Bloch functions, crystalline orbitals and Fermi energy

Roberto Orlando

Dipartimento di Scienze e Tecnologie Avanzate Università del Piemonte Orientale "Amedeo Avogadro" Via Bellini 25/G, 15100 Alessandria, Italy

roberto.orlando@unito.it

Outline

The crystallographic model of a crystal

Our model of a perfect crystal

The Pack-Monkhorst net

Local basis sets and Bloch functions

The calculation of the Crystalline Orbitals with a local basis set

Bravais lattice

Unit cell: a volume in space that fills space entirely when translated by all lattice vectors.

The obvious choice:

a parallelepiped defined by \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 , three basis vectors with

the best \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 are as orthogonal as possible

the cell is as symmetric as possible (14 types)

A unit cell containing one lattice point is called primitive cell.

The Wigner-Seitz cell

Wigner-Seitz cell: the portion of space which is closer to one lattice point than to anyone else.

There are 14 different types of Wigner-Seitz cells.

A Wigner-Seitz cell is primitive by construction.

The reciprocal lattice

A reciprocal lattice with lattice basis vectors **b**₁, **b**₂, **b**₃ corresponds to every real (or direct) lattice with lattice basis vectors **a**₁, **a**₂, **a**₃. Basis vectors obey the following orthogonality rules:

or, equivalently,

$$\mathbf{b}_1 = 2\pi/V \,\mathbf{a}_2 \wedge \mathbf{a}_3 \quad \mathbf{b}_2 = 2\pi/V \,\mathbf{a}_3 \wedge \mathbf{a}_1 \quad \mathbf{b}_3 = 2\pi/V \,\mathbf{a}_1 \wedge \mathbf{a}_2$$
$$V = \mathbf{a}_1 \cdot \mathbf{a}_2 \wedge \mathbf{a}_3 \qquad V^* = (2\pi)^3/V$$

The first Brillouin zone

Brillouin zone: Wigner-Seitz cell in the reciprocal space.

Special points in the Brillouin zone have been classified and labelled with letters, used in the specification of paths.

The model of a perfect crystal

A **real crystal**: a macroscopic finite array of a very large number *n* of atoms/ions with surfaces

- the fraction of atoms at the surface is proportional to $n^{-1/3}$ (very small)
- if the surface is neutral, the perturbation due to the boundary is limited to a few surface layers
- a real crystal mostly exhibits bulk features and properties

A macro-lattice of *N* unit cells is good model of such a crystal

- as N is very large and surface effects are negligible in the bulk, the macro-lattice can be repeated periodically under the action of translation vectors N₁ a₁, N₂ a₂, N₃ a₃ without affecting its properties
- thus, our model of a perfect crystal coincides with the crystallographic model of an infinite array of cells containing the same group of atoms

The macro-lattice

Born-Von Kárman boundary conditions

Our model of a crystal consists of an infinite array of macro-lattices.

Every macro-lattice contains N unit cells

Every function or operator defined for the crystal then admits the following boundary conditions:

translation
symmetry
$$f(\mathbf{r} + N_i \mathbf{a}_i) = f(\mathbf{r}) \text{ for } i = 1, 2, 3$$

a new metric is defined
 $\mathbf{A}_i = N_i \mathbf{a}_i \text{ for } i = 1, 2, 3$

Pack-Monkhorst net

- A reciprocal lattice can be associated with the macro-lattice with metric **A**: the reciprocal micro-lattice with metric $\mathbf{B} = N^{-1} \mathbf{b}$
- this micro-lattice is much denser than the original reciprocal lattice with metric b
- the unit cell of the original reciprocal lattice with metric **b** can be partitioned into *N* micro-cells, each located by a vector (wave vector) **k**_m:

$$\mathbf{k}_{m} = \frac{m_{1}}{N_{1}}\mathbf{b}_{1} + \frac{m_{2}}{N_{2}}\mathbf{b}_{2} + \frac{m_{3}}{N_{3}}\mathbf{b}_{3}$$
 m_{1}, m_{2}, m_{3} integers

