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Bravais lattice
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Unit cell: a volume in space that fills 
space entirely when translated by all 
lattice vectors.

The obvious choice:

a parallelepiped defined by a1, a2, a3, 
three basis vectors with

the best a1, a2, a3 are as orthogonal 
as possible

the cell is as symmetric as possible 
(14 types)

A unit cell containing one lattice point is called primitive cell.



The Wigner-Seitz cell

Wigner-Seitz cell: the portion of
space which is closer to one
lattice point than to anyone else.

There are 14 different types of 
Wigner-Seitz cells. 

A Wigner-Seitz cell is primitive by
construction.



The reciprocal lattice

A reciprocal lattice with lattice basis vectors b1, b2, b3 corresponds
to every real (or direct) lattice with lattice basis vectors a1, a2, a3.
Basis vectors obey the following orthogonality rules:

b1·a1 = 2π b2·a2 = 2π b3·a3 =2π
b1·a2 = 0              b2·a3 = 0 b3·a1 = 0
b1·a3 = 0              b2·a1 = 0 b3·a2 = 0

or, equivalently,

b1 = 2π/V a2Λa3 b2 = 2π/V a3Λa1 b3 = 2π/V a1Λa2

V = a1·a2Λa3 V* = (2π)3/V



The first Brillouin zone

transformation to the 
reciprocal space

First Brillouin zone 
for a fcc latticeUnit cells for face-

centered-cubic crystals

Brillouin zone: Wigner-Seitz cell in the 
reciprocal space.

Special points in the Brillouin zone have 
been classified and labelled with letters, 
used in the specification of paths.

Wigner-Seitz cell for 
body-centered-cubic 

crystals



The model of a perfect crystal

A real crystal: a macroscopic finite array of a very large number n of atoms/ions
with surfaces

the fraction of atoms at the surface is proportional to  n -1/3 (very small)

if the surface is neutral, the perturbation due to the boundary is limited to a few
surface layers

a real crystal mostly exhibits bulk features and properties

A macro-lattice of N unit cells is good model of such a crystal

as N is very large and surface effects are negligible in the bulk, the macro-lattice
can be repeated periodically under the action of translation vectors N1 a1, N2 a2, 
N3 a3 without affecting its properties

thus, our model of a perfect crystal coincides with the crystallographic model of an 
infinite array of cells containing the same group of atoms



The macro-lattice
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Commutative group of N
translation operators Tl



Born-Von Kárman boundary conditions

Our model of a crystal consists of an infinite array of macro-lattices.

Every macro-lattice contains N unit cells

Every function or operator defined for the crystal then admits the following
boundary conditions:

f (r + Niai) = f (r)  for i = 1, 2, 3
translation 
symmetry

a new metric is defined

Ai = Ni ai for i = 1, 2, 3



Pack-Monkhorst net
A reciprocal lattice can be associated with the macro-lattice with metric A:

the reciprocal micro-lattice with metric B = N-1 b

this micro-lattice is much denser than the original reciprocal lattice 
with metric b

the unit cell of the original reciprocal lattice with metric b can be
partitioned into N micro-cells, each located by a vector (wave vector)
km:

31 2
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1 2 3

, , integersm
mm m m m m

N N N
= + +k b b b

When referred to the 1st Brillouin zone, the complete set of the km vectors form

the Pack-Monkhorst net

Integers Ni are called the shrinking factors



Character Table of the translation group
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The reduced Pack-Monkhorst net

*
( )m m m= −k K kIf vector                                belongs to Pack-Monkhorst net, it may happen:
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one of the two points (any) is assigned to 
the reduced Pack-Monkhorst net (type C).

the point is assigned to the reduced Pack-Monