

Michigan Tech University - Washington State University - University of Torino Ab initio Simulation of Crystalline Systems ASCS2006

September 17-22, 2006 - Spokane, Washington (USA)

Introduction to Tutorial Sessions

B. Civalleri

Dipartimento di Chimica IFM Università di Torino Via Giuria 7, I-10125 Torino, Italy bartolomeo.civalleri@unito.it

The afternoon sessions are based on the set of tutorials that are part of the CRYSTAL tutorials project.

CRYSTAL tutorials are divided in two levels:

- <u>Basic</u>: to understand the basic features of the code
- <u>Advanced</u>: to show how to use CRYSTAL for applications in solid state chemistry

From the beginning of 2004 CRYSTAL tutorials are available at the CRYSTAL web site

CRYSTAL Tutorials – Web-oriented interface

ASCS2006 School tutorials

Afternoon Sessions – Center Stage

	Monday 18th	Tuesday 19th	Wednesday 20th	Thursday 21th	Friday 22nd
14.00	A. Geometry input	C. Geometry	12.30: Travel to	Vibrational	CRYSCOR
15.45	Geometry editing	optimization.	WSU's Institute	Frequencies	
	Visualization tools.		for Shock		
	Break	Break	Physics		Break
16.00	B . Basis sets,	D. One electron	(Pullman).	15.45 →	Other Tutorials:
17.30	Hamiltonians.	properties.	12 Tho	Poster session	surfaces, defects,
			IJ. ITIE Exporimontal		magnetic properties
			Connection VM		Social hour (18:00)
19.00			Gunta		Dinner
			Oupla		
			Tour of Institute		
			Refreshments		

New features and special sessions:

• Geometry optimization

• Vibrational frequencies calculation

🔶 Y. Noel - webvib

• CRYSCOR

Tutorial sessions - Acknowledgements

Development of the CRYSTAL tutorials

R. Dovesi, R. Orlando, S. Casassa, Y. Noel, G. Mallia, M. Ferrero, I.P.R Moreira, M. Llunell, M. Rerat, C. Darrigan, A. Damin

with contributions by P. Ugliengo and N.M. Harrison

Michigan Tech University - Washington State University - University of Torino Ab initio Simulation of Crystalline Systems ASCS2006

September 17-22, 2006 - Spokane, Washington (USA)

CRYSTAL06 input and output

B. Civalleri

Dipartimento di Chimica IFM Università di Torino Via Giuria 7, I-10125 Torino, Italy bartolomeo.civalleri@unito.it

Getting started with CRYSTAL

The CRYSTAL package consists of two executables:

- crystal
 - performes integrals calculation and SCF part
 - computes total energy and wavefunction
 - performes geometry optimization
 - \succ calculates vibrational frequencies at Γ point
- properties
 - performes the wavefunction analysis
 (e.g. one-electron properties)

CRYSTAL input

CRYSTAL input for the wave function calculation

The CRYSTAL input deck is read by **crystal** Input deck is an ASCII text file

properties requires an independent input (see tutorial on "One-electron properties")

CRYSTAL input scheme

CRYSTAL input is given by keywords

It consists of **three sections**:

0. Title

- 1. Geometry input section
- 2. Basis set input section
- 3. Method & SCF input section

CRYSTAL input structure

Optional keywords can be specified and each sections ends with the keyword **END**.

- 0. Title
- 1. Geometry input section
 - standard geometry input
 - geometry editing keywords (optional)
 - geometry optimization and vibrational frequencies calculation
- 2. Basis set input section
 - standard basis set input
 - optional basis set related keywords
- 3. Method & SCF input section
 - Reciprocal space integration parameters
 - optional general (e.g. Hamiltonian) and SCF related keywords

CRYSTAL06 input example

	<i>Title Geometry input section</i>	MGO BULK CRYSTAL 0 0 0 225 4.21
MgO bulk fcc cubic cell	Basis set input section	2 12 0. 0. 0. 8 0.5 0.5 0.5 <i>Optional keywords</i> END 12 3
RHF/STO-3G		1 0 3 2. 0. 1 1 3 8. 0. 1 1 3 2. 0. 8 2 1 0 3 2. 0. 1 1 3 6. 0. 99 0
	Method & SCF input section	Optional keywords END SHRINK 8 8 Optional keywords END

CRYSTAL input - Geometry input section

E.g.: MgO bulk - fcc cubic cell – RHF/STO-3G

MGO BULK	Title
CRYSTAL	Dimensionality of the system
0 0 0	Crystallographic information (3D only)
225	Space Group (<i>Fm3m – 225</i>)
4.21	Lattice parameters (<i>cubic</i>)
2 12 0. 0. 0. 8 0.5 0.5 0.5 Optional keywords END (ENDG)	Number of non equivalent atoms Atomic number and fractional coordinates End of geometry input section

The geometry given in input is the asymmetric unit of the *conventional* (or *crystallographic*) unit cell

Several optional keywords are available allowing geometry editing:

- modification of the symmetry
- manipulation of atoms (displacement, rotation, insertion, ...)
- reduction of the periodicity $(3D \Rightarrow 2D, 3D \Rightarrow 0D, ...) \rightarrow crystal$ input Geometry

Geometry optimization and vibrational frequencies calculation keywords are specified in this section Geometry optimization and vibrational frequencies tutorials