When referred to the 1^{st} Brillouin zone, the complete set of the k_m vectors form

the Pack-Monkhorst net

Integers *N_i* are called the **<u>shrinking factors</u>**

Character Table of the translation group

&

N translation operations \Rightarrow *N* classes \Rightarrow *N* one-dimensional irreducible

representations associated with $N \mathbf{k}_m$ vectors of Brillouin Zone

Due to the orthogonality between rows and columns

 $\sum \exp \left[i \mathbf{k}_m \cdot (\mathbf{l}_j - \mathbf{l}_{j'}) \right] = N \, \delta_{jj'}$

$$\sum_{j=l}^{N} exp\left[i\left(\mathbf{k}_{m}-\mathbf{k}_{m'}\right)\cdot\mathbf{l}_{j}\right] = N\,\delta_{mm'}$$

The reduced Pack-Monkhorst net

If vector $\mathbf{k}_{m}^{*} = \mathbf{K}_{(m)} - \mathbf{k}_{m}$ belongs to Pack-Monkhorst net, it may happen:

$$\mathbf{l} \mathbf{k}_m^* \neq \mathbf{k}_m$$

one of the two points (any) is assigned to the reduced Pack-Monkhorst net (type *C*).

$$\mathbf{2} \quad \mathbf{k}_m^* = \mathbf{k}_m$$

the point is assigned to the reduced Pack-Monkhorst net (type *R*); it can only be $\mathbf{k}_m = (0 \ 0 \ 0)$ or $\mathbf{k}_m = (\frac{1}{2} \frac{1}{2} \frac{1}{2})$

$$\sum_{m=1}^{N} \exp\left(i\mathbf{k}_{m} \cdot (\mathbf{l}_{j} - \mathbf{l}_{j'})\right) = N\delta_{jj'} \longrightarrow \sum_{m=1}^{N'} w_{m} \cos\left(\mathbf{k}_{m} \cdot (\mathbf{l}_{j} - \mathbf{l}_{j'})\right) = \delta_{jj'}$$
$$w_{m} = \frac{1}{N} (2 - \delta_{\mathbf{k}^{*},\mathbf{k}^{*}})$$

 $\mathbf{K}_m \mathbf{K}_m$

 \mathcal{N}

Atomic orbital basis set

Choice of a set of local functions -

L.C.A.O method

(Linear Combination of Atomic Orbitals)

 \Rightarrow *M* atomic orbitals $\chi_{\mu}(\mathbf{r})$ per cell

the local basis set $M \times N$ atomic orbitals $\chi_{\mu}(\mathbf{r} - \mathbf{l}_{j})$

representation of
operator
$$f$$

 $f_{\mu\nu}(\mathbf{l}_{j'}, \mathbf{l}_{j})$

$$f_{\mu\nu}(\mathbf{l}_{j'},\mathbf{l}_{j}) = \int_{V} \chi_{\mu}^{*}(\mathbf{r}-\mathbf{l}_{j'}) f(\mathbf{r}) \chi_{\nu}(\mathbf{r}-\mathbf{l}_{j}) d\mathbf{r}$$

Translation invariance of matrix elements

If in
$$f_{\mu\nu}(\mathbf{l}_{j'},\mathbf{l}_j) = \int_V \chi_{\mu}^*(\mathbf{r}-\mathbf{l}_{j'}) f(\mathbf{r})\chi_{\nu}(\mathbf{r}-\mathbf{l}_j) d\mathbf{r}$$

the origin is translated by $\mathbf{l}_{i'}$

$$f_{\mu\nu}\left(\mathbf{0},\mathbf{l}_{j}-\mathbf{l}_{j'}\right) = \int_{V} \chi_{\mu}^{*}(\mathbf{r}) f(\mathbf{r}+\mathbf{l}_{j'}) \chi_{\nu}\left[\mathbf{r}-\left(\mathbf{l}_{j}-\mathbf{l}_{j'}\right)\right] d\mathbf{r}$$

but, for translation invariance and if $f(\mathbf{r})$ is periodic with the same periodicity of the direct lattice,

$$\chi_{\mu} \left(\mathbf{r} - \mathbf{l}_{j'} \right) = \chi_{\mu} \left(\mathbf{r} \right)$$
$$\chi_{\nu} \left(\mathbf{r} - \mathbf{l}_{j} \right) = \chi_{\nu} \left[\mathbf{r} - \left(\mathbf{l}_{j} - \mathbf{l}_{j'} \right) \right] = \chi_{\nu} \left(\mathbf{r} - \mathbf{l}_{j''} \right)$$
$$f(\mathbf{r}) = f(\mathbf{r} + \mathbf{l}_{j'})$$

so that matrix elements are also translation invariant

$$f_{\mu\nu}\left(\mathbf{l}_{j'},\mathbf{l}_{j}\right) = f_{\mu\nu}\left(\mathbf{0},\mathbf{l}_{j}-\mathbf{l}_{j'}\right) = f_{\mu\nu}\left(\mathbf{0},\mathbf{l}_{j''}\right)$$

