Bloch functions, crystalline orbitals and

Fermi energy

Roberto Orlando
Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale "Amedeo Avogadro" Via Bellini 25/G, 15100 Alessandria, Italy
roberto.orlando@unito.it

Outline

The crystallographic model of a crystal
Our model of a perfect crystal
The Pack-Monkhorst net
Local basis sets and Bloch functions
The calculation of the Crystalline Orbitals with a local basis set

Bravais lattice

Unit cell: a volume in space that fills space entirely when translated by all lattice vectors.

The obvious choice:
a parallelepiped defined by a_{1}, a_{2}, a_{3}, three basis vectors with
the best a_{1}, a_{2}, a_{3} are as orthogonal as possible
the cell is as symmetric as possible (14 types)

A unit cell containing one lattice point is called primitive cell.

The Wigner-Seitz cell

Wigner-Seitz cell: the portion of space which is closer to one lattice point than to anyone else.

There are 14 different types of Wigner-Seitz cells.

A Wigner-Seitz cell is primitive by construction.

(a)

(b)

(c)

The reciprocal lattice

A reciprocal lattice with lattice basis vectors $\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}$ corresponds to every real (or direct) lattice with lattice basis vectors a_{1}, a_{2}, a_{3}. Basis vectors obey the following orthogonality rules:

$$
\begin{array}{lll}
\mathbf{b}_{1} \cdot \mathbf{a}_{\mathbf{1}} \pi & \mathbf{b}_{2} \cdot \mathbf{a}_{2}=2 \pi & \mathbf{b}_{3} \cdot \mathbf{a}_{3}=2 \pi \\
\mathbf{b}_{1} \cdot \mathbf{a}_{2}=0 & \mathbf{b}_{2} \cdot \mathbf{a}_{3}=0 & \mathbf{b}_{3} \cdot \mathbf{a}_{1}=0 \\
\mathbf{b}_{1} \cdot \mathbf{a}_{3}=0 & \mathbf{b}_{2} \cdot \mathbf{a}_{1}=0 & \mathbf{b}_{3} \cdot \mathbf{a}_{2}=0
\end{array}
$$

or, equivalently,

$$
\mathbf{b}_{1}=2 \pi / V \mathbf{a}_{2} \wedge \mathbf{a}_{3} \quad \mathbf{b}_{2}=2 \pi / V \mathbf{a}_{3} \wedge \mathbf{a}_{1} \quad \mathbf{b}_{3}=2 \pi / V \mathbf{a}_{1} \wedge \mathbf{a}_{2}
$$

$$
V=\mathbf{a}_{1} \cdot \mathbf{a}_{2} \wedge \mathbf{a}_{3} \quad V^{*}=(2 \pi)^{3} / V
$$

The first Brillouin zone

Brillouin zone: Wigner-Seitz cell in the reciprocal space.
Special points in the Brillouin zone have been classified and labelled with letters, used in the specification of paths.

Wigner-Seitz cell for body-centered-cubic crystals

The model of a perfect crystal

A real crystal: a macroscopic finite array of a very large number n of atoms/ions with surfaces

- the fraction of atoms at the surface is proportional to $n^{-1 / 3}$ (very small)
- if the surface is neutral, the perturbation due to the boundary is limited to a few surface layers
- a real crystal mostly exhibits bulk features and properties

A macro-lattice of N unit cells is good model of such a crystal

- as N is very large and surface effects are negligible in the bulk, the macro-lattice can be repeated periodically under the action of translation vectors $N_{1} \mathbf{a}_{1}, N_{2} \mathbf{a}_{2}$, $N_{3} \mathbf{a}_{3}$ without affecting its properties
- thus, our model of a perfect crystal coincides with the crystallographic model of an infinite array of cells containing the same group of atoms

The macro-lattice

Born-Von Kárman boundary conditions

Our model of a crystal consists of an infinite array of macro-lattices.
Every macro-lattice contains N unit cells
Every function or operator defined for the crystal then admits the following boundary conditions:
$\xrightarrow[\text { translation }]{ } f\left(\mathbf{r}+N_{i} \mathbf{a}_{i}\right)=f(\mathbf{r})$ for $i=1,2,3$ symmetry

> a new metric is defined

$$
\mathbf{A}_{i}=N_{i} \mathbf{a}_{i} \quad \text { for } i=1,2,3
$$

Pack-Monkhorst net

A reciprocal lattice can be associated with the macro-lattice with metric \mathbf{A} : the reciprocal micro-lattice with metric $\mathbf{B}=N^{-1} \mathbf{b}$

- this micro-lattice is much denser than the original reciprocal lattice with metric b
- the unit cell of the original reciprocal lattice with metric \mathbf{b} can be partitioned into N micro-cells, each located by a vector (wave vector) \mathbf{k}_{m} :

$$
\mathbf{k}_{m}=\frac{m_{1}}{N_{1}} \mathbf{b}_{1}+\frac{m_{2}}{N_{2}} \mathbf{b}_{2}+\frac{m_{3}}{N_{3}} \mathbf{b}_{3} \quad m_{1}, m_{2}, m_{3} \text { integers }
$$

When referred to the $1^{\text {st }}$ Brillouin zone, the complete set of the \mathbf{k}_{m} vectors form

the Pack-Monkhorst net

Integers N_{i} are called the shrinking factors

Character Table of the translation group

N translation operations $\Rightarrow N$ classes $\Rightarrow N$ one-dimensional irreducible
 representations associated with $N \mathbf{k}_{m}$ vectors of Brillouin Zone

Due to the orthogonality between rows and columns

$$
\sum_{j=1}^{N} \exp \left[i\left(\mathbf{k}_{m}-\mathbf{k}_{m^{\prime}}\right) \cdot \mathbf{l}_{j}\right]=N \delta_{m m^{\prime}} \quad \& \quad \sum_{m=1}^{N} \exp \left[i \mathbf{k}_{m} \cdot\left(\mathbf{l}_{j}-\mathbf{l}_{j^{\prime}}\right)\right]=N \delta_{j j^{\prime}}
$$

The reduced Pack-Monkhorst net

If vector $\mathbf{k}_{m}^{*}=\mathbf{K}_{(m)}-\mathbf{k}_{m}$ belongs to Pack-Monkhorst net, it may happen:
(1) $\mathbf{k}_{m}^{*} \neq \mathbf{k}_{m}$
one of the two points (any) is assigned to the reduced Pack-Monkhorst net (type C).
(2) $\mathbf{k}_{m}^{*}=\mathbf{k}_{m}$
the point is assigned to the reduced Pack-Monkhorst
 net (type R); it can only be $\mathbf{k}_{m}=\left(\begin{array}{ll}0 & 0\end{array}\right)$ or $\mathbf{k}_{m}=(1 / 21 / 2$
$1 / 2$)

$$
\sum_{m=1}^{N} \exp \left(\mathbf{i}_{m} \cdot\left(\mathbf{l}_{j}-\mathbf{1}_{j}\right)\right)=N \delta_{w_{j}} \longrightarrow \sum_{m=1}^{\infty} w_{m} \cos \left(\mathbf{k}_{m} \cdot\left(\mathbf{l}_{j}-\mathbf{1}_{j}\right)=\delta_{\delta_{j}}\right.
$$

$$
w_{m}=\frac{1}{N}\left(2-\delta_{\mathbf{k}_{m}^{*} \mathbf{k}_{m}}\right)
$$

Atomic orbital basis set

Choice of a set of local functions

L.C.A.O method

(Linear Combination of Atomic Orbitals)
$\Rightarrow M$ atomic orbitals $\chi_{\mu}(\mathbf{r})$ per cell
the local basis set
$M \times N$ atomic orbitals

$$
\chi_{\mu}\left(\mathbf{r}-\mathbf{l}_{j}\right)
$$

representation of operator f

$$
f_{\mu v}\left(\mathbf{l}_{j^{\prime}}, \mathbf{l}_{j}\right)
$$

$$
f_{\mu \nu}\left(\mathbf{l}_{j^{\prime}}, \mathbf{l}_{j}\right)=\int_{V} \chi_{\mu}^{*}\left(\mathbf{r}-\mathbf{l}_{j^{\prime}}\right) f(\mathbf{r}) \chi_{\nu}\left(\mathbf{r}-\mathbf{l}_{j}\right) d \mathbf{r}
$$

