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Tensorial physical properties of crystals
Tensor of rank n:

set of 3" coefficients with n subscripts, associated with a
given Cartesian basis, which transform according to the

formula:
3

y'ihkl.. = Z p.q,1,S"" TipTthkrTIS""ypqrs.. 3
1
when the basis is transformed into a new one by action of the

T matrix
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Tensor of first order:

vectorial quantity (3 vector components)
electric polarization intensity: P. (i=1,2,3)
magnetic polarization intensity

Tensor of second order:
linerar relationship between two vectorial quantities

strain s; (1,j]=1,2,3): U, = X/'-X = Z S;iX;
symmetrical strain:  g; = “2(s;+s;) = g;;

Voigt notation: g; - &, —> € =[&q &, €3 &4 &5 &g
(1151, 2252, 33—>3, 234, 1355, 12—-6)
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stress  T; (i,j=1,2,3): P = Zrijnj
symmetrical stress: T; =T ;;
Voigt notation: T; — T, = T = [T T, T3 T4 T5 T
(1151, 2252, 33—>3, 23—4, 1355, 12—06)

Tensor of fourth order:
linerar relationship between two second-order tensorial
quantities

3

elasticity tensor ¢, (i,j,0,0=1,2,3):  T; = qu Ciipg€pq
1

Voigt notation:

6
Ciipg — Cnk (N,k=1,2,3,4,5,6) T, = 1; CriEx
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Tensor of third order:

linerar relationship between a first- and a second-order
tensorial quantity

3

i Z i CiipCip

1

piezoelectricity tensor ey, (i,j,p=1,2,3): P

Voigt notation:

6
eup —> elh (|=1 ,2,3; h=1 ,2,3,4,5,6) P. = hzz; eihSh
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Elastic constants c,, = ¢, :

linear coefficients relating stress components to the ensuing
strain components

6
Mechanical work (linear regime). W = VZ ThEh
h=I

6
Elastic energy: W = 1/2(VZ hkChkEREK)
1
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Suitable strains € = [€4 €, €3 €4 €5 Eg] have to be selected, so
as to obtain a quadratic dependence of the elastic energy on
the ‘amplitude’ of the deformation

Example: CaF, (cubic Fm-3m)
three independent elastic constants (c,4, Cq5, C44)

¢; ¢, ¢, 0 0 S
12=C13=C23

¢, ¢ ¢, 0 0 C44=Cs5=Cgg
0O 0 0 ¢, O
0O 0 0 0 ¢y
O 0 0 0 0 ¢y

0
0
¢, ¢, ¢ 0 0 0
0
0
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1) €e=[ee€0000] > Aa/a= Ab/b =¢ strain amplitude
(the symmetry is lowered to tetragonal 14/mmm)

W =V(c,,+Cy,)E% —
c.,+C,, coefficient of the parabolic W(g) numerical fit

2) e=[e€-2¢6000] > Aala=Ab/b=-2Ac/lc=¢
tetragonal strain amplitude

c{1-C,, coefficient of the parabolic W(g) numerical fit
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3) €=[000¢€¢e¢g] —» € o« cosa=cosB=cosy strain amplitude
(the symmetry is lowered to rombohedral R-3m)

The F atom acquires a degree of freedom along the
trigonal axis, which has to be relaxed

W = 3/2(Vcy,)e? —
c,, coefficient of the parabolic W(g) numerical fit

Michele Catti - ASCS2006, Spokane 9



Symmetry and physical properties of crystals

« Neumann’s principle:

The symmetry of a matter (‘intrinsic’) tensorial
physical property can not be lower than the point

group symmetry of the crystal
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« Ferroelectricity, pyroelectricity:

“spontaneous’ electric dipole moment per unit volume P,

e Polar vector with symmetry com

U /

only subgroups of com are allowed as point groups of
ferroelectric crystals (non-centrosymmetrical polar groups):

1, 2, 3, 4, 6, m, mm2, 3m, 4mm, 6mm
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BaTiO; - P4mm — ferroelectric phase at RT
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« Piezoelectricity

- in ferroelectric crystals: the spontaneous polarization P
changes under strain

all ferroelectric crystals are also piezoelectric

- in non-ferroelectric crystals: a non-spontaneous polarization
P arises under strain, which lowers the point symmetry from
non-polar to polar

only non-centrosymmetrical non-polar point groups are
allowed for piezoelectric non-ferroelectric crystals:

-4, -6,222, 32, 422, 622, 23, -42m, -6m?2, -43m
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« P.=P,+2,e,¢ electric dipole moment per unit volume

* P,: spontaneous polarization vector
- present in ferroelectric and pyroelectric crystals,
with polar symmetry
- absent 1n other (non-centrosymmetrical but non-
polar) piezoelectric crystals

* Warning:

The absolute macroscopic polarization P of a crystal
cannot be measured as a bulk property, independent of
sample termination
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 finite polarization changes AP between two different
crystal states (ferroelectricity), or polarization derivatives
OP/of with respect to a physical effect f (piezoelectricity,
pyroelectricity) are the measurable observables

o div(J+dP/ot)=0 — AP=-|Jdt

U

the polarization change 1s equal to the integrated
macroscopic current density J passing through the
crystal while the perturbation is switched on
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Quantum-mechanical calculations of spontaneous
polarization and/or piezoelectric properties

AP=PQ_PO=_Jdt

- the current density depends on the phase of the wave
function 1n addition to i1ts modulus

- the charge density p(x) = | ¥(x) |2 does not determine AP
uniquely

R.D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993)
R. Resta, Rev. Mod. Phys. 66, 899 (1994)

R. Resta, in “Quantum-mechanical ab initio calculation of the properties of
crystalline materials™ (Ed. by C. Pisani), pp. 273-288, Springer (1996)

D. Vanderbilt, J. Phys. Chem. Solids 61, 147 (2000)
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P (@=(e/V)2 ZX,

nucl

P, @=(8m) Y [<f @iV [f ©>dK

o denotes the crystal structure configuration (positions of
nucler)

P@ =P (@+P AP=P@_P®

<f o |-V | £ >= -] (X)'V, L (x)dx;
an(X) - “VnK(X) e'lK X
Vv (X): eigentunctions of the one-electron Hamiltonian H

f ((x): cell-periodic Bloch functions; f (xX+1D) =1 (X)
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Berry phases

Berry phases are related to the crystallographic components of
the P vector, and can be computed quantum-mechanically:

¢, =2n(V/e)P -a = (V/4n2) X | <f (@ | -ia” - Vi | f (@>dK

Derivatives (0¢./0Og, ) are invariant with respect to (e/V)I
vectors added to P:

0¢.(P)/dg, = 0[P+ (¢/V)1]/d¢,
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Berry phases and piezoelectric constants

 The derivatives 0¢./0g, are computed numerically for a
given strain [, €, €; €4 €5 €]

* Then phase derivatives are transformed into polarization
derivatives (piezoelectric constants):

e, = (OP./dg)r = (e/2T1V) 2., 2, (0@/0E) o = €y

where the a,; quantities are Cartesian components of the
direct unit-cell vectors
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Waurtzite and zinc blende phases of ZnO and ZnS

M. Catti, Y. Noel, R. Dovesi, J. Phys. Chem. Solids 11, 2183 (2003)

wurtzite: 6mm zinc blende: -43m
0 0 0 0 d, O] [0 0 0d, O O]
0 0 0 d 0 O] o0 0 0 0 d, O]
d,, dy, diz 0 O O lo o 0o 0 0d,]
0 0 0 0 e, O] [0 0 0e, O O]
0 0 0 e,0 O 0 0 0 0 e, O]
e, €, €530 0 O 0 0 0 0 0 e,
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Ab initio (Hartree-Fock and DFT-GGA) and experimental
structural data for wurtzite and zinc blende ZnO and ZnS

Zn0O

HF GGA exp.
Wurtzite
a(A) 3286 3.275 3.25
c(A) 5241 5251 5.20
u 0.383 0.382 0.380
Zinc blende
a(A) 4619 4610 ---

ZnS
HF GGA  exp.
3.982 3.875 3.82
6.500 6.307 6.25
0.377 0.377 0.378
5.627 5511 5.413
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Waurtzite and zinc blende phases of ZnO and ZnS

 Strains chosen appropriately for each piezoelectric constant

wurtzite: 6mm zinc blende: -43m
€33 00€00O0] €14 000 € € €]
€31 le € 0000]
e:  [000 & \3g 0]

« Structural optimization at each value of ¢ for every strain
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Wurtzite

a =(\32)ai, -(12)i,; a,=ai,; a,=ci,

e=[00€000] €5 = (e/21V)c(0@,/0k)

e=[ec0000] e, = (e/2nV)c/2(09,/0¢)

£=[000¢3g0] e,s = (e/2mV)a/2(09,/0c)
Zinc blende

a, = (a/2)i, + (a/2)iys a,=(a/2)i, + (a/2)iy5  a, = (a/2)i, + (a/2)i,

e=1[000 2¢ 2¢ 2¢] e, = (e/2nV)a/2(0¢,/0¢)

Michele Catti - ASCS2006, Spokane 23



/n0O wurtzite: Berry phases along a and ¢ vs. the ¢, strain
—> €5 plezoelectric constant

0.40 —
0.016 —
€15
0.20 — ZnO
0.012 —
g =
= L= £ 6008
< 5
-0.20 — 0.004 —
-0.40 ‘ I ‘ I ‘ I ‘ I ‘ 0.000 ‘
-0.04 -0.02 0.00 0.02 0.04 -0.04 -0.02 0.00 0.02 0.04
84 84

Michele Catti - ASCS2006, Spokane 24



Ab initio and experimental proper piezoelectric constants
e, (Cm2) for wurtzite and zinc blende ZnO and ZnS

Wurtzite Zinc blende
€33 €31 €15 €14
Zn0O
HF 1.19 -0.55 -0.46 0.69
GGA 1.20 -0.59
exp.a 0.96 -0.62 -0.37 e
ZnS
HF 0.18 -0.13 -0.13 0.11
GGA 0.21 -0.16
exp.P 0.34 -0.10 -0.08 0.14
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External- (clamped-ion) and internal-strain
components of piezoelectric constants

e, = OP/0e, = (OP/0g, ), + (OP/0u),_o(0w/dey), o = €, @ + e, it

» Clamped-ion component ¢, = (0P/dg; ),

atomic fractional coordinates are kept fixed along the strain
(homogeneous deformation)

« _Internal-strain component e, " = (OP/0u)_(0u/0gy),_y:

atomic fractional coordinates are relaxed at fixed strain
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Rigid-1on point-charge model,
and pure 1onic (nuclear) contribution to piezoelectricity:

vanishing clamped-1on component of the proper piezoelectric constan

U

Clamped-1on component from ab 1nitio calculations:

a measure of the deviation of the electronic behaviour from the
simple point-charge RI model (pure electronic contribution to
piezoelectricity)

U

a pure homogeneous strain yet induces polarization effects on the
atomic electron distributions, which give rise to non-vanishing
clamped-ion terms of the piezoelectric constants
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[001] fractional component of Zn-X spacing vs. g,

strain 1n wurtzite
0.395 —

0.390 —
- ZnO

= 0.385 —

ZnS
0.380 —

0.375 —

0.370 | | | |
-0.04 -0.02 0.00 0.02 0.04
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[110] fractional component of Zn-X spacing vs. g,
strain 1n wurtzite

0.015 —

-0.015 | | | |
-0.04 -0.02 0.00 0.02 0.04
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[111] fractional component of Zn-X spacing vs. g,

strain 1n zinc blende
0.270

€44 Cubic
0.260
i} i
0.250 —
0.240
0.230 | | | |
-0.04 -0.02 0.00 0.02 0.04
€4
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Ab initio, classical (rigid 1on model) and experimental
proper piezoelectric constants e, (Cm) for ZnO and ZnS

¢35 (H) &5, (H)

Zn0O ZnS /n0O  ZnS
HF 1.19  0.18 -0.54  -0.13
HF(ext.) -0.45 -0.59 022  0.29
HF(int.) 1.63 0.74 -0.76  -0.42
HF(ext.)/HF(int.) 28% 80% 29% 69%
du/de (HF) -0.228 -0.147 0.215 0.160
exp.? 096 0.34 -0.62  -0.10
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¢;5 (H) €14 (C)

/n0O (H) ZnS /Zn0O /nS
-046  -0.13 0.69 0.11
0.22 0.28 -0.45 -0.53
-0.68 -0.41 1.14  0.64

33% 69%  40% 83%
0.320 0.270 -0.372 -0.29¢
-0.37  -0.08 - 0.14
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Analysis of ab initio results on piezoelectric
constants of ZnO and ZnS

e Signs and values of the e, constants and of their e, (¥ and
e, " components
U

- the internal-strain term e, ™ is always dominant, and has
thus the same sign as the total value e,

- the sign 1s opposite to that of du/de, because the Zn to X
inter-layer distance 1s (1/2-u)c (W) or (1/3-u)c (ZB)

- the clamped-ion term e, ) has opposite sign to that of
e, " and e,
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Zn0O/ZnS hexagonal e g; strain * e;5> 0
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Zn0O/ZnS hexagonal e g,=¢, strain * e;, <0
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] e Internal-strain effect:
- major source of piezoelectric response

- quantum-mechanical results are similar to those by
classical RI model based on ab initio values of du/oOs
relaxation terms

| o  Clamped-ion effect:

reduces the piezoelectric response, and corresponds to
effects of electronic polarization opposing the 1onic
polarization caused by structural relaxation
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Zn0O/ZnS hexagonal e g, = g strain* e,5;< 0
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ZnO/ZnS hexagonal e ¢, = g strain* e, <0
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Zn0O/ZnS cubic e g, = g; =¢g5 strain*e,, > 0
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SUMMARY

¢ Elastic and piezoelectric constants can be
computed reliably for any crystal by periodic
quantum-mechanical methods

¢ Complexity of the crystal structure and/or low
symmetry may increase the computational cost,
because of the full structural relaxation needed

¢ Two goals can be achieved:
- prediction of elastic and piezoelectric properties
not yet measured or not measurable
- physical insight into the microscopic origin of
elastic and piezoelectric behaviour of crystals
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