE, 125
FIXDELTX, 125
FRACTCOOR, 125
FRACTION, 125
FRACTIOO, 125
FRAGMENT, 136, 300
FREEZDIH, 138
FREEZINT, 137
FULLOPTG, 121
HESEVLIM, 126
HESSFREQ, 121
HESSIDEN, 122
HESSMOD1, 122
HESSMOD2, 122
HESSNUM, 122
HESSOPT, 122
INTLMIXED, 129
INTREDUN, 128
IONRAD, 122
ITACCONV, 126
ITATOCEL, 121
LNGSFROZEN, 137
MAXCYCLE, 126
MAXITACE, 126
MAXTRADIUS, 124
MODEFOLLOW, 141
MODINTCOOR, 132
NOGUESS, 126
NOSYMMOPS, 127
NOTRUSTR, 124
NOXYZ, 127
NRSTEPS, 126
NUMGRALL, 127
NUMGRATO, 127
NUMGRCEL, 127
OLDCG, 123
ONELOG, 127
PATHFOLLOW, 141
POWELL, 123
PRINTFORCES, 127
PRINTHESS, 127

PRINTOPT, 127
PRINT, 127
RENOSAED, 125
RESTART, 126
SORT, 126
STEPBMAT, 132
STEPSIZE, 127
TESTREDU, 132
TOLDEE, 123
TOLDEG, 123
TOLDEX, 123
TOLREDU, 132
TRUSTRADIUS, 124
TSOPT, 140
WGHTDREDU, 131

ORBITALS, 263
ORIGIN, 59
ORTHNDIR(LOCALWF), 258
PATHFOLLOW(OPTGEOM), 141
PATO, 264
PBAND, 60
PBAN, 264
PBE0(DFT), 189
PBESOL0(DFT), 189
PBESOL(DFT), 188
PBE(DFT), 188
PDIBAN see PBAN, 264
PDIDE, 265
PDOS

PDOS, 168
PDOS(FREQCALC), 168
PGEOMW, 265
PHASETOL(LOCALWF), 249
PHOTOELA, 206

ANDERSON, 206
BROYDEN, 206
CLAMPION, 206
DEFORM, 206
DYNAMIC, 206
END, 206
FMIXING, 206
NUMDERIV, 206
PREOPTGEOM, 206
PRINT, 206
RESTART, 206
STEPSIZE, 206
TOLALPHA, 206
TOLDEG, 206
TOLDEX, 206
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PIEZOCON, 206
CLAMPION, 206
DEFORM, 206
END, 206
NUMDERIV, 206
PREOPTGEOM, 206
PRINT, 206
RESTART, 206
STEPSIZE, 206
TOLDEG, 206
TOLDEX, 206

PLANES, 61
PMP2, 265
POB-DZVPP(BASISSET), 27
POB-DZVP(BASISSET), 27
POB-TZVP(BASISSET), 27
POINTCHG, 61
POINTS26(ANHARM), 170
POLEORDR, 106
POLI, 266
POLSPIN, 267
POLYMER, 17
POSTSCF, 106
POT3, 267

RANGE, 267
SCALE, 267

POTC, 268
POTENTIAL (GRID3D), 246
POTM, 269
POWELL(OPTGEOM), 123
PPAN, 106, 246, 270
PRANGE(EOS), 200
PREOPTGEOM(ELAPIEZO), 206
PREOPTGEOM(ELASTCON), 206
PREOPTGEOM(EOS), 200
PREOPTGEOM(FREQCALC), 145
PREOPTGEOM(PHOTOELA), 206
PREOPTGEOM(PIEZOCON), 206
PRESSURE(FREQCALC), 150
PRIMITIV, 61
PRINTALL(ANHARM), 170
PRINTCHG, 62
PRINTFORCES(OPTGEOM), 127
PRINTHESS(OPTGEOM), 127
PRINTOPT(OPTGEOM), 127
PRINTOUT, 62, 74, 107, 270

ATCOORDS, 354
ATOMICWF, 355
BASISSET, 355

CONFIGAT, 355
DFTBASIS, 355
DOSS, 355
EIGENALL, 355
EIGENVAL, 355
EIGENVEC, 355
ENECYCLE, 355
EQUIVAT, 354
EXCHGENE, 354
FGIRR, 355
FGRED, 354
GAUSS94, 355
GLATTICE, 354
KNETOUT, 354
KSYMMPRT, 354
KWEIGHTS, 354
MAPVALUES, 355
MULLIKEN, 355
MULTIPOL, 355
OVERLAP, 354
PARAMETERS, 354
PGIRR, 354
PGRED, 354
ROTREF, 355
SCALEFAC, 355
SYMMOPSR, 354
SYMMOPS, 354

PRINTOUT(EDFT), 224, 241
PRINTPLO(LOCALWF), 255
PRINT (DIEL), 236
PRINT(ANHARM), 170
PRINT(ANISOTRO), 225
PRINT(EDFT), 224, 241
PRINT(ELAPIEZO), 206
PRINT(ELASTCON), 206
PRINT(EOS), 200
PRINT(FREQCALC), 150
PRINT(MAPNET), 260
PRINT(OPTGEOM), 127
PRINT(PHOTOELA), 206
PRINT(PIEZOCON), 206
PRINT(SYMMWF), 254
PROF, 270

BR, 270
CONV, 270
CP, 270
DIFF, 270
END, 270

PROF(BIDIERD), 230
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PRSYMDIR, 62
PSCF, 271
PURIFY, 62
PWGGA(DFT), 188
PWLSD(DFT), 188
QHA, 172
QVRSGDIM, 107
RADFULLE, 62
RADIAL(EDFT), 224, 241
RADNANO, 62
RAMANEXP(FREQCALC), 150
RAMSPEC

DAMPFAC, 164
LENSTEP, 164
NORENORM, 163
NUMSTEP, 164
RANGE, 164
VOIGT, 164

RAMSPEC(FREQCALC), 162
RANGE (ECH3), 239
RANGE (POT3), 267
RANGE(EOS), 200
RANGE(IRSPEC), 162
RANGE(RAMSPEC), 164
RAYCOV/RAYC/RCOVFACT, 62,

272
RDFMWF, 245
RECTANGU(MAPNET), 260
REDEFINE see SLABINFO, 65
REFRIND(IRSPEC), 162
RENOSAED(OPTGEOM), 125
REPLDATA, 107
RESTART2(EOS), 200
RESTART(CPHF), 189
RESTART(ELAPIEZO), 206
RESTART(ELASTCON), 206
RESTART(EOS), 200
RESTART(FREQCALC), 150
RESTART(LOCALWF), 249
RESTART(OPTGEOM), 126
RESTART(PHOTOELA), 206
RESTART(PIEZOCON), 206
RHF, 107
ROHF, 107
ROTATE see SLABINFO, 65
ROTCRY, 63

ANGROT, 63
AUTO, 63
MATROT, 63

ROTREF, 272
RSHXLDA(DFT), 189
RUNCONFS, 198
SAVEPRED, 108
SAVEWF, 107
SAVIN(EDFT), 224, 241
SC-BLYP(DFT), 189
SCALE (ECH3), 239
SCALE (POT3), 267
SCANMODE(FREQCALC), 157
SCELCONF, 66
SCELPHONO, 66
SCFDIR, 107
SEISMDIR(ELASTCON), 206
SELECT(ANISOTRO), 225
SETINF, 64, 74, 108, 272
SETPRINT, 64, 74, 108, 272
SHRINK, 108
SLABCUT/SLAB, 64
SLABINFO, 65
SLAB, 17
SMEAR, 110
SOGGA(DFT), 188
SORT(OPTGEOM), 126
SPINEDIT, 112
SPINLOC2, 113
SPINLOCK, 112
SPOLBP, 277
SPOLWF, 278
STDIAG, 113
STEPBMAT(OPTGEOM), 132
STEPSIZE(ELAPIEZO), 206
STEPSIZE(ELASTCON), 206
STEPSIZE(FREQCALC), 150
STEPSIZE(OPTGEOM), 127
STEPSIZE(PHOTOELA), 206
STEPSIZE(PIEZOCON), 206
STO-3G(BASISSET), 27
STO-6G(BASISSET), 27
STOP, 65, 74, 113, 272
STRUCPRT, 65
SUPERCEL, 67
SUPERCON, 69
SWCNTRE, 70
SWCNT, 69
SYMADAPT, 113, 272
SYMMDIR, 70
SYMMOPS, 70, 75
SYMMREMO, 70
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SYMMWF
END, 254
NOSYMAP, 254
PRINT, 254
TOLBOND, 254
TOLSYM, 254

SYMMWF(LOCALWF), 254
TEMPERAT(FREQCALC), 150
TENSOR, 70
TESTGEOM, 71
TESTPDIM, 113
TESTREDU(OPTGEOM), 132
TESTRUN, 113
TEST[ANHA](ANHARM), 170
TEST[FREQ](FREQCALC), 150
TEST, 75
THIRD(CPHF), 189
TOLALPHA(CPHF), 189
TOLALPHA(PHOTOELA), 206
TOLBOND(SYMMWF), 254
TOLDEE, 114
TOLDEE(OPTGEOM), 123
TOLDEG(ELAPIEZO), 206
TOLDEG(ELASTCON), 206
TOLDEG(OPTGEOM), 123
TOLDEG(PHOTOELA), 206
TOLDEG(PIEZOCON), 206
TOLDEX(ELAPIEZO), 206
TOLDEX(ELASTCON), 206
TOLDEX(OPTGEOM), 123
TOLDEX(PHOTOELA), 206
TOLDEX(PIEZOCON), 206
TOLGAMMA(CPHF), 189
TOLINTEG, 114
TOLPSEUD, 114
TOLREDU(OPTGEOM), 132
TOLSYM(SYMMWF), 254
TOLUDIK(CPHF), 189
TOPO, 281
TRASREMO, 71
TRUSTRADIUS(OPTGEOM), 124
TSOPT(OPTGEOM), 140
UHF, 115
UNIQUE(ANISOTRO), 225
USESAED, 71
USESYMM(FREQCALC), 150
VALENCE(LOCALWF), 248
VOIGT(RAMSPEC), 164
VRANGE(EOS), 200

VWN(DFT), 188
WANDM(LOCALWF), 258
WANG

WANG, 166
WC1LYP(DFT), 189
WCGGA(DFT), 188
WGHTDREDU(OPTGEOM), 131
WULFF, 71
XFAC, 272
XRDSPEC, 275
ZCOR see EDFT, 241
wB97X(DFT), 189
wB97(DFT), 189
0D FROM 3D, 54
0D systems input, 18
1D systems input, 18
1d FROM 3D, 55
2D from 3D, 64
2D systems input, 18
3D systems input, 18

adjoined gaussian, 312
adp

anisotropic displacement parame-
ters, 166

adsorbed molecule rotation, 39
adsorption of molecules, 38
alternative spin configuration

locking α− β electrons, 113
Anderson method for accelerating con-

vergence, 83
angles printing, 37
angular integration (DFT), 224, 241
anharmonic calculation, 169
anisotropic tensor, 225
anisotropy shrinking factor, 30, 110
anti ferromagnetic systems, 115
Aragonite, 286
asymmetric unit, 20
ATMOL integral package, 102
atomic

density matrix, 83, 264
wave function, 83

atomic energy
(correlation) a posteriori, 224

atomic number conventional, 22
Atomic Orbital

definition, 312
order, 25
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atomic units
bohr, 40
charge, 267
conversion factor, 40, 41

atoms
(group of) rotation, 39
addition, 38
displacement, 38
removal, 39
reordering, 38
substitution, 40

autocorrelation function theory, 318
Average properties, 198, 199
average properties, 197

band structure calculation, 226
band width, 233
BAND.DAT, 359
basis set, 306, 312

f and d AO occupation, 92
all electron, 23, 24
AO symmetry analysis, 91
criteria for selection, 306
crystal, 24
Effective Core Pseudopotential, 77
input, 23
input examples, 292
libraries, 306
linear dependence check, 88
metals, 309
orbital ordering, 25
Pople, 23
printing, 355
printing removed, 74
type, 23
valence only, 23, 24

basis set superposition error
molecular, 52
atomic, 38
periodic, 74

Beryllium slab, 289
BF - Bloch Functions, 312
bi-electronic integrals

indexing, 93
bielectronic integrals

file split, 84
package, 102

bipolar expansion
bielectronic integrals, 85, 105, 316

Coulomb buffer, 85
coulomb integrals, 105
elimination, 105, 316
exchange buffer, 90
exchange integrals, 105

Bloch Functions
definition, 312
Symmetry Adapted, 317
Symmetry Adapted - printing, 102

Boys
localization, 248

Bravais lattice, 21, 65, 338
Brillouin zone, 313

sampling, 29, 108, 318
Broyden method for accelerating con-

vergence, 85
buffer

Coulomb bipolar expansion, 85
exchange bipolar expansion, 90

bulk modulus, 325
BZ - Brillouin Zone, 313

Calcite, 287
Calculation of SICs, 198, 199
cell

centred, 22
charged, 26
conventional, 21
conventional/primitive transforma-

tion, 338
crystallographic, 21
minimum set parameters, 20
neutrality, 72
non neutral, 72
primitive, 21, 61
redefinition, 65

Cesium Chloride, 286
Chabazite, 288
check

basis set input, 113
complete input deck, 113
disk storage to allocate, 113
geometry input, 71

chemisorption, 38
Cholesky reduction, 88, 311
CIF file, 44
cluster expansion, 195, 196
cluster from 3D, 42
cluster size, 43
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CO - Carbon Monoxide
molecule, 292
on MgO (001), 290

CO - Crystalline Orbital, 312
Compton profile

input, 270
theory, 318

configuration counting, 195
Monte Carlo, 197
random sampling, 197

constraint sp, 312
contour maps, 260
contraction

coefficients, 23
of gaussians, 23, 312

conventional atomic number, 22–24
conventional cell, 21
convergence

acceleration techniques, 30, 110
tools

Anderson method, 83
Broyden method, 85
DIIS method, 86
dual basis, 97
Fock/KS matrix mixing, 95
level shifter, 102

convergence criteria
cycles overflow, 103

conversion factors, 40
length, 40

conversion factors (CR98), 41
conversion wave function data, 245
coordinates

of equivalent atoms, 22
output, 44, 233
units, 37

angstrom, 225
bohr, 40, 232
fraction, 246
fractional, 49

units of measure, 18
Corundum

(0001) surface, 289
(1010) surface, 289
bulk, 287

Coulomb energy, 313
Coulomb series, 314

bielectronic contribution, 314
Coulomb series threshold, 114

Coupled Perturbed HF/KS
in a crystal, 188
through a slab, 188

covalent radii
customised, 62, 272
default value, 63

Crystalline Orbital (CO)
3D plots, 263
definition, 312

crystallographic cell, 21
Crystallographyc planes index, 61
crystals

(3D) input, 18
Cuprite, 286

defects
displacement, 38
in supercell, 67
interstitial, 38
substitutional, 40
vacancies, 39

density matrix, 233
atomic, 264
band projected, 264
behaviour, 315
core electrons, 222
direct space, 313
editing, 112
energy projected , 265
from geometrical weights, 265
initial guess, 100
output, 234
restore, 271
rotation, 272
valence electrons, 222

density of states
calculation, 237
Fourier-Legendre expansion, 237,

318
integrated, 238

Diamond, 285
(100) Surface, 290

DIEL.DAT, 236, 359
dielectric constant (optical), 235
dielectric tensor, 188
Direct Inversion of the Iterative Sub-

space (DIIS) convergence accel-
erator, 86

disordered systems, 194
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dual basis, 97

Eckart
conditions, 328

eckart
frequency calculation, 148

ECP - see Effective Core Pseudopoten-
tial, 75

ECP input examples, 293
Edingtonite, 288
Effective Core Pseudopotential

input, 75
BARTHE, 75
DURAND, 75
HAYWLC, 75
HAYWSC, 75
input examples, 293
truncation criteria, 114

eigenvalues (Hamiltonian), 312
eigenvalues (Hamiltonian) printing, 352
eigenvectors

calculation, 262, 312
output, 234
principal components printout, 224
printing, 352
printing (core), 353
rotation, 272

elastic constant, 44, 321
elastic constants, 206
elastic distortion, 44
elastic moduli theory, 321
elastic strain, 322
elastic tensor, 322
electric field, 269

along non-periodic direction, 48
in a crystal, 46
through a slab, 46

electric susceptibility, 188
electron charge density

3D maps, 239
calculation, 240
gradient, 240

electron momentum density
line, 242
maps, 243
plane, 245
theory, 318

electron spin density, 240
electronic configuration

ions, 26
open shell atoms, 25

electronic properties, 221
electrostatic potential

2D maps, 269
3D maps, 267
first derivative, 268
maps, 233
second derivative, 268
with an electric field, 268

EMD theory, 318
energy

(correlation) a posteriori, 241
atomic, 26
Coulomb, 313
exchange (definition), 315
exchange contribution, 90
Fermi, 313

energy derivatives (elastic constants),
321

EOS, 200
Equation of state, 200
equivalent atoms coordinates, 22
exchange energy

calculation, 90
theory, 313

exchange series threshold, 114, 315

Faujasite, 288
Fermi contact, 246
Fermi energy, 313, 318

smear, 110
findsym, 32
FINDSYM.DAT, 32
Fluorite, 286
Fock matrix

definition in direct space, 313
Formamide polymer, 291
formatted data

3D for visualization, 364
for visualization, 363
general info, 364

formatted files
POINTCHG.INP, 61

formatted wave function, 105, 245
fort.33, 120
fort.34, 120
fractional charge doping, 87
fragment
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frequency calculation, 148
geometry optimization, 136

frequencies, 66
frequency calculation, 144
Fullerenes, 49, 50, 62

GAUSS70 integral package, 102
Gaussian 98 input deck, 73
gaussian primitives contraction, 312
gaussian type functions definition, 312
geometry

exported, 65
space group identification, 49
visualization, 46, 52, 245, 363

geometry optimization
cartesian coordinates, 118

geometry optimization, 117
convergence criteria, 119
example, 297
Hessian update, 119
Initial hessian, 121
partial, 136, 299
trust radius, 124

ghost atoms
atoms converted to, 74
input deck, 24

Gilat net, 108, 262
Graphite, 286, 289
Grimme dispersion correction, 95
ground state electronic properties, 221
groups - see symmetry groups, 330
GTF

definition, 312
primitives, 312
primitives-input, 23

Hamiltonian
closed shell, 107
open shell, 115

Hamiltonian matrix
elements selective shift, 88

Hay and Wadt pseudo-potentials, 76
hessian

default, 122
from external file, 122
identity, 122
model Lindh 1996, 122

HESSOPT.DAT, 120
hydrogen

(border atoms substitution with),
51

anharmonic vibrations, 169
hyperfine electron nucleus interaction

anisotropic, 225
isotropic, 246

hyperpolarizability tensors, 188

INF
setting values, 64, 74, 108, 272

initial guess
atomic densities, 100
input density matrix, 99

initial guess density matrix with a dif-
ferent symmetry, 100

input examples
0D geometry, 292
1D geometry , 291
2D geometry, 290
3D geometry, 288
basis set, 292
Effective Core Pseudopotential, 293

integral evaluation criteria, 313
integration in reciprocal space, 318
IRSPEC.DAT, 365
IS, 29, 108, 318
ISP, 30, 109, 318
ITOL1, 114, 314
ITOL2, 114, 315
ITOL3, 114, 315
ITOL4, 114, 315
ITOL5, 114, 315

keywords list, 339
kinetic tensor, 247

lattice
centred, 22
definition, 20
vectors, 22

layer groups, 333
LCAO, 312
level shifter, 102
linear dependence catastrophe, 88, 310
localization

Boys, 248
Wannier, 248

LPRINT, 352

Mössbauer effect, 278
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madelind see mql, 103
maps (contour), 260
metals basis set, 309
Methane molecule, 292
MgO

(001) surface, 290
(110) surface, 289

molecular crystals
non interacting units, 54
lattice parameters modification, 53

molecules
from 3D, 53
input, 18
non interacting, 54

Monkhorst net, 262, 318
shrinking factor, 29, 108

monoelectronic integral file split, 104
MP2 correlation energy, 104
MP2 Density Matrix, 265
Mulliken population analysis, 106, 270
multipolar expansion

definition, 314
maximum order, 106

multipole moments
printing, 267
spin, 267
calculation, 266
ordering, 267
spherical harmonics, 266

multitask, 198

nanocrystal from 3D structure, 54
nanorod from 3D structure, 55
Nanotubes, 55, 56, 59, 62, 69, 70
Neighbors of a SIC, 199
neighbour printing, 59, 105, 261
NiO anti ferromagnetic - input, 112
NOSYMAP, 254

one electron integrals
kinetic, 313
nuclear, 313

OPTINFO.DAT, 120
orientation convention

polymer, 22
slab, 22

origin
moving, 59
setting, 22

output files
fort.33, 120
fort.34, 120
HESSOPT.DAT, 120
optaxxx, 120
OPTINFO.DAT, 120
SCFOUT.LOG, 146

overlap matrix
definition, 312
printing, 353

permutation of centers in exchange in-
tegrals, 90

phonon
density-of-state, 168
dispersion, 164
bands, 60

phonons, 66
photoelastic constants, 206
physisorption, 38
piezoelectric constants, 206
Pockels Tensor, 191
point charges

input, 61
printing, 62

point groups, 337
polarizability tensor, 188
polarization functions, 24
polymer

input, 18, 19
orientation, 22

population analysis (Mulliken), 106,
270

POTC.DAT, 269, 361
primitive cell, 21
PRINT, 254
printing

keywords, 354
multipole moments, 267
neighbour list, 59, 105, 261
setting environment, 62, 74, 107,

