
CRYSTAL17 - Parallel implementation (Replicated data)

Overview

The basic parallel versions of CRYSTAL modules, denoted as Pcrystal and Pprop-
erties, uses a replicated data algorithm. Each host runs the same code and performs
a number of independent tasks which are distributed at run time. One host is chosen
as the master. The master host spawns the program onto other hosts (slaves) and
operates dynamical load balancing of the task execution via a shared atomic counter.
During integral generation a task is defined as the calculation of a block of integrals.
Thus each node computes a number of integrals which are stored to its local disk.
During a SCF cycle, a partial Hamiltonian matrix (F) is built on each node from those
integrals which have been stored locally. The matrices are then passed between nodes
so that each has a complete copy. The diagonalization of F at each k-point is treated
as an independent task which is distributed. After diagonalization the eigenvalues are
communicated to all nodes.
This strategy is comparatively easy to implement and successful on architectures where
each node has access to fast disk storage and sufficient memory to run a complete
copy of CRYSTAL. Low speed communication hardware (such as Ethernet) is usually
sufficient. Performance depends critically on the system considered.
The integral generation step is performed efficiently when the number of integrals to
be generated is much larger than the number of nodes. This condition is satisfied in
most applications. Machines with up to 64 nodes have been used effectively on large
cases. In the SCF process the construction of F is also efficient. Diagonalization of F
is performed efficiently if the number of k-points is much larger than the number of
nodes. This condition is usually not satisfied for large systems and thus diagonalization
may be the most costly phase.
The parallel version of CRYSTAL requires a mechanism for initiating processes on
remote machines and a library of routines to provide inter-process communication.
There are many implementations of this functionality available and CRYSTAL has
been modified to take advantage of the MPI message-passing library.

MPI Parallel version of CRYSTAL17

Running the MPI parallel version of CRYSTAL under Linux

The CRYSTAL17 parallel executables for Linux (Pcrystal, Pproperties) are based on
OpenMPI implementation of the MPI message-passing library and have been gener-
ated with the following features:

1. Fortran compiler: Intel Fortran Compiler XE 17.0

2. MPI libraries:

– Openmpi-2.1.0 (see http://www.open-mpi.org/)

3. Processor communication: TCP/IP (ch p4)

4. Processor connection: ssh

The CRYSTAL17 parallel version is supposed to run on homogeneous workstation
networks, Beowulf cluster and individual workstations.
To run the MPI parallel version of CRYSTAL17 under Linux special attention must
be paid to set the proper environment:

1

1. OpenMPI must be installed according to the adopted processor connection re-
mote shell (either rsh or ssh) The mpirun load module may then be used to
initiate parallel execution of CRYSTAL17 from the master host.

2. each node must allow access via a remote shell, either rsh or ssh, to the master
host. Note that the CRYSTAL17 parallel executable to be used will depend on
the adopted remote shell.

In the following procedure, we refer to Pcrystal, but the same holds for Pproperties.
Before a parallel job can be submitted:

1. there must be a consistent set of CRYSTAL17 parallel modules (Pcrystal) avail-
able on each node (e.g. through a NFS filesystem)

2. the CRYSTAL input deck must be provided on each node of the cluster in a file
named INPUT.

Workstation clusters require each process in a parallel job be started individually.
The procedure to run CRYSTAL17 can then be summarized as:

1) create a temporary directory on each node (workstation)

2) either copy Pcrystal in the temporary directory of each node (workstation) or
make Pcrystal available to each node through a NFS filesystem

3) copy the CRYSTAL17 input deck as INPUT in the temporary directory of each
node (workstation)

4) OpenMPI – prepare a file with the list of nodes (workstations) to be used in the parallel
run. The file is usually indicated as machines.arch, where arch is the
architecture of the system (e.g. LINUX) and it can be located in the working
directory or in the directory. The format is one hostname per line, with
either hostname or hostname:n, where n is the number of processors in a
cluster of symmetric multiprocessors. The hostname should be the same as
the result from the command "hostname".
A sample file for a cluster of 6 nodes with a processor each will look like:

#

node9

node10

node11

node12

node13

node14

You can change this file to contain the machines that you want to use to
run MPI jobs on.

– connect to the node which will be the master host (e.g. node9).

– move to the temporary directory of the master host and run mpirun as:

mpirun -np nprocs -machinefile machines.arch Pcrystal

This will run Pcrystal on the first nprocs processors in the machines.arch,
located in the working directory. According to the list of nodes above, if
nprocs=4, the program will run on: node9, node10, node11 and node12.

2

– For more details please refer to the Open MPI Software Documentation

The output file will be displayed on the standard error. Use common Unix commands
for redirecting stderr to a file.
Note that scripts are available to run Pcrystal and Pproperties
(see: http://www.crystal.unito.it/utils/utils17.zip)

3