CRYSTAL input - Basis set input section

E.g.: MgO bulk - fcc cubic cell – RHF/STO-3G

12 3	Atomic number and number of shells
1 0 3 2. 0.	Basis set input: code, type, nr. of primitive,
1 1 3 8. 0.	formal charge and scale factor of the shell:
1 1 3 2. 0.	0. indicates standard Pople STO-nG value
8 2	Here, Mg and O have been described with
1 0 3 2. 0.	a minimal STO-3G basis set
1 1 3 6. 0.	
99 0	
Optional keywords	
END (ENDBS)	End of basis set input section

Basis set and initial electronic configuration are specified for each atom with different *conventional* atomic number

Effective Core Potential must be inserted along with the valence-only basis set

Optional keywords are related to:

- modification of the electronic configuration
- use of ghost functions

CRYSTAL input – Method & SCF input section

E.g.: MgO bulk - fcc cubic cell – RHF/STO-3G

SI	IRINK	
8	8	
Oŗ	otional	keywords
Eľ	VD ()	ENDSCF)

Reciprocal space integration parameters

This section specifies the adopted theoretical method (default: RHF) and controls the SCF part of the calculation

End of SCF input section

Other information can be indicated including the type of run and computational conditions on integrals calculation.

Reciprocal space integration parameters are the so-called shrinking factors and must be specified for periodic calculations (3D, 2D and 1D)

They are used in the Fermi energy calculation and in the density matrix reconstruction (see R. Orlando's lecture)

Other optional keywords include:

- convergence criteria,
- convergence tools,
- options for spin-polarized systems

crystal input –Hamiltonians, SCF & C.

CRYSTAL input – **DFT** input block

E.g.: MgO bulk - fcc cubic cell – SVWN/STO-3G

DFT EXCHANGE LDA CORRELAT VWN ENDDFT	(END)	DFT input block Keyword to define the exchange functional Selected exchange functional Keyword to define the correlation functional Selected correlation functional End of the DFT input block
SHRINK 8 8		Reciprocal space integration parameters
<i>Optional</i> END	keywords (ENDM)	End of the Method input section

Other options are available to modify accuracy in DFT calculations (e.g. integration grid)

Other information can be indicated including the type of run and computational conditions on integrals calculation

For spin-polarized systems the keyword **SPIN** must be specified

crystal input –Hamiltonians, SCF & co.

CRYSTAL output - Header

	***************************************	*
Header of CRVSTAL	*	*
	* CRYSTAL06	*
It reports the	* Release : 1.0	*
CRYSTAL version	* cry06 060822	*
and the main authors	*	*
of the code	*	*
	*	*
	* MAIN AUTHORS	*
	*	*
	* R. DOVESI(1), V.R. SAUNDERS(2), C. ROETTI(1), R. ORLANDO (1,3),	*
	* $C_{A}M_{A}$ 7TCOVTCH-WILSON(1.4), F. PASCALE(5), B. CIVALLERT(1), K. DOLL(6),	*
	* N.M. HARRISON $(2,7)$, T. J. BUSH (2) , Ph. D'ARCO (8) , M. LLUNELL (9)	*
	*	*
	* (1) THEORETICAL CHEMISTRY GROUP - UNIVERSITA' DI TORINO - TORINO (ITALY)	*
	<pre>* http://www.crystal.unito.it</pre>	*
	* (2) COMPUTATIONAL SCIENCE & ENGINEERING DEPARTMENT - CCLRC DARESBURY (UK)	*
	* http://www.cse.clrc.ac.uk/cmg/CRYSTAL/	*
	* (3) INTVERSITA' DEL PIEMONTE ORIENTALE - ALESSANDRIA (TTALY)	*
	* (4) UNIVERSIDAD AUTONOMA DEL ESTADO DE MORELOS - CUERNAVACA (MEXICO)	*
	* (5) UNIVERSITE' HENRI POINCARE' - NANCY (FRANCE)	*
	* (6) TH BRAINSCHWEIG - BRAINSCHWEIG (GERMANY)	*
	* (7) IMPERIAL COLLEGE - LONDON (IIK)	*
	* (8) UNIVERSITE, DIERRE ET MARIE CURIE - DARIS (FRANCE)	*
	* (9) UNIVERSIDAD DE BARCELONA - BARCELONA (SPAIN)	*
	**************************************	*
Date and time.	EFEREREE STARTING DATE 03 09 2006 TIME 09:25:16.0	

CRYSTAL output – Geometry part – conventional cell

E.g.: MgO bulk - fcc cubic cell – RHF/STO-3G

Title	section	from	input	1
	3661011	nom	input	

MGO BULK

The periodicity of the studied system is indicated as well as a summary of crystallographic information.

The crystal structure specification follows.

The lattice parameters of the conventional cell and the atomic positions in the asymmetric unit are reported.

This is the crystal structure given as input.

C	CRYSTAL CALCULATION
((INPUT ACCORDING TO THE INTERNATIONAL TABLES FOR X-RAY CRYSTALLOGRAPHY)
C	CRYSTAL FAMILY : CUBIC
C	CRYSTAL CLASS (GROTH - 1921) : CUBIC HEXAKISOCTAHEDRAL
S	SPACE GROUP (CENTROSYMMETRIC) : F M 3 M
I	LATTICE PARAMETERS (ANGSTROMS AND DEGREES) - CONVENTIONAL CELL
	A B C ALPHA BETA GAMMA
	4.21000 4.21000 4.21000 90.00000 90.00000 90.00000
ľ	NUMBER OF IRREDUCIBLE ATOMS IN THE CONVENTIONAL CELL: 2
]	INPUT COORDINATES
7	
_ F	ALUM AL. N. CUURDINATES

- 12 0.0000000000E+00 0.0000000000E+00 0.00000000000E+00 1 2
 - 8 5.00000000000E-01 5.00000000000E-01 5.0000000000E-01

CRYSTAL output – Geometry part – primitive cell

E.g.: MgO bulk - fcc cubic cell – RHF/STO-3G

	<< INFORMATI	ON >>: FROM	I NOW ON, ALI	COORDINATE	S REFER TO) THE PRIMIT	IVE CELL	
The lettice	********	* * * * * * * * * * * *	* * * * * * * * * * * * *	**********	******	*****	* * * * * * * * * * * *	
parameters of the primitive cell and	LATTICE PARA	METERS (AN B	IGSTROMS AND C	DEGREES) - ALPHA	PRIMITIVE BETA	CELL GAMMA	VOLUME	
all the atomic	2.97692	2.97692	2.97692	60.0000	60.0000	60.0000	18.65462	
reported. For each non-equivalent	COORDINATES	OF THE EQUI	VALENT ATOMS	G (FRACTION	ARY UNITS)			
atom the corresponding block	N. ATOM EQUI	V AT. N.	х		Y		Z	
of equivalent atoms is displayed.	1 1 1	12 MG	0.000000000)0E+00 0.00	000000000000000	E+00 0.0000	0000000E+00	
	2 2 1	80 -	5.000000000)0E-01 -5.00	000000000000000	E-01 -5.0000	0000000E-01	
The number of symmetry operators	NUMBER OF SY	MMETRY OPER	ATORS	: 48			* * * * * * * * * * * * * *	
5 5 1	* GEOMETRY E			TES ARE GIT	TEN TN ANG	STROM	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
CRYSTAL output	" GEOMEIRI EDIIING - INFUI COORDINAIES ARE GIVEN IN ANGSIROM							
geometry editing section	GEOMETRY NOW	FULLY CONS	SISTENT WITH	THE GROUP				
Size of direct lattice	GCALCO - MAX	INDICES DI	RECT LATTICE	E VECTOR 1() 10 10 44 65152			
	NO.OF VECIOR	S CREAIED 2	STARD	J J KIIAA	TT • UD TD Z			

CRYSTAL output – Final geometry printing

Here, the final structure for the wave function calculation is reported	GEOMETRY FOR WA (NON PERIODIC D ************************************	VE FUNCTION - DIM DIRECTION: LATTICE ************************************	IENSIONALITY OF PARAMETER FORM *********************** ID DEGREES) - BO 5/0 VOLUME= 1	THE SYSTEM MALLY SET TO ************* DHR = 0.5291 L8.654615 - 2	3 500) *********** 772083 ANGS DENSITY 3.5	********* TROM 59 g/cm^3
The lattice parameters and all the atomic positions of the primitive cell	A 2.97691955 ************** ATOMS IN THE AS	B 2.97691955 **********************************	C 2.97691955 **********************************	ALPHA 60.000000 ************* HE UNIT CELL	BETA 60.000000 ********** : 2	GAMMA 60.000000 ******
are indicated	ATOM	X/A	Y/B		Z/C	
	**************************************	**************************************	·00 0.000000000 ·01 -5.0000000000)000E+00 0.)000E-01 -5.	************* 000000000000 00000000000	*********** 0E+00 0E-01
When the initial geometry is not primitive, the transformation	TRANSFORMATION -1.0000 1.0000	MATRIX PRIMITIVE- 1.0000 1.0000	CRYSTALLOGRAPHI -1.0000 1.0000	C CELL) 1.0000 1	.0000 -1.00	00
matrix from the	CRYSTALLOGRAPHI	C CELL (VOLUME=	74.61846	5100)		
primitive cell to the crystallographic one is reported as well	A 4.21000000	в 4.21000000	C 4.21000000	ALPHA 90.000000	BETA 90.000000	GAMMA 90.000000
as the lattice parameters and the	COORDINATES IN ATOM	THE CRYSTALLOGRAM	PHIC CELL Y/B		z/c	
the conventional unit	**************************************	**************************************	·****************** ·00 0.000000000000000000000000000000000	**************************************	*********** 000000000000 000000000000	********** 0E+00 0E-01
Irreducible atoms are labelled by T	T = ATOM BELONG	ING TO THE ASYMME	TRIC UNIT			

CRYSTAL output – Final geometry printing

	**:	* *	48 SYI	MMOPS .	- TRANS	SLATORS	S IN F	RACTION	NARY UI	NITS				
When geometry	v	IN	v			ROTA	TION M	ATRICES	S			TRA	NSLATC	R
editing is	1	1	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00
erminated, residual	2	2	0.00	1.00	-1.00	1.00	0.00	-1.00	0.00	0.00	-1.00	0.00	0.00	0.00
symmetry operators	3	3	-1.00	0.00	0.00	-1.00	0.00	1.00	-1.00	1.00	0.00	0.00	0.00	0.00
are printed	4	4	0.00	-1.00	1.00	0.00	-1.00	0.00	1.00	-1.00	0.00	0.00	0.00	0.00
	5	6	0.00	1.00	0.00	0.00	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00
	6	5	0.00	0.00	1.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
	7	8	1.00	0.00	-1.00	0.00	0.00	-1.00	0.00	1.00	-1.00	0.00	0.00	0.00
	8	7	1.00	-1.00	0.00	0.00	-1.00	1.00	0.00	-1.00	0.00	0.00	0.00	0.00
	9	10	-1.00	0.00	1.00	-1.00	1.00	0.00	-1.00	0.00	0.00	0.00	0.00	0.00
	10	9	0.00	0.00	-1.00	0.00	1.00	-1.00	1.00	0.00	-1.00	0.00	0.00	0.00
	•••													
	•••													
	•••													
	40	39	-1.00	0.00	1.00	-1.00	0.00	0.00	-1.00	1.00	0.00	0.00	0.00	0.00
	41	41	1.00	0.00	0.00	0.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00
	42	42	0.00	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
	43	45	0.00	1.00	-1.00	0.00	0.00	-1.00	1.00	0.00	-1.00	0.00	0.00	0.00
	44	46	-1.00	1.00	0.00	-1.00	0.00	1.00	-1.00	0.00	0.00	0.00	0.00	0.00
	45	43	0.00	-1.00	1.00	1.00	-1.00	0.00	0.00	-1.00	0.00	0.00	0.00	0.00
	46	44	0.00	0.00	-1.00	1.00	0.00	-1.00	0.00	1.00	-1.00	0.00	0.00	0.00
	47	47	-1.00	0.00	0.00	-1.00	1.00	0.00	-1.00	0.00	1.00	0.00	0.00	0.00
	48	48	1.00	-1.00	0.00	0.00	-1.00	0.00	0.00	-1.00	1.00	0.00	0.00	0.00

CRYSTAL output – Final geometry printing

	DIRECT	T LATTICE X	VECTORS	CARTESIAN Y	COMPONENTS	(ANGSTROM) Z		
Finally, lattice vectors and atomic positions of the primitive cell are printed in the Cartesian frame.	0.00 0.21 0.21 CARTES	000000000 05000000 05000000 105000000	00E+00 00E+01 00E+01 DINATES ·	0.2105000 0.0000000 0.2105000 - PRIMITIV	00000E+01 00000E+00 00000E+01 E CELL	0.210500000 0.210500000 0.000000000	000E+01 000E+01 000E+00	
	* * * * * * *	********** ATOM	******** X	**************************************	**************************************	**************************************	**************************************	****
	1	12 MG 8 O	0.0000		00 0.00000 00 2.10500	00000000E+00	0.0000000000000000E+00 2.1050000000000E+00	****

CRYSTAL output – Basis set

	***	* * * * * * * * * * * * * * * * * * * *												
functions of each	LOC.	AL A]	FOMIC F	UNCTION:	5 BASI:	5 SI ****	ST * * * * *	* * * * * *	*******	******	*******	* * * * * * * * * *		
non equivalent atom	A	том	X(AU)	Y(AU)	Z(AU)		NO.	TYPE	EXPONENT	S COEF	P COEF I	D/F/G COEF		
	* * *	* * * * *	*****	* * * * * * * *	*****	* * * *	****	* * * * * *	*****	******	*******	******		
Atom type and	1	MG	0.000	0.000	0.000		1	S						
cartesian									2.992E+02	1.543E-01	0.000E+00	0.000E+00		
coordinates (Bohr)									5.451E+01	5.353E-01	0.000E+00	0.000E+00		
									1.475E+01	4.446E-01	0.000E+00	0.000E+00		
						2-	5	SP						
Shell type, gaussian									1.512E+01-	-9.997E-02	1.559E-01	0.000E+00		
exponents and									3.514E+00	3.995E-01	6.077E-01	0.000E+00		
coefficients									1.143E+00	7.001E-01	3.920E-01	0.000E+00		
						6-	9	SP						
									1.395E+00-	-2.196E-01	1.059E-02	0.000E+00		
									3.893E-01	2.256E-01	5.952E-01	0.000E+00		
									1.524E-01	9.004E-01	4.620E-01	0.000E+00		
	2	0	3.978	3.978	3.978									
							10	S						
									1.307E+02	1.543E-01	0.000E+00	0.000E+00		
									2.381E+01	5.353E-01	0.000E+00	0.000E+00		
									6.444E+00	4.446E-01	0.000E+00	0.000E+00		
					2	11-	14	SP						
									5.033E+00-	-9.997E-02	1.559E-01	0.000E+00		
									1.170E+00	3.995E-01	6.077E-01	0.000E+00		
									3.804E-01	7.001E-01	3.920E-01	0.000E+00		

CRYSTAL output – General information

This section gives				
computational	*****	* * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
information	N. OF ATOMS PER CELL	2	COULOMB OVERLAP TOL	(T1) 10** -6
concerning the	NUMBER OF SHELLS	5	COULOMB PENETRATION TOL	(T2) 10** -6
studied system and	NUMBER OF AO	14	EXCHANGE OVERLAP TOL	(T3) 10** -6
tolerances for the	N. OF ELECTRONS PER CELL	20	EXCHANGE PSEUDO OVP (F(G))	(T4) 10** -6
integrals evaluation	CORE ELECTRONS PER CELL	12	EXCHANGE PSEUDO OVP (P(G))	(T5) 10**-12
	N. OF SYMMETRY OPERATORS	48	POLE ORDER IN MONO ZONE	4
	******	* * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
Here the theoretical	TYPE OF CALCULATION : RES	TRIC	TED CLOSED SHELL	
method is indicated	HARTREE-FOCK HAMILTONIAN			
	*****	* * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	MAX NUMBER OF SCF CYCLES	!	50 CONVERGENCE ON DELTAP	10**-16
Information on the	NO MIXING OF F MATRICES		CONVERGENCE ON ENERGY	10**- 5
computational	SHRINK. FACT. (MONKH.)	8	8 NUMBER OF K POINTS IN TH	E IBZ 29
conditions for the SCF	SHRINKING FACTOR(GILAT NET	')	8 NUMBER OF K POINTS(GILAT	NET) 29
iteration procedure	*****	****	* * * * * * * * * * * * * * * * * * * *	*****
(convergence criteria,				
shrinking factors and				
number of k points)				
are reported				

CRYSTAL output – General information

	*** K 🗄	POINT	'S C	OORL	DINATES	(OB	LIQ	UE	COORDINA	ATES	IN	UNI	TS OF	IS =	8	3)		
Coordinates of the	1-R	(0	0	0)	2-C(1	0	0)	3-C(2	0	0)	4-C(3	0	0)		
k-points used in the	5-R	(4	0	0)	6-C(1	1	0)	7-C(2	1	0)	8-C(3	1	0)		
IBZ sampling are	9-C	(4	1	0)	10-C(5	1	0)	11-C(6	1	0)	12-C(7	1	0)		
reported	13-C	(2	2	0)	14-C(3	2	0)	15-C(4	2	0)	16-C(5	2	0)		
	17-C	(6	2	0)	18-C(3	3	0)	19-C(4	3	0)	20-C(5	3	0)		
	21-R	(4	4	0)	22-C(3	2	1)	23-C(4	2	1)	24-C(5	2	1)		
	25-C	(4	3	1)	26-C(5	3	1)	27-C(6	3	1)	28-C(5	4	1)		
	29-C	(6	4	2)														
Other information on	DIREC	T LAT	TIC	E VE	CTORS (COMP	ON.	(A	.U.)	REC:	IP.	LAT	TICE V	ECTO	RS	COMPO	N. ()	A.U.)
		х			Y				Z		2	X		Y			2	Z
follow	0.	00000	00	3	8.977873	35	3	.97	78735	-0	.789	9766	9 0	.789	766	59	0.78	97669
follow	3.	97787	35	0	.000000	00	3	.97	78735	0	.789	9766	9 -0	.789	766	59	0.78	97669
	3.	97787	35	3	8.977873	35	0	.00	00000	0	.789	9766	9 0	.789	766	59 -	0.78	97669
Here information about the resource	DISK	SPACE	FC	R EI	GENVEC	TORS	(F	TN	10)	10'	780	REA	LS					
usage are reported. Dimensions of	SYMME	SYMMETRY ADAPTION OF THE BLOCH FUNCTIONS ENABLED																
density and Fock matrix in direct space are displayed as well as information on integrals storage and memory usage	DIMEN MAX G	SIONS -VECT	P OR	P(G)= INDE	= 1389 X FOR 1	98 F 1- A	(G) ND	= 2-E	2820 I LECTRON	P(G) INT	, F ((EGR/	G) (Als	IRR) 319	6	66			
	INFOR TTTTT	MATIC TTTTT	N *	*** 'TTT1	GENBUF TTTTTTT	*** [TTTT'	* C TTT	OUL IN	OMB BIPO PUT) BUI TEI	FFEI LAP:	R LE SE	NGTH (WORD: 0.02	S) TC	= CPU	661	50 0.02

CRYSTAL output – Neighbors analysis

The section labelled NEIGHBORS OF	NEIGHBO	RS OF	THE NON-EQU	JIVALENT A	ATOMS					
THE NON-	N = NUM	BER O	F NEIGHBORS	AT DISTA	NCE R					
EQUIVALENT	ATOM	N	R/ANG	R/AU	NEIGHBO	RS (ATOM	LABELS	AND CELL	INDIC	ES)
ATOMS reports	1 MG	6	2.1050	3.9779	20	-1 0 0	20	0-1 0	20	0 0-1
information on the					20	-1-1 0	20	-1 0-1	20	0-1-1
first neighbours	1 MG	12	2.9769	5.6256	1 MG	-1 0 0	1 MG	100	1 MG	-1 0 1
(default: 6).					1 MG	1 0-1	1 MG	-1 1 0	1 MG	1-1 0
For each non-					1 MG	0-1 0	1 MG	0 1 0	1 MG	0-1 1
equivalent atom:					1 MG	0 1-1	1 MG	0 0-1	1 MG	001
number, type,	1 MG	8	3.6460	6.8899	20	0 0 0	20	-1-1 1	20	-1 1-1
distance, and position					20	1-1-1	20	-2 0 0	20	0-2 0
in terms of indices of					20	0 0-2	20	-1-1-1		
the direct lattice cell	•••									
are displayed.										
	20	6	2.1050	3.9779	1 MG	100	1 MG	0 1 0	1 MG	001
					1 MG	110	1 MG	101	1 MG	0 1 1
	20	12	2.9769	5.6256	20	-1 0 0	20	100	20	-1 0 1
					20	1 0-1	20	-1 1 0	20	1-1 0
					20	0-1 0	20	0 1 0	20	0-1 1
					20	0 1-1	20	0 0-1	20	001
	20	8	3.6460	6.8899	1 MG	000	1 MG	1 1-1	1 MG	1-1 1
					1 MG	-1 1 1	1 MG	200	1 MG	020
Here the number of					1 MG	0 0 2	1 MG	111		
internal degrees of freedom of the	• • •									
studied system is	THERE A	RE NO	SYMMETRY AI	LOWED DI	RECTIONS					
indicated	TTTTTTT	TTTTT	TTTTTTTTTTTT	TTTTTT S	YMM	TELAPS	5E	0.03 T	JPU	0.03

CRYSTAL output – Integrals calc. and SCF initial guess

This section reports more information on the integrals evaluation and concludes the first	INFORMATION **** GENBUF **** COULOMB BIPO BUFFER LENGTH (WORDS) = 66150 INFORMATION **** EXCBUF **** EXCH. BIPO BUFFER: WORDS USED = 97362 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	.11
part of a traditional	**SHELL_ORTHODOX** SPACE FOR BIEL. INTEGRALS 1 BUFFERS	0.4
SCF procedure: the	TITITITITITITITITITITITITITITITITITITI	.04
integrals calculation	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	.92
	EEEEEEEEE INT_CALC TERMINATION DATE 03 09 2006 TIME 09:25:18.1	
With this section	***************************************	* * *
starts the SCF	MGO BULK	
iteration to compute	CRYSTAL - SCF - TYPE OF CALCULATION : RESTRICTED CLOSED SHELL	
the total energy	***************************************	* * *
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	.92

CRYSTAL output –SCF initial guess

E.g.: MgO bulk - fcc cubic cell – RHF/STO-3G

The SCF starts by defining the initial guess of the density	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA											
maurx	NUCLEAR CHARGE 12.0 SYMMETRY SPECIES S P											
	N. ELECTRONS 12.0 NUMBER OF PRIMITIVE GTOS 9 6											
The default initial	NUMBER OF CONTRACTED GTOS 3 2											
quess for the wave	NUMBER OF CLOSED SHELLS 3 1											
function evaluation is	OPEN SHELL OCCUPATION 0 0											
obtained from a superposition of atomic densities	ZNUC SCFIT TOTAL HF ENERGY KINETIC ENERGY VIRIAL THEOREM ACCURACY 12.0 4 -1.970073545E+02 1.945732082E+02 -2.012510183E+00 2.9E-06											
	NUCLEAR CHARGE 8.0 SYMMETRY SPECIES S P											
The initial electronic	N. ELECTRONS 8.0 NUMBER OF PRIMITIVE GTOS 6 3											
configuration of each	NUMBER OF CONTRACTED GTOS 2 1											
atomic species is	NUMBER OF CLOSED SHELLS 2 0											
also reported	OPEN SHELL OCCUPATION 0 4											
	ZNUC SCFIT TOTAL HF ENERGY KINETIC ENERGY VIRIAL THEOREM ACCURACY											
	8.0 1 -7.380415026E+01 7.344496710E+01 -2.004890507E+00 0.0E+00											

CRYSTAL output – SCF iteration

12.0000008.000000This section reports information on the SCF iteration.12.000000At each SCF cycle, total charge of the atoms (Mulliken scheme), total energy and values of the convergence criteria are printed12.000000Here, it is also indicated whether the system is an insulator or a conductor and the related Fermi level12.0000008.0000000 related Fermi level12.0000008.0000000 related Fermi level12.0000009.02707395 related Fermi level1.000000010.02010 related Fermi level1.000000011.000000 related Fermi level1.0000000011.000000 related Fermi level1.0000000011.000000 related Fermi level1.0000000011.0000000 related Fermi level1.0000000011.0000000 related Fermi level1.0000000011.000000000 related Fermi level1.0000000011.00000000000001.0000000011.00000000000000000000000000000000000		CHARGE NORMALIZATION FACTOR 1.0000000 TOTAL ATOMIC CHARGES:			
This section reports information on the SCF iteration.TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		12.0000000 8.000000			
This section reports information on the SCF iteration.TITTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.01 TCPU	1.93
The observe of the convergence criteria are printedTHTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	This section reports	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.03 TCPU	1.94
Anomation of the SCF iteration.CYC 0ETOT(AU) -2.706738561044E+02 2.71E+02 tstDETOT -2.71E+02 tst0.00E+00 PX 1.00E+00 PX 1.00E+	information on the	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.03 TCPU	1.94
OOD NOTAGENERTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	SCF iteration	CYC 0 ETOT(AU) -2.706738561044E+02 DETOT	-2.71E+02 tst	0.00E+00 PX 1.()0E+00
At each SCF cycle, total charge of the atoms (Mulliken scheme), total energy and values of the convergence criteria are printedINSULATING STATE - TOP OF VALENCE BANDS (A.U.) -2.0824792E-01 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	SCF lieration.	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.03 TCPU	1.94
At each SCF cycle, total charge of the atoms (Mulliken scheme), total energy and values of the convergence criteria are printedTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		INSULATING STATE - TOP OF VALENCE BANDS (A	.U.) -2.0824792	E-01	
Alteach SCP Cycle, total charge of the atoms (Mulliken scheme), total energy and values of the convergence criteria are printedCHARGE NORMALIZATION FACTOR 9.02797991.00000000 TOTAL ATOMIC CHARGES: 10.9720201 9.0279799 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	At each SCE avala	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.04 TCPU	1.95
TOTAL ATOMIC CHARGES:atoms (Muliken scheme), total energy and values of the convergence criteria are printedTOTAL ATOMIC CHARGES:10.97202019.0279799TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	total charge of the	CHARGE NORMALIZATION FACTOR 1.00000000			
atoms (Mulikeli scheme), total energy and values of the convergence criteria are printed10.97202019.0279799TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	otama (Mullikan	TOTAL ATOMIC CHARGES:			
Scheme), total energy and values of the convergence criteria are printedTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		10.9720201 9.0279799			
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	scheme), total	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.04 TCPU	1.95
of the convergence criteria are printedTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	energy and values	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.05 TCPU	1.96
Citeria are printedCYC1 ETOT(AU) -2.711666415674E+02 DETOT-4.93E-01 tst0.00E+00 PX1.00E+00Here, it is also indicated whether the system is an insulator or a conductor and the related Fermi levelTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	or the convergence	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.05 TCPU	1.96
Here, it is also indicated whether the system is an insulator or a conductor and the related Fermi levelTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	criteria are printed	CYC 1 ETOT(AU) -2.711666415674E+02 DETOT	-4.93E-01 tst	0.00E+00 PX 1.0	00E+00
Here, it is also indicated whether the system is an insulator or a conductor and the related Fermi levelINSULATING STATE - TOP OF VALENCE BANDS (A.U.) -6.1674907E-02 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.05 TCPU	1.96
Here, it is also indicated whether the system is an insulator or a conductor and the related Fermi levelTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Llana itia alaa	INSULATING STATE - TOP OF VALENCE BANDS (A	.U.) -6.1674907	E-02	
INDICATED WHETHER the system is an insulator or a conductor and the related Fermi level CHARGE NORMALIZATION FACTOR 1.00000000 TOTAL ATOMIC CHARGES: 11.3203964 8.6796036 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Here, It is also	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.06 TCPU	1.97
the system is an insulator or a conductor and the related Fermi levelTOTAL ATOMIC CHARGES: 11.3203964 8.6796036 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	indicated whether	CHARGE NORMALIZATION FACTOR 1.0000000			
Insulator or a conductor and the related Fermi level11.32039648.6796036TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	the system is an	TOTAL ATOMIC CHARGES:			
conductor and the related Fermi levelTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	insulator or a	11.3203964 8.6796036			
related Fermi levelTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	conductor and the	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.06 TCPU	1.97
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	related Fermi level	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.09 TCPU	1.98
CYC 2 ETOT(AU) -2.712141249457E+02 DETOT -4.75E-02 tst 2.23E-02 PX 1.35E-01		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.09 TCPU	1.98
		CYC 2 ETOT(AU) -2.712141249457E+02 DETOT	-4.75E-02 tst	2.23E-02 PX 1.3	35E-01
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.10 TCPU	1.99
INSULATING STATE - TOP OF VALENCE BANDS (A.U.) -1.7547943E-01		INSULATING STATE - TOP OF VALENCE BANDS (A	.U.) -1.7547943	E-01	
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.10 TCPU	1.99

. . .

convorgence on	• • •			
convergence on	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.17 TCPU	2.06
energy has been	CYC 6 ETOT(AU) -2.712180983825E+02 DETOT	-3.38E-06 tst	1.17E-06 PX	1.48E-03
Threshold, 1e10-5	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.17 TCPU	2.06
	INSULATING STATE - TOP OF VALENCE BANDS (A	.U.) -1.4775921	E-01	
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.18 TCPU	2.07
	CHARGE NORMALIZATION FACTOR 1.0000000			
	TOTAL ATOMIC CHARGES:			
	11.2223209 8.7776791			
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT QGAM	TELAPSE	2.18 TCPU	2.07
On convergence,	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.18 TCPU	2.07
the total energy in	+++ ENERGIES IN A.U. +++			
diaployed on well on	::: EXT EL-POLE : $L = 0$	-4.69076	30069433E+02	
the total energy and	::: EXT EL-POLE : L = 1	-8.49619	34766814E-22	
the virial coefficient	::: EXT EL-POLE : $L = 2$	-2.45479	06991938E-19	
	::: EXT EL-POLE : $L = 3$	-2.42729	25970741E-23	
	::: EXT EL-POLE : $L = 4$	-1.09552	81259775E-04	
	::: EXT EL-SPHEROPOLE	3.96414	95581542E+00	
	::: BIELET ZONE E-E	5.11605	26532334E+02	
	::: TOTAL E-E	4.64930	04634354E+01	
	::: TOTAL E-N + N-E	-5.11755	97833315E+02	
	::: TOTAL N-N	-7.30842	76676762E+01	
At the conclusion of	::: KINETIC ENERGY	2.67129	15158680E+02	
the job, the following	::: TOTAL ENERGY	-2.71218	09878875E+02	
lines are printed	::: VIRIAL COEFFICIENT	9.92404	62879843E-01	
indicating the final	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.19 TCPU	2.08
energy and the	CYC 7 ETOT(AU) -2.712180987888E+02 DETOT	-4.06E-07 tst	1.30E-07 PX	1.48E-03
number of cycles				
needed to reach the convergence.	== SCF ENDED - CONVERGENCE ON ENERGY	E(AU) -2.712180	9878875E+02 (CYCLES 7
J	TOTAL ENERGY(HF)(AU)(7) -2.712180987888E+	02 DE-4.1E-07 t	st 1.3E-07 PX	K 1.5E-03
	EIGENVECTORS IN FORTRAN UNIT 10			
Finally, the CPU time	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	2.23 TCPU	2.11
is reported only a	EEEEEEEEE TERMINATION DATE 03 09 2006 TI	ME 09:25:18.3		
few seconds				