Translation invariance of matrix elements

If in

$$
f_{\mu \nu}\left(\mathbf{l}_{j^{\prime}}, \mathbf{l}_{j}\right)=\int_{V} \chi_{\mu}^{*}\left(\mathbf{r}-\mathbf{l}_{j^{\prime}}\right) f(\mathbf{r}) \chi_{\nu}\left(\mathbf{r}-\mathbf{l}_{j}\right) d \mathbf{r}
$$

the origin is translated by \mathbf{l}_{j},

$$
f_{\mu \nu}\left(\mathbf{0}, \mathbf{l}_{j}-\mathbf{l}_{j^{\prime}}\right)=\int_{V} \chi_{\mu}^{*}(\mathbf{r}) f\left(\mathbf{r}+\mathbf{l}_{j^{\prime}}\right) \chi_{\nu}\left[\mathbf{r}-\left(\mathbf{l}_{j}-\mathbf{l}_{j^{\prime}}\right)\right] d \mathbf{r}
$$

but, for translation invariance and if $f(\mathbf{r})$ is periodic with the same periodicity of the direct lattice,

$$
\begin{aligned}
& \chi_{\mu}\left(\mathbf{r}-\mathbf{l}_{j^{\prime}}\right)=\chi_{\mu}(\mathbf{r}) \\
& \quad \chi_{v}\left(\mathbf{r}-\mathbf{l}_{j}\right)=\chi_{\nu}\left[\mathbf{r}-\left(\mathbf{l}_{j}-\mathbf{l}_{j^{\prime}}\right)\right]=\chi_{\nu}\left(\mathbf{r}-\mathbf{l}_{j^{\prime \prime}}\right) \\
& \quad f(\mathbf{r})=f\left(\mathbf{r}+\mathbf{l}_{j^{\prime}}\right)
\end{aligned}
$$

so that matrix elements are also translation invariant

$$
f_{\mu \nu}\left(\mathbf{l}_{j^{\prime}}, \mathbf{l}_{j}\right)=f_{\mu \nu}\left(\mathbf{0}, \mathbf{l}_{j}-\mathbf{l}_{j^{\prime}}\right)=f_{\mu \nu}\left(\mathbf{0}, \mathbf{l}_{j^{\prime \prime}}\right)
$$

Representation of operators in the AO basis

Consequences of translation invariance:

$$
f_{\mu v}\left(\mathbf{l}_{j^{\prime}}, \mathbf{l}_{j}\right)=f_{\mu v}\left(\mathbf{0}, \mathbf{l}_{j^{\prime}}-\mathbf{l}_{j}\right)
$$

Bloch functions

The local basis

$\mathrm{M} \times \mathrm{N}$ atomic orbitals

$$
\chi_{\mu}\left(\mathbf{r}-\mathbf{I}_{j}\right)
$$

In this basis set the matrix element $f_{\mu v}$ depends on two new indices: \mathbf{k}_{m} and \mathbf{k}_{m}, which are vectors of the reciprocal space:

$$
f_{\mu \nu}\left(\mathbf{k}_{m^{\prime}}, \mathbf{k}_{m}\right)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i\left(\mathbf{k}_{m} \cdot \mathbf{l}_{j}-\mathbf{k}_{m^{\prime}} \cdot \mathbf{l}^{\prime}\right)} \int_{V} \chi_{\mu}^{*}\left(\mathbf{r}-\mathbf{l}_{j^{\prime}}\right) f(\mathbf{r}) \chi_{\nu}\left(\mathbf{r}-\mathbf{l}_{j}\right) d \mathbf{r}
$$

Bloch theorem

$$
f_{\mu \nu}\left(\mathbf{k}_{m^{\prime}}, \mathbf{k}_{m}\right)=\frac{1}{N} \sum_{j^{\prime}=1}^{N} e^{-i \mathbf{k}_{m^{\prime}} \cdot \mathbf{l}^{\prime}} \sum_{j=1}^{N} e^{i \mathbf{k}_{m} \cdot \mathbf{l}_{j}} f_{\mu \nu}\left(\mathbf{l}_{j^{\prime}}, \mathbf{l}_{j}\right)
$$

for translation invariance and after multiplying and dividing by $e^{i \mathbf{k}_{m} \cdot \mathbf{l}_{j^{\prime}}}$

$$
f_{\mu \nu}\left(\mathbf{k}_{m^{\prime}}, \mathbf{k}_{m}\right)=\frac{1}{N} \sum_{j^{\prime}=1}^{N} e^{i\left(\mathbf{k}_{m}-\mathbf{k}_{m^{\prime}}\right) \cdot \mathbf{l}_{j^{\prime}}} \sum_{j=1}^{N} e^{i \mathbf{k}_{m} \cdot\left(\mathbf{l}_{j^{\prime}}-\mathbf{l}_{j^{\prime}}\right)} f_{\mu \nu}\left(\mathbf{0}, \mathbf{l}_{j}-\mathbf{l}_{j^{\prime}}\right)
$$

but, as the sum over j extends to all direct lattice vectors, it is equivalent to summing over all vectors \mathbf{l}_{j}, $=\mathbf{l}_{\mathrm{j}}-\mathbf{l}_{\mathrm{j}}$,

$$
f_{\mu \nu}\left(\mathbf{k}_{m^{\prime}}, \mathbf{k}_{m}\right)=\frac{1}{N} \sum_{j^{\prime}=1}^{N} e^{i\left(\mathbf{k}_{m}-\mathbf{k}_{m^{\prime}}\right) \cdot \mathbf{l}_{j^{\prime}}} \sum_{j^{\prime \prime}=1}^{N} e^{i \mathbf{k}_{m} \cdot \mathbf{l}_{j^{\prime \prime}}} f_{\mu \nu}\left(\mathbf{0}, \mathbf{l}_{j^{\prime \prime}}\right)
$$

and recalling the character orthogonality relation for rows, we get

$$
f_{\mu \nu}\left(\mathbf{k}_{m^{\prime}}, \mathbf{k}_{m}\right)=\delta_{\mathbf{k}_{m} \mathbf{k}_{m^{\prime}}} \sum_{j=1}^{N} \mathrm{e}^{i \mathbf{k}_{m} \cdot \mathbf{l}_{j}} f_{\mu \nu}\left(\mathbf{l}_{j}\right)
$$

Consequences of Bloch theorem

Bloch function basis

$$
\phi_{\mu}\left(\mathbf{k}_{m}, \mathbf{r}\right)
$$

Calculation of the Crystalline Orbitals with the Self-consistent-field approximation

Calculation of $\left(M^{2} \times N\right)$ elements of $\mathrm{F}: \quad F_{\mu \nu}(\mathbf{l})$
(2) Representation in the basis of Bloch functions:

At every point k_{m} of Pack-Monkhorst net:

$$
F_{\mu \nu}\left(\mathbf{k}_{m}\right)=\sum_{j=1}^{N} \exp \left(i \mathbf{k}_{m} \cdot \mathbf{l}_{j}\right) F_{\mu \nu}\left(\mathbf{l}_{j}\right)
$$

(3) At every \mathbf{k}_{m}, the eigenvalue equation of size M is solved:

$$
\mathrm{F}\left(\mathbf{k}_{m}\right) \mathrm{C}\left(\mathbf{k}_{m}\right)=\mathrm{S}\left(\mathbf{k}_{m}\right) \mathrm{C}\left(\mathbf{k}_{m}\right) \mathrm{E}\left(\mathbf{k}_{m}\right)
$$

M crystalline orbitals $\quad \Psi_{\tau}\left(\mathbf{k}_{m}, \mathbf{r}\right)$ associated with $\quad \varepsilon_{\tau}\left(\mathbf{k}_{m}\right)$

$$
\Psi_{\tau}\left(\mathbf{k}_{m}, \mathbf{r}\right)=\sum_{\mu=1}^{M} C_{\mu \tau}\left(\mathbf{k}_{m}\right) \phi_{\mu}\left(\mathbf{k}_{m}, \mathbf{r}\right)
$$

Calculation of the Crystalline Orbitals with the Self-consistent-field approximation

(4) Fermi Energy ε_{F}
© Calculation of density matrix elements in the AO basis from occupied CO
${ }_{4}^{4}$ in reciprocal space

$$
\left.P_{\mu \nu}^{\text {toral }}\left(\mathbf{k}_{\mathrm{m}}\right)=2\left[\sum_{\tau \text { ocupupied }}^{M} C_{\mu \tau}\left(\mathbf{k}_{\mathrm{m}}\right) C_{v \tau}\left(\mathbf{k}_{\mathrm{m}}\right)^{*}\right)\right]
$$

$\left.{ }^{4}\right)$ in direct space

$$
P_{\mu \nu}^{\text {total }}\left(\mathbf{l}_{\mathbf{j}}\right)=\frac{1}{N} \sum_{m=1}^{N} \exp \left(-i \mathbf{k}_{\mathrm{m}} \cdot \mathbf{l}_{\mathrm{j}}\right) P_{\mu \nu}^{\text {total }}\left(\mathbf{k}_{\mathrm{m}}\right)
$$

④) ready for the calculation of F in the AO basis during the next iterative step

Band structure representation

$\mathrm{n}_{\text {states: }}$: number of states per direct lattice cell

$T^{\text {th }}$ energy band
$\varepsilon_{\tau}\left(\mathrm{k}_{\mathrm{m}}\right)$

Fermi energy

$$
n_{\text {states }}=2\left[\sum_{\tau=1}^{M} \sum_{m=1}^{N} \theta\left(\varepsilon_{F}-\varepsilon_{\tau}\left(\mathbf{k}_{\mathbf{m}}\right)\right)\right] / N
$$

with $\theta(x)=0$ if $x<0$ and $\theta(x)=1$ if $x \geq 0$

$$
n_{\text {states }}=2\left[\frac{1}{\Omega_{B Z}} \sum_{\tau=1}^{M} \int_{B Z} \theta\left(\varepsilon_{F}-\varepsilon_{\tau}(\mathbf{k})\right) d \mathbf{k}\right]
$$

$\stackrel{4}{4}$ definition of a new function :

$$
n_{\text {states }}(\varepsilon)=2\left[\frac{1}{\Omega_{B Z}} \sum_{\tau=1}^{M} \int_{\Omega_{B Z}} \theta\left(\varepsilon-\varepsilon_{\tau}(\mathbf{k})\right) d \mathbf{k}\right]
$$

\Rightarrow iterative evaluation of $\varepsilon_{F}\left(n_{\text {states }}(\varepsilon)-n_{\text {states }}\right)$

Definition of the density matrix

$$
P_{\mu \nu}^{\text {total }}(\mathbf{l})=2\left[\frac{1}{\Omega_{B Z}} \sum_{\tau=1}^{M} \int_{B Z} P_{\mu \nu}^{\tau}(\mathbf{k}, \mathbf{l}) \theta\left(\varepsilon_{F}-\varepsilon_{\tau}(\mathbf{k})\right) d \mathbf{k}\right]
$$

$$
P_{\mu \nu}^{\tau}(\mathbf{k}, \mathbf{l})=C_{\mu \tau}(\mathbf{k}) C_{v \tau}^{*}(\mathbf{k}) \exp (-i \mathbf{k} \cdot \mathbf{l})
$$

Fourier analysis of energy bands

Analytic expression of even periodic function $\varepsilon_{T}(\mathbf{k})$ in reciprocal space

$$
\begin{aligned}
& \varepsilon_{\tau}(\mathbf{k}+\mathbf{K})=\varepsilon_{\tau}(\mathbf{k}) \\
& \varepsilon_{\tau}(\mathbf{k})=\varepsilon_{\tau}(-\mathbf{k})
\end{aligned}
$$

Fourier expansion of $\varepsilon_{t}(\mathbf{k})$:

$$
\varepsilon_{\tau}(\mathbf{k}) \approx \sum_{j=1}^{N_{f}} D_{j}^{\tau} f_{j}(\mathbf{k})
$$

$$
D_{j}^{\tau}=\sum_{m=1}^{N^{\prime}} w_{m} f_{j}\left(\mathbf{k}_{\mathrm{m}}\right) \varepsilon_{\tau}\left(\mathbf{k}_{\mathrm{m}}\right)
$$

$$
f_{j}(\mathbf{k})=\sqrt{\frac{2}{n_{j}\left(1+\delta_{\mathbf{1}_{j} \mathbf{I}_{j}}\right)}}\left[\sum_{l=1}^{n_{j}} \cos \left(\mathbf{k} \cdot \mathbf{l}_{j l}\right)\right]
$$