Representation of operators in the AO basis

Consequences of translation invariance:

$$f_{\mu\nu}(\mathbf{l}_{j'},\mathbf{l}_{j}) = f_{\mu\nu}(\mathbf{0},\mathbf{l}_{j'}-\mathbf{l}_{j})$$

Square Matrix: N^2 blocks of size M

Bloch functions

which are vectors of

the reciprocal space:

basis for the irreducible representation
of the translations group
$$\phi_{\mu}(\mathbf{k}_{m},\mathbf{r})$$

 $\phi_{\mu}(\mathbf{k}_{m},\mathbf{r})$
 $\phi_{\mu}(\mathbf{k}_{m},\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} \exp(i\mathbf{k}_{m}\cdot\mathbf{l}_{j})\chi_{\mu}(\mathbf{r}-\mathbf{l}_{j})$

Blach function basis

$$f_{\mu\nu}(\mathbf{k}_{m'},\mathbf{k}_{m}) = \frac{1}{N} \sum_{j,j'=1}^{N} e^{i\left(\mathbf{k}_{m}\cdot\mathbf{l}_{j}-\mathbf{k}_{m'}\cdot\mathbf{l}_{j'}\right)} \int_{V} \chi_{\mu}^{*}\left(\mathbf{r}-\mathbf{l}_{j'}\right) f(\mathbf{r})\chi_{\nu}\left(\mathbf{r}-\mathbf{l}_{j}\right) d\mathbf{r}$$

Bloch theorem

$$f_{\mu\nu}(\mathbf{k}_{m'},\mathbf{k}_{m}) = \frac{1}{N} \sum_{j'=1}^{N} e^{-i\mathbf{k}_{m'}\cdot\mathbf{l}_{j'}} \sum_{j=1}^{N} e^{i\mathbf{k}_{m}\cdot\mathbf{l}_{j}} f_{\mu\nu}(\mathbf{l}_{j'},\mathbf{l}_{j})$$

for translation invariance and after multiplying and dividing by $e^{i\mathbf{k}_m\cdot\mathbf{l}_{j'}}$

$$f_{\mu\nu}(\mathbf{k}_{m'},\mathbf{k}_{m}) = \frac{1}{N} \sum_{j'=1}^{N} e^{i(\mathbf{k}_{m}-\mathbf{k}_{m'})\cdot\mathbf{l}_{j'}} \sum_{j=1}^{N} e^{i\mathbf{k}_{m}\cdot(\mathbf{l}_{j}-\mathbf{l}_{j'})} f_{\mu\nu}(\mathbf{0},\mathbf{l}_{j}-\mathbf{l}_{j'})$$

but, as the sum over *j* extends to all direct lattice vectors, it is equivalent to summing over all vectors $\mathbf{l}_{i,i} = \mathbf{l}_i - \mathbf{l}_{i,i}$.

$$f_{\mu\nu}(\mathbf{k}_{m'},\mathbf{k}_{m}) = \frac{1}{N} \sum_{j'=1}^{N} e^{i(\mathbf{k}_{m}-\mathbf{k}_{m'})\cdot\mathbf{l}_{j'}} \sum_{j''=1}^{N} e^{i\mathbf{k}_{m}\cdot\mathbf{l}_{j''}} f_{\mu\nu}(\mathbf{0},\mathbf{l}_{j''})$$

and recalling the character orthogonality relation for rows, we get

$$f_{\mu\nu}(\mathbf{k}_{m'},\mathbf{k}_{m}) = \delta_{\mathbf{k}_{m}\mathbf{k}_{m'}} \sum_{j=1}^{N} \mathrm{e}^{i\mathbf{k}_{m}\cdot\mathbf{l}_{j}} f_{\mu\nu}(\mathbf{l}_{j})$$

Consequences of Bloch theorem

the AO basis $\chi_{\mu}(\mathbf{r} - \mathbf{l}_{j})$

Bloch function basis $\phi_{\mu}(\mathbf{k}_{m},\mathbf{r})$

N blocks of size M associated with \mathbf{k}_m

Calculation of the Crystalline Orbitals with the Self-consistent-field approximation