270
setting options, 64, 74, 108, 272

properties
ground state electronic, 221

pseudopotential
Durand-Barthelat, 76
Hay and Wadt, 76
Stevens et al., 78
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Stuttgart-Dresden, 78
Pyrite, 286

Quasi-harmonic approximation, 172

radial integration (DFT), 224, 241
RAMSPEC.DAT, 366
RCEP, 78
reciprocal form factor, 227, 318
reciprocal space integration, 318
reference frame rotation, 89
refractive index, 188
Restricted HF, 107
Rock Salt structure, 285
rod groups, 334
rotation

of the crystal, 63
density matrix, 272
eigenvectors, 272
of adsorbed molecules, 39
reference frame, 89

Rutile, 286

SAED – Symmetry Allowed Elastic
Distortions, 51

scale factor, 23, 24
SCF

acceleration techniques, 30, 110
convergence

total energy, 114
cycles control, 103
direct bielectronic integrals, 107
dual basis, 97
input, 29
level shifter, 102
mixing Fock/KS matrices, 95
no direct bielectronic integrals, 107

SCF convergence acceleration
Anderson, 83
Broyden, 85
DIIS, 86
dual basis, 97
level shifter, 102

SCFOUT.LOG, 146
geometry optimization, 120

Second Harmonic Generation, 191
shell

definition, 312
formal charge, 23, 25
type, 23, 25

shift of Hamiltonian matrix elements,
88

shrinking factor, 29, 30, 108, 109, 318
Gilat, 108
Pack Monkhorst, 108

slab
information, 65
input, 18
orientation, 22

SN polymer, 291
Sodalite, 288
Sodium Chloride, 285
solid solutions, 194
sp constraint, 312
space group

monoclinic input, 22
orthorhombic input, 22
setting, 22
symbol, 21

space groups tables, 330
spherical harmonic multipole moments,

266
spin

multipole moments, 267
spin configuration

locking α− β electrons, 112
locking β electrons, 84
setting, 83

spin density matrix editing, 112
spin polarized systems, 31
Spinel, 295
spontaneous polarization

Berry phase, 277
localized orbitals approach, 278

Stevens et al. pseudopotential, 78
STM topography, 265
STRUC.INCOOR, 362
structure factors, 272
Stuttgart-Dresden pseudopotential, 78
supercell

creation, 66, 67
input examples, 68

surfaces
2D slab model, 18
slab from 3D structure, 64
Wulff construction, 71

symmetry
allowed directions, 70
analysis in K space, 102
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breaking, 32, 41
electric field, 47
maintaining, 32, 51
modification, 52
point operators printing, 70
point symmetry, 316
related atoms printing, 40
removal, 70
translational, 316
translational components removal,

71
Symmetry Adapted Bloch Functions,

317
symmetry groups

layer, 333
point groups, 337
rod groups, 334
space, 330

symmetry-independent class, SIC, 194
SYMMFLAG, 254

tensor of physical properties, 70
Thermodynamics of solids, 172
threshold

Coulomb series, 314
exchange series, 315

TOLBOND, 254
tolerances

bipolar expansion, 85, 105
Coulomb series, 314
Effective Core Pseudopotential, 114
exchange series, 315
integrals, 114
ITOL1, 114, 314
ITOL2, 114, 315
ITOL3, 114, 315
ITOL4, 114, 315
ITOL5, 114, 315

TOLSYM, 254
Topological analysis, 281
total energy, 313
transformation matrices in crystallog-

raphy, 338
transport properties

calculation, 231
two electron

Coulomb contribution, 313
exchange contribution, 313

two-body interactions, 196

units
Ångstrom, 37
bohr, 40
fractional, 49

Unrestricted HF, 115
Urea molecule, 292

vibrationa modes
scanning example, 302

vibrational modes, 144
visualization

geometry, 46, 245
MOLDRAW, 52

Voigt convention, 323

Wadt (see Hay), 76
Wannier functions, 248
Wannier functions - 3D plot -, 255
Water chain, 291
Wulff polyhedron, 71
Wurtzite, 285

X-ray diffraction spectra, 275
X-ray structure factors, 272
XRD spectrum, 275

Zeolites
Chabazite, 288
Edingtonite, 288
Faujasite, 288
Sodalite, 288

Zinc Blend, 285
Zirconia

cubic, 287
monoclinic, 287
tetragonal, 287
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