Gilat net

Definition of a denser mesh than Pack-Monkorst in BZ

$$
\mathbf{k}_{n}=\frac{p_{n 1}}{S_{1}} \mathbf{b}_{1}+\frac{p_{n 2}}{S_{2}} \mathbf{b}_{2}+\frac{p_{n 3}}{S_{3}} \mathbf{b}_{3} \quad 0 \leq p_{n i} \leq S_{i}-1
$$

The first $B Z$ is partitioned into $S=S_{1} S_{2} S_{3}$ domains centred at \mathbf{k}_{n}

$$
n_{\text {electrons }}(\varepsilon)=\frac{2}{S}\left[\sum_{\tau=1}^{M} \sum_{n=1}^{S} \int_{p_{n 1}-1 / 2}^{p_{n 1}+1 / 2} \int_{p_{n 2}-1 / 2}^{p_{n 2}+1 / 2} \int_{p_{n 3}-1 / 2}^{p_{n 3}+1 / 2} \theta\left(\varepsilon-\varepsilon_{\tau}(\mathbf{k})\right) d p_{1} d p_{2} d p_{3}\right]
$$

Linear expansion of $\varepsilon_{\mathrm{T}}(\mathbf{k})$ in the domain of point \mathbf{k}_{n}

$$
\varepsilon_{\tau}(\mathbf{k}) \approx \varepsilon_{\tau}\left(\mathbf{k}_{n}\right)+\sum_{i=1}^{3} \varepsilon_{\tau}^{(i)}\left(\mathbf{k}_{n}\right)\left(p_{i}-p_{i n}\right)
$$

Calculating the density matrix: quadrature

$$
P_{\mu \nu}^{\text {total }}(\mathbf{l})=2\left[\frac{1}{\Omega_{B Z}} \sum_{\tau=1}^{M} \int_{\Omega_{B Z}} P_{\mu \nu}^{\tau}(\mathbf{k}, \mathbf{l}) \theta\left(\varepsilon_{F}-\varepsilon_{\tau}(\mathbf{k})\right) d \mathbf{k}\right]
$$

Fourier expansion $\quad P_{\mu \nu}^{\tau}(\mathbf{k}) \approx \sum_{j=1}^{N_{f}} D_{\mu \nu j}^{\tau}(\mathbf{l}) f_{j}(\mathbf{k})$

$$
\begin{gathered}
P_{\mu \nu}^{\text {total }}(\mathbf{l}) \approx \frac{2}{\Omega_{\text {recip }}}\left[\sum_{\tau=1}^{M} \sum_{m=1}^{N^{\prime}} W_{m}^{\tau} P_{\mu \nu}^{\tau}\left(\mathbf{k}_{m}, \mathbf{l}\right)\right] \\
W_{m}^{\tau}=w_{m} \sum_{i=1}^{N_{f}} Q_{i}^{\tau} f_{i}\left(\mathbf{k}_{m}\right) \\
Q_{j}^{\tau}=\frac{1}{\Omega_{B Z}} \int_{\Omega_{B Z}} f_{j}(\mathbf{k}) \theta\left(\varepsilon_{F}-\varepsilon_{\tau}(\mathbf{k})\right) d \mathbf{k}
\end{gathered}
$$

Calculation of the quadrature coefficients

full bands: $\quad W_{m}^{\tau}=w_{m}$
partially occupied bands: $\quad W_{m}^{\tau}=w_{m} \sum_{i=1}^{N_{f}} Q_{i}^{\tau} f_{i}\left(\mathbf{k}_{\mathrm{m}}\right)$

In Gilat net:

$$
Q_{j}^{\tau}=\left[\sum_{n=1}^{S^{\prime}} v_{n} f_{n j} \int_{p_{n 1}-1 / 2}^{p_{n 1}+1 / 2} \int_{p_{n 2}-1 / 2}^{p_{n 2}+1 / 2} \int_{p_{n 3}-1 / 2}^{p_{n 3}+1 / 2} \theta\left(\varepsilon_{F}-\varepsilon_{\tau}(\mathbf{k})\right) d p_{1} d p_{2} d p_{3}\right]
$$