Calculation of ($M^2 \times N$) elements of F: $F_{\mu\nu}(\mathbf{l})$

2 Representation in the basis of Bloch functions:

At every point k_m of Pack-Monkhorst net:

$$F_{\mu\nu}(\mathbf{k}_m) = \sum_{j=1}^{N} \exp(i\mathbf{k}_m \cdot \mathbf{l}_j) F_{\mu\nu}(\mathbf{l}_j)$$

6 At every \mathbf{k}_m , the eigenvalue equation of size *M* is solved:

$$\mathbf{F}(\mathbf{k}_m) \mathbf{C}(\mathbf{k}_m) = \mathbf{S}(\mathbf{k}_m) \mathbf{C}(\mathbf{k}_m) \mathbf{E}(\mathbf{k}_m)$$

M crystalline orbitals $\Psi_{\tau}(\mathbf{k}_{m},\mathbf{r})$ associated with $\varepsilon_{\tau}(\mathbf{k}_{m})$ $\Psi_{\tau}(\mathbf{k}_{m},\mathbf{r}) = \sum_{\mu=1}^{M} C_{\mu\tau}(\mathbf{k}_{m}) \phi_{\mu}(\mathbf{k}_{m},\mathbf{r})$

Calculation of the Crystalline Orbitals with the Self-consistent-field approximation

 \mathbf{S} Fermi Energy \mathcal{E}_{F}

• Calculation of density matrix elements in the AO basis from occupied CO

♦ in reciprocal space

$$P_{\mu\nu}^{total}(\mathbf{k}_{m}) = 2 \left[\sum_{\tau \text{ occupied}}^{M} C_{\mu\tau}(\mathbf{k}_{m}) C_{\nu\tau}(\mathbf{k}_{m})^{*} \right]$$

♦ in direct space

$$P_{\mu\nu}^{total}(\mathbf{l}_{j}) = \frac{1}{N} \sum_{m=1}^{N} \exp(-i\mathbf{k}_{m} \cdot \mathbf{l}_{j}) P_{\mu\nu}^{total}(\mathbf{k}_{m})$$

✤ ready for the calculation of F in the AO basis during the next iterative step

Band structure representation

Fermi energy

$$n_{states} = 2 \left[\sum_{\tau=1}^{M} \sum_{m=1}^{N} \theta(\varepsilon_F - \varepsilon_\tau(\mathbf{k_m})) \right] / N$$

with $\theta(x)=0$ if x < 0 and $\theta(x)=1$ if $x \ge 0$

$$n_{states} = 2 \left[\frac{1}{\Omega_{BZ}} \sum_{\tau=1}^{M} \int_{BZ} \theta(\varepsilon_F - \varepsilon_\tau(\mathbf{k})) d\mathbf{k} \right]$$

\mathbf{b} definition of a new function :

$$n_{states}(\varepsilon) = 2 \left[\frac{1}{\Omega_{BZ}} \sum_{\tau=1}^{M} \int_{\Omega_{BZ}} \theta(\varepsilon - \varepsilon_{\tau}(\mathbf{k})) d\mathbf{k} \right]$$

 \Rightarrow iterative evaluation of $\mathcal{E}_{F}(n_{\text{states}}(\epsilon) - n_{\text{states}})$

Definition of the density matrix

$$P_{\mu\nu}^{total}(\mathbf{l}) = 2 \left[\frac{1}{\Omega_{BZ}} \sum_{\tau=1}^{M} \int_{BZ} P_{\mu\nu}^{\tau}(\mathbf{k}, \mathbf{l}) \ \theta(\varepsilon_{F} - \varepsilon_{\tau}(\mathbf{k})) \ d\mathbf{k} \right]$$

$$P_{\mu\nu}^{\tau}(\mathbf{k},\mathbf{l}) = C_{\mu\tau}(\mathbf{k}) \ C_{\nu\tau}^{*}(\mathbf{k}) \exp\left(-i\,\mathbf{k}\cdot\mathbf{l}\right)$$

Fourier analysis of energy bands

Analytic expression of even periodic function $\varepsilon_{\tau}(\mathbf{k})$ in reciprocal space

$$\varepsilon_{\tau}(\mathbf{k} + \mathbf{K}) = \varepsilon_{\tau}(\mathbf{k})$$
$$\varepsilon_{\tau}(\mathbf{k}) = \varepsilon_{\tau}(-\mathbf{k})$$

