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IMPORTANT MOVEMENT IN QUANTUM CHEMISTRY

SOLID STATE =⇒ =⇒ =⇒ QUANTUM
CHEMISTRY

OTHER TRENDS?

SOLID STATE ←−←−←− QUANTUM
CHEMISTRY
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REAL crystals and the periodic model

REAL CRYSTAL

F A finite (large) system
whose inner part is
constituted by pieces

translational
equivalent

to each other

=⇒ PERIODIC MODEL

F An infinite system that is

translational
invariant

Wigner Theorem can be
used.
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Symmetry equivalence⇔ symmetry invariance

F Symmetry equivalence

I Irreducible objects are kind of regions: can be used to partition the
space

I Compatible with spatial localization
N Primitive cells (or asymmetric units) in crystals

F Symmetry invariance

I Irreducible objects are subspaces: irreducible representations
I Essentially delocalized
N Eigenfunctions of a totally symmetric Hamiltonian
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Variational approximations to the solutions of the
periodic model

I The many-electron solution is often estimated through a variational
procedure (Hartree-Fock, DFT)

II The variational manifold is expressed in terms of unitary transformations
into a model space of one-electron wave functions:

F a point in the manifold has a correspondence with a set of wavefunctions.

III The optimum along the manifold is usually computed under the Self-
Consistent Field (SCF) scheme:

F the set of wavefunctions are the eigenvectors of an auxiliary one-
electron Hamiltonian

IV Although it is not strictly necessary, the resulting eigenvectors are basis
of the irreducible representations of the translational group −→ Bloch
Functions (delocalized functions)
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General case: Canonical and localized orbitals

Canonical: Eigenfunctions of a one-electron Hamiltonian
(HF,KS,...)

Localized: Span the same occupied space, but are chosen so
as to optimize a given spatial spread functional.

Unitary Transformation: ψ̃m(r) = Û ψm(r)

Localized Orbitals are usually obtained from canonical
Orbitals after the SCF calculation
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Molecules: Foster-Boys Functional

ΩB =
∑
n

〈
ψn

∣∣r2
∣∣ψn

〉
− |〈ψn |r|ψn〉|2

=
∑
n

〈
r2〉

n
− |〈r〉n|2

Sum of the traces of the second moment of electronic distributions
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Usefulness of the localized description

• Characterization of the electronic structure (covalent bonds,
lone pairs, etc).

• Computation of molecular orbitals transferable between
similar systems.

• Estimation of correlation energies:

1. Virtual orbital localization,
2. Local Correlation methods (towards linear scaling

behavior): LMP2, LCCSD, ...
3. ...
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Crystalline systems

• Translational symmetry −→
Canonic Orbitals

=
Bloch Functions

• Infinite Systems: Bloch Functions are integrable just within a
finite spatial region (unit cell).

• In terms of Bloch Functions the idea of spatial localization is
meaningless (i.e. integrals involved in the Boys functional do
not converge; there is no algebraic method suitable to yield
integrable functions)
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Wannier Functions

Alternative representation of the electronic structure of a crystalline
solid. Infinite set of quadratically integrable functions in the whole R3

space, that fulfill the following periodic conditions:

ωg
m(r) = ω0

m(r − g)

↓〈
ωg

m

∣∣ωh
n

〉
= δghδmn

g = g1a1 + g2a2 + g3a3 → direct lattice vector
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The correspondence between Bloch and Wannier
Functions

ωg
m(r) = N

∫
BZ

dk eik·g ψm(k, r)

k ≡ reciprocal vector within de Brillouin Zone (BZ).
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How well spatially localized are Wannier functions?

• Quadratically integrable → vanish at infinite. (spatially
localized)

• Bloch functions are given apart from a phase factor (infinite
ways to transform BFs into WFs, with different degrees of
localization)

A LARGE HISTORY —> A HUGE PROBLEM

Wannier
(1937)

→ · · · →
Kohn.

DesCloiseaux.
. . . (≈1960)

→ · · · → Marzari-Vanderbilt
(1997)

mixed-scheme
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Wannier Functions within the CRYSTAL program

• CRYSTAL use Atomic Orbital basis sets {φg
µ(r)} to span the

canonic orbitals (Bloch Functions)

• Wannier Functions take a rather simple form:

ω0
m(r) =

∑
gµ

cgµmφ
g
µ(r)

Sum can be truncated if |cgµm| −→ 0 when |g| → ∞. The number of
terms depends on the balance between accuracy and degree of spatial
localization.
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A Boys-like functional suitable for crystalline solids

Ω =
∑

n

[〈
ω0

n

∣∣r2
∣∣ω0

n

〉
−

〈
ω0

n |r|ω0
n

〉2
]

=
∑

n

〈
ω0

n

∣∣r2
∣∣ω0

n

〉
−

∑
gm

〈
ω0

n |r|ωg
m

〉2


︸ ︷︷ ︸

gauge-invariant

+
∑

n

∑
(g,m) 6=(0n)

〈
ω0

n |r|ωg
m

〉2

︸ ︷︷ ︸
Ω̃

←≈Boys
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Spatial spread functional:

Ω
[
Ω̃

]
↓−→degree of spatial localization↑

ONLY Ω̃ HAS TO BE MINIMIZED

⇓

only matrix elements for
the r operator are

required
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Two different strategies for Boys-like localization in
crystalline solids

F Taking advantage of the one-to-one correspondence
between WFs and BFs, WFs are never explicitly constructed
→ Unitary transformations of BFs. Functional (implicit BF-WF
integral transform) estimated in terms of BFs by numerical
integration-derivation in reciprocal space. (Accuracy ≡↑
Cost). Good within the plane wave approach. [Marzari-
Vanderbilt 1997]

F WFs are EXPLICITLY constructed and then unitary
transformed so as to minimize the spatial spread. Matrix
elements of r integrated in real space in terms of WFs
(Accuracy+Cost depend on the degree of localization of the
WFs). Good within the AO approach.[CRYSTAL03]
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Stability conditions

Straightforward extension of the molecular Boys method:

〈
ωg

n |r|ω0
m

〉
· [〈r〉m − 〈r〉n − g] = 0

where “·” means dot product in the coordinate space.
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Orthogonal transformation of a set of WFs

∣∣∣ω′0n〉
=

∑
m

O0
mn

∣∣ω0
m

〉
+

∑
g∈N1

∑
m

Og
mn

∣∣ω−g
m

〉
+

∑
g∈N2

∑
m

Og
mn

∣∣ω−g
m

〉
+ · · ·

• g ≡ cell label (lattice vector)
• Ni ≡ neighbors of the reference cell 0

The number of effective neighbors in the sum
depends on the degree of localization of WFs ω0

n
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A general method to obtain well localized Wannier functions for composite
energy bands in linear combination of atomic orbital periodic
calculations
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A method for obtaining spatially localized crystalline orbitals starting from delocalized Bloch
functions is proposed. The method, that has been implemented in the LCAO CRYSTAL code, is
intrinsic and general for nonconducting systems, and provides a set of well localized Wannier
functions that can be used for applications that take advantage of their localized character. Examples
are given that illustrate the performances and efficiency of the proposed scheme. © 2001
American Institute of Physics. @DOI: 10.1063/1.1415745#

I. INTRODUCTION

In Hartree–Fock ~HF! or Kohn–Sham theories it is a
common practice to use canonical orbitals to construct the
single-determinantal solution of a many-electron system.
These orbitals are the eigenfunctions of a one-electron
Hamiltonian, therefore they must also be irreducible bases of
its symmetry group. In periodic calculations, canonical orbit-
als take the form of the so-called Bloch functions ~BF!, that
do not decay to zero in going towards infinite, due to the
required translational symmetry invariance. As a result, BFs
are not quadratically integrable in the whole coordinate
space and special periodic boundary conditions are to be
used to calculate matrix elements of operators. Though this
fact is a consequence of the infinite nature of the periodic
model, such an ‘‘unrealistic’’ behavior is mostly inconve-
nient for many chemical and physical applications.

An alternative representation is derived in terms of Wan-
nier functions ~WF! that can be obtained through a unitary
transformation of the canonical BFs. Accordingly, chosen a
given subset of canonical orbitals, for instance the occupied
ones, there always exists a set of WFs that spans the same
subspace as the starting BFs, with the same one-electron
density operator and total energy. WFs are quadratically in-
tegrable in R

3 and, therefore, they are always mostly local-
ized into a finite spatial region. By choosing a convenient
unitary transformation of the canonical BFs, a rather high
degree of spatial localization can be achieved in nonconduct-
ing systems, providing a set of well localized WFs ~LWF!.1–3

In the last 40 years, several methods have been proposed

in the molecular quantum chemistry literature to obtain or-
bitals maximally localized according to a given intrinsic and
general criterion.4–12 Perhaps the most widely used due to its
relatively low computational cost ~it scales as N3) is the
Foster–Boys method4–6 that provides a set of orthonormal
molecular orbitals for which the sum of their quadratic self
interactions is minimum.

The parallel problem of the localization of crystalline
orbitals ~CO! in periodic systems has not been thoroughly
dealt with until a recent work by Marzari and Vanderbilt,13

furtherly extended to simulations with supercells of arbitrary
symmetry in the G-point approximation.14,15 Previously, vari-
ous methods to obtain LWFs have been proposed in the lit-
erature, but they are either not general or based on extrinsic
criteria.16–20 Other recent works explored the possibility of
generating the WFs during the electronic structure calcula-
tion and not a posteriori as in the previously referred meth-
ods. In these approaches a partial localized character of the
WFs is induced either by orthogonality conditions imposed
through a projection operator,21,22 or by using finite support
regions.23 We can mention here some of the reasons for this
incredibly long delay in the development of suitable local-
ization methods for periodic systems:

~1! The nonuniqueness of the WFs definition. As discussed
in Ref. 13, this problem can make difficult to implement
efficient computational strategies for localization.

~2! The success of the BF picture in the description of most
of the phenomena relevant in the study of perfect crys-
talline systems. As a result, quite a little effort has been
devoted until now in solid state physics to solve the elec-
tronic localization problem.24,25 On the other hand,
the formulation and implementation of a suitable local-
ization criterion in terms of BFs, as recently pro-
posed,13,15,25 is not in general straightforward.

a!Author to whom correspondence should be addressed. Permanent address:
Departamento de Fı́sica, Universidad Autónoma del Estado de Morelos,
Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca ~Morelos!,
Mexico. Electronic mail: zicovich@ch.unito.it
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Zero-th order localization

Considers just the WFs at the reference cell in the Boys localization.
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〉
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Full Boys localization

I A Boys localization is carried out starting from the previous
“well” localized WFs.

I The number of neighbors considered in the transformations
and the computation of the r matrix elements, depends on
the degree of localization of the starting WFs (Usually 3—5)

Publication in progress
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How “good” is the zero-th order approach

MgO BN Si Al2O3

(Rock Salt) (Zinc Blend) (Diamond) (Corundum)
Ω 7.852 9.708 26.282 48.363

Ω(0) − Ω 0.004 0.036 0.007 0.552
All numbers in atomic units.
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Calculation of polarization properties

• Spontaneous polarization

• Piezoelectricity

Involved formalisms ( Berry Phase based approaches) are to be used

in the Bloch Function representation. Instead, Wannier Functions
provide a very natural way to calculate polarization in crystals as all
what one needs are the centroid positions.
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Well localized crystalline orbitals obtained from Bloch functions: The case of KNbO3

Ph. Baranek,1 C. M. Zicovich-Wilson,1,* C. Roetti,1 R. Orlando,1 and R. Dovesi1,2,†

1Department CIFM, University of Torino, via Giuria 5, I-10125 Torino, Italy
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The crystalline orbitals of KNbO3 are localized according to an iterative mixed Wannier-Boys scheme. The
transformed orbitals turn out to be extremely localized; their features and degree of localization are described
in terms of various indices. The spontaneous polarization and the effective Born charges of the various atoms
are evaluated starting from the localized Wannier function ~LWF! centroids and from delocalized Bloch
functions through the Berry phase ~BP! scheme. It turns out that the results provided by both approaches agree
very well ~for example, the spontaneous polarization is 0.3361 and 0.3347 C/m2 from the LWF and BP
methods, respectively!.