CRYSTAL output – DFT calculations

E.g.: MgO bulk - fcc cubic cell – SVWN/STO-3G

The DFT theoretical method is indicated	TYPE OF CALCULATION : RESTRICTED CLOSED SHELL KOHN-SHAM HAMILTONIAN
as	(EXCHANGE)[CORRELATION] FUNCTIONAL:(DIRAC-SLATER LDA)[VOSKO-WILK-NUSAIR]

DFT PARAMETERS

DFT computational parameters on the	ATOM		ELE	CTRONS	NET	CHARGE	R (AN	GSTRO	(M					
numerical	1	12	MG	12.00	000	0.000	0	1.600	00000					
integration scheme (atomic radii.	2	8	0	8.00	000	0.000	00	0.740	00000					
woights throsholds	SIZE	OF	GRID=		474									
and grid information) are	BECKI	E WE	EIGHT F	UNCTIO	N									
	RADS	AFE	=	2.00										
also reported in the	TOLEI	RANC	CES - I	ENSITY	:10**-	6; POTE	ENTIAL:	10**-	9; GRI	D WGT:10	0**-14			
CRYSTAL output				_										
	RADIZ	AL]	INTEGRA	TION ·	- INTER	RVALS (I	POINTS,	UPPER	LIMIT)	:		1(55,	4.0*R)
	ANGUI	LAR	INTEGF	ATION ·	- INTER	RVALS (A	CCURAC	Y LEV	EL [N.	POINTS]	UPPER	ΓI.	MIT):	
	1(1[38]	0.4)	2(2	[50]	0.6)	3(5[110]	0.8)	4(3 [194]	0.9)
	5(2	11[302]	1.1)	6(13	[434]	2.3)	7(1	.1[302]	2.4)	8 (8 [194]	2.6)
	9(5[110]	2.8)	10(1	[38]99	99.0)							

CRYSTAL output – DFT calculations

	•••			
	::: TOTAL E-E	6.99712	34230499E+01	
On convergence,	::: TOTAL E-N + N-E	-5.09527	73870920E+02	
each contribution to	::: TOTAL N-N	-7.30842	76676762E+01	
the total energy is	::: KINETIC ENERGY	2.65807	24111130E+02	
displayed as well as	::: PSEUDO TOTAL ENERGY	-2.46833	54004417E+02	
the total energy and	::: VIRIAL COEFFICIENT	1.03701	16888172E+00	
the virial coefficient	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	3.42 TCPU	3.40
	NUMERICALLY INTEGRATED DENSITY 19.99	89148950		
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	3.53 TCPU	3.52
	CYC 8 ETOT(AU) -2.705460373130E+02 DET	OT -2.37E-06 tst	4.58E-05 PX	1.44E-03
At the end of the SCF iteration, the	== SCF ENDED - CONVERGENCE ON ENERGY	E(AU) -2.705460	3731298E+02 C	YCLES 8
DFT energy expression and the total energy are	ENERGY EXPRESSION=HARTREE+FOCK EXCH*0.00	000+(LDA EXCH)*	1.00000+VWN	CORR
displayed	TOTAL ENERGY(DFT)(AU)(8) -2.7054603731	298E+02 DE-2.4E-0	6 tst 4.6E-05	
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	3.53 TCPU	3.52
	EIGENVECTORS IN FORTRAN UNIT 8			
	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TELAPSE	3.54 TCPU	3.53
	EEEEEEEEEE TERMINATION DATE 03 09 2006	TIME 09:44:22.7		

CRYSTAL input - Geometry optimization

E.g.: α-Quartz - hexagonal cell

QUARTZ ALFA CRYSTAL	Title Dimensionality of the system
0 0 0	Crystallographic information (3D only)
154	Space Group ($Fm3m - 225$)
4.916 5.4054	Lattice parameters (<i>cubic</i>)
2	Number of non equivalent atoms
14 0.4697 0.0000 0.0000	Atomic number and fractional coordinates
8 0.4135 0.2669 0.1191	
OPTGEOM	Geometry optimization input block
Optional keywords	
END	End of the geometry optimization input block
END (ENDG)	End of geometry input section

Geometry optimization input block is specified as the last part of the geometry input section

Different types of run:

- atomic coordinates only (default)
- cell parameters only \Rightarrow CELLONLY
- full geometry optimization (cell param. + atomic positions) \Rightarrow **FULLOPTG**
- iterative independent optimizations of cell param.s and atomic positions \Rightarrow **ITATOCEL**
- fragment and constraint (e.g. constant volume)

Geometry optimization in internal redundant coordinates \Rightarrow **INTREDUN**

CRYSTAL input – Vibrational frequencies at Γ

E.g.: α-Quartz - hexagonal cell

QUARTZ ALFA	Title
CRYSTAL	Dimensionality of the system
0 0 0	Crystallographic information (3D only)
154	Space Group (<i>Fm3m</i> – 225)
4.916 5.4054	Lattice parameters (<i>cubic</i>)
2	Number of non equivalent atoms
14 0.4697 0.0000 0.0000	Atomic number and fractional coordinates
8 0.4135 0.2669 0.1191	
FREQCALC	Vibrational frequencies input block
Optional keywords	
END	End of the Vibrational frequencies input block
END (ENDG)	End of geometry input section

Vibrational frequencies input block is specified as the last part of the geometry input section

Optional keywords allow to compute:

- IR intensities
- LO/TO splitting
- Low frequency dielectric constant
- Isotopic substitution
- Vibrational frequencies of an atomic fragment