Fourier expansion of $\epsilon_t(\mathbf{k})$:

$$\varepsilon_{\tau}(\mathbf{k}) \approx \sum_{j=1}^{N_f} D_j^{\tau} f_j(\mathbf{k})$$

$$D_j^{\tau} = \sum_{m=1}^{N'} w_m f_j(\mathbf{k}_m) \varepsilon_{\tau}(\mathbf{k}_m)$$

$$f_j(\mathbf{k}) = \sqrt{\frac{2}{n_j(1+\delta_{\mathbf{l}_j\mathbf{l}_j})}} \left[\sum_{l=1}^{n_j} \cos(\mathbf{k} \cdot \mathbf{l}_{jl}) \right]$$

Gilat net

Definition of a **denser mesh** than Pack-Monkorst in BZ

$$\mathbf{k}_{n} = \frac{p_{n1}}{S_{1}} \mathbf{b}_{1} + \frac{p_{n2}}{S_{2}} \mathbf{b}_{2} + \frac{p_{n3}}{S_{3}} \mathbf{b}_{3} \qquad 0 \le p_{ni} \le S_{i} - 1$$

The first BZ is partitioned into $S = S_1 S_2 S_3$ domains centred at \mathbf{k}_n

$$n_{\text{electrons}}(\varepsilon) = \frac{2}{S} \left[\sum_{\tau=1}^{M} \sum_{n=1}^{S} \int_{p_{n1}-1/2}^{p_{n1}+1/2} \int_{p_{n2}-1/2}^{p_{n2}+1/2} \int_{p_{n3}-1/2}^{p_{n3}+1/2} \theta(\varepsilon - \varepsilon_{\tau}(\mathbf{k})) \, dp_1 dp_2 dp_3 \right]$$

Linear expansion of $\varepsilon_{\tau}(\mathbf{k})$ in the domain of point \mathbf{k}_n

$$\varepsilon_{\tau}(\mathbf{k}) \approx \varepsilon_{\tau}(\mathbf{k}_n) + \sum_{i=1}^{3} \varepsilon_{\tau}^{(i)}(\mathbf{k}_n) (p_i - p_{in})$$

Calculating the density matrix: quadrature

$$P_{\mu\nu}^{total}(\mathbf{l}) = 2 \left[\frac{1}{\Omega_{BZ}} \sum_{\tau=1}^{M} \int_{\Omega_{BZ}} P_{\mu\nu}^{\tau}(\mathbf{k}, \mathbf{l}) \ \theta(\varepsilon_{F} - \varepsilon_{\tau}(\mathbf{k})) \ d\mathbf{k} \right]$$

Fourier expansion

$$P_{\mu\nu}^{\tau}(\mathbf{k}) \approx \sum_{j=1}^{N_f} D_{\mu\nu j}^{\tau}(\mathbf{l}) f_j(\mathbf{k})$$

$$P_{\mu\nu}^{total}(\mathbf{l}) \approx \frac{2}{\Omega_{recip}} \left[\sum_{\tau=1}^{M} \sum_{m=1}^{N'} W_m^{\tau} P_{\mu\nu}^{\tau}(\mathbf{k}_m, \mathbf{l}) \right]$$

$$W_m^{\tau} = w_m \sum_{i=1}^{N_f} Q_i^{\tau} f_i(\mathbf{k}_m)$$

$$Q_{j}^{\tau} = \frac{1}{\Omega_{BZ}} \int_{\Omega_{BZ}} f_{j}(\mathbf{k}) \ \theta(\varepsilon_{F} - \varepsilon_{\tau}(\mathbf{k})) \ d\mathbf{k}$$

Calculation of the quadrature coefficients

full bands:
$$W_m^{\tau} = w_m$$

partially occupied bands:

$$W_m^{\tau} = w_m \sum_{i=1}^{N_f} Q_i^{\tau} f_i(\mathbf{k}_m)$$

In Gilat net:

$$Q_{j}^{\tau} = \left[\sum_{n=1}^{S'} v_{n} f_{nj} \int_{p_{n1}-1/2}^{p_{n1}+1/2} \int_{p_{n2}-1/2}^{p_{n2}+1/2} \int_{p_{n3}-1/2}^{p_{n3}+1/2} \theta(\varepsilon_{F} - \varepsilon_{\tau}(\mathbf{k})) dp_{1} dp_{2} dp_{3}\right]$$