DOI: 10.1103/PhysRevB.64.125102 PACS number~s!: 77.22.Ej, 71.23.An, 77.84.Dy, 71.15.Nc

I. INTRODUCTION

The crystalline orbitals ~CO’s! describing the electronic
ground state of a periodic system are usually obtained as
linear combinations of ~delocalized! Bloch functions ~BF’s!,
in order to exploit the block factorization of the Hamiltonian
matrix, because BF’s are bases for irreducible representations
of the translation group. Localized Wannier functions
~LWF’s! can be obtained by applying a unitary transforma-
tion to the CO’s and different degrees of localization can be
obtained depending on the transformation. Transformations
that provide very well localized Wannier functions are par-
ticularly useful for several reasons ~see also the conclusions
in Ref. 1!.

~i! LWF’s permit an easy and intuitive description of the
electronic structure of crystalline compounds in terms of
chemical concepts, such as lone pairs, shared electrons, and
covalent or ionic bonds;

~ii! In terms of these localized states, many properties can
be evaluated in an extremely simple and intuitive way,
whereas expensive and not easy to implement methods are
required, when delocalized CO’s are used. This is the case,
for example, of the spontaneous polarization ~DP! and the
effective Born charges2,3 (Z*), which in the localized repre-
sentation are nothing else than the difference in the dipole
moment of the cell charge distributions evaluated at two dif-
ferent geometries ~see below for a more precise definition!,
whereas in the BF representation they are evaluated through
a formalism based on Berry phases4–7 ~BP’s! that requires
the evaluation of complicated and expensive integrals.

~iii! Well-localized WF’s can be used for the implementa-
tion of post Hartree-Fock estimates of the correlation energy,
using the methods either of many-body perturbation8–10 or
configuration interaction or coupled cluster11,12 theories.

We have implemented a localization scheme that provides
extremely localized WF’s. It consists in the iteration of a
Wannier-type transformation, applied to the subset of bands
we are interested in, followed by a Boys-type
transformation.13,14 The method has been presented
elsewhere15 and its efficiency and dependence on all compu-
tational parameters have been discussed at length. In the fol-
lowing section we shortly summarize the general features.

The aim of this paper is twofold.
~i! To provide an example of the capabilities of the local-

ization scheme as implemented in our computer program
CRYSTAL. The localization scheme will be applied to KNbO3,
a ferroelectric material with a perovskitelike structure. The
degree of localization of the WF’s will be estimated in terms
of various localization indices, usually adopted in molecular
quantum chemistry.16,17

~ii! To evaluate DP and Z* in KNbO3 from the centroids
of the LWF’s, and compare them with the corresponding
quantities obtained from the BP algorithm.4–7 In principle,
both approaches should provide exactly the same results
when the same basis set and computational conditions are
adopted ~a BP option has recently been implemented in the
CRYSTAL program18!. This is true, however, only in the limit
of very high accuracy and full convergence with respect to
all computational parameters.

II. METHODOLOGICAL ASPECTS

The present calculations have been performed at the
Hartree-Fock level with the periodic ab initio CRYSTAL
code.19 CRYSTAL uses a variational basis set of BF’s obtained
from contracted Gaussian-type functions ~GTF’s!. A GTF is
the product of a Gaussian ~G! times a real solid spherical
harmonic. Each contracted GFT, wm(r2sm), is usually cen-
tered at an atomic site sm , ~m51, . . . ,M labels the functions
centered in the primitive cell! and it will be referred to as an
‘‘atomic orbital’’ ~AO! in the following. The CO’s so defined
take the form

cs~r,k!5 (
m51

M

am
s ~k!(

l51

L

e ik•Rlwm~r2sm2Rl!, ~1!

where the sums run over the M AO’s in the reference cell and
the L cells of the system ~actually L5`!. As regards the
atomic basis sets, small core pseudopotentials20–22 have been
used for Nb and K ~see Table I!. The Nb basis set contains
2sp shells ~3G and 1G contractions! and 2d shells ~3G and
1G contractions!. For K, 3sp shells ~2-1-1 G contractions!
have been used. For oxygen, the same all electron basis set
as in previous papers ~see Refs. 23 and 24! has been adopted;
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Spontaneous polarization ∆P as a function of the
ferroelectric distortion ε
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The computation of IR absoption intensities

IIR
i ∝

∑
α

∑
Aβ

Z∗A,αβei,Aβ

2

where

• Z∗A,αβ = ∂µα/∂x
A
β : Born charge tensor

• ei,Aβ: contribution from atom A, cart. component β to mode i.
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Computation of the Born Charge Tensor

I Exploiting the steps adopted for the numerical calculation of the
Hessian, the derivatives of the dipole moment (sum of centroid
positions) are also performed during the Hessian construction.

I Actually, localization is just performed at the central point: the
Wannier functions of the displaced points are computed by
projection of those obtained at the central point onto the occupied
space of the actual point. This provides a substantial decrease in
CPU time.
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Infrared spectrum of a zeolite: ITQ-12+F−+TMI+

Tri−methyl−imidazolium

ITQ−12: calcined

ITQ−12: as−made

Fluoride
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Infrared spectrum of a zeolite
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Analysis of the Electronic Structure

♣ Localized WFs −→ electron pairs.

♣ Chemical meaning according to
qualitative (Lewis) theories.
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Characterization of the electronic structure of crystalline compounds
through their localized Wannier functions
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The crystalline orbitals of seven oxygen containing compounds with increasing degree of covalent
character ~MgO, MnO, ZnO, Al2O3 , SiO2 , AlPO4 , and CaSO4) are localized according to a
Wannier–Boys mixed scheme recently implemented. The resulting Wannier functions are analyzed
in terms of various indices ~centroids positions, second-order central moment tensor, its eigenvalues
and principal axes, Mulliken population analysis, and atomic localization indices!. Systematic trends
are observed along the series. © 2002 American Institute of Physics. @DOI: 10.1063/1.1425406#

I. INTRODUCTION

In the study of the electronic structure of crystalline
compounds, Bloch functions ~BF! represent the natural
choice as a variational basis for the representation of the
crystalline orbitals, because they are bases of the irreducible
representations of the translation group.

Wannier functions ~WF!, when sufficiently well local-
ized, present, however, many appealing features with respect
to delocalized BFs: We just mention here that, in this basis,
post Hartree–Fock ~HF! methods for the study of electron
correlation, such as second-order Møller–Plesset ~MP2!,
CEPA, and coupled cluster theories,1–3 should become easily
applicable to infinite systems by adopting computational
schemes similar to those recently proposed for large
molecules.3–7 A second interesting feature of WFs is that, in
this basis, the calculation of many properties such as the
spontaneous polarization, Born charges8,9 or piezoelectric
constants10,11 take an extremely simple expression, whereas
in the BF basis a less direct and more involved approach is
required, that uses the Berry phase formalism.12–15 Last but
not least, in a localized WF basis the electronic structure of a
crystalline compound takes a simple and easy to analyze
form to which chemical concepts such as lone pairs, core or
valence electrons, covalent or ionic bonds can be applied not
only qualitatively, but also quantitatively.16 The investigation
of this last point is the principal aim of this paper.

The localization scheme recently implemented17 in the
CRYSTAL program18 is applied to a family of seven oxygen

containing compounds, in which the O atom is involved in
chemical bonds ranging from very ionic ~MgO, MnO, ZnO!,
to covalent (AlPO4 , CaSO4), through semi-ionic (Al2O3 ,
SiO2). For the first time, to our knowledge, such a large
family of compounds will be analyzed by using their WFs as
the key tool. WFs will be analyzed not only in terms of
graphical representation, but also in terms of many indices
~see next section! that will permit a quantitative comparison
of the various compounds.

The structure of the paper is as follows: In Sec. II the
general features of the method are summarized, in Sec. III
the results are presented and commented, whereas the last
section contains a few conclusions.

II. COMPUTATIONAL DETAILS

Calculations have been performed with the periodic ab
initio CRYSTAL program.18 In CRYSTAL, BFs are built from
localized functions ~to be indicated in the following as
atomic orbitals, AOs!, which are contractions ~linear combi-
nations with fixed coefficients! of Gaussian-type functions
~GTF! ~the product of a Gaussian times a real solid spherical
harmonic!.

An all electron basis set has been used for all atoms; the
contractions adopted are reported in Table I. In each case, the
most diffuse sp-shell exponents have been optimized; the
d-shell exponent of the oxygen atom is 0.65 bohr22 for all
but two systems, AlPO4 and CaSO4 , for which it is 0.54
bohr22. Exponents and coefficients for all basis sets can be
found in Ref. 19. The experimental geometry has been
adopted in all cases: MgO,20 MnO,21 ZnO,22 Al2O3
(a-alumina!,23 SiO2 (a-quartz!,24 AlPO3 ~berlinite!,25 and
CaSO4 ;26 the space group, the number of formula units in

a!Author to whom correspondence should be addressed. Electronic mail:
claudio@servm.fc.uaem.mx
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Density maps of the XO bonding WFs
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Dependence of localization indices on the cation
nature

standard spread of
the electronic

distribution

distance between
centroid and O

atom

polarization fraction
(1-ionic,0-covalent)
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Symmetry Adapted Localized Wannier Functions

Translational
equivalence

−→ just one representative can be taken to
account for the properties of a set.

Spatial
Localization

−→ minimize coupling between different
LWFs for some local operators

♣ Interesting for some applications: Bielectronic integrals in
LMP2 (see CRYSCOR presentation by Silvia Casassa)

♣ The same strategy can be extended for general symmetry
equivalence (not only translational but every space operator)

Target: maximize localization and minimize the number of
representatives that generate the whole set by symmetry equivalence
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Symmetry Adapted Localized Wannier Functions

N Full symmetry equivalence is not in general possible for every
group representation. only the regular representation may
have full equivalence into its basis sets

N The group can be always partitioned in cosets under a given
subgroup so as to obtain representations whose basis sets
are partially equivalent and partially invariant.

N The partition can be chosen to fulfill the conditions of:
maximal localization and minimal number of representatives.
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Symmetry Adapted Localized Wannier Functions

F Most simple way is the a posteriori strategy.

F AFTER localization, the rough symmetry properties of the
LWFs (not fully reached for numerical reasons during the
localization process) are determined and projectors are used
to make the LWFs perfectly symmetric.

F The LWFs are classified as petals ∈ flowers ∈ bunchs
according to their symmetry properties.

F Whenever there is no significant loss in the localization
properties the set is unitary transformed to minimize the
number of representatives.
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Summary

N Efficient electronic localization method for crystalline systems.
(The scheme could be extended to other less expensive methods:
Pipek-Mezey)

N Easy to control the balance between Localization degree and
computational effort.

N Computation of properties of interest for crystalline materials:

1. Polarization (spontaneous, piezoelectricity,IR Intensities)
2. Chemical characterization

N First step for the computation of the correlation energy in solids.
Work in progress together with the Dresden group (Birkenheuer
et al.) and the Turin group (Pisani et al.).
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In progress. . .

I A priori symmetry adapted LWFs:

♣ symmetry constraints imposed during the localization process.
I variational methods based on manifolds of LWFs:

♣ Crystals under electric fields
♣ Wavefunction calculation for large systems
♣ Multiconfiguration methods for non-conducting crystals (static

electron correlation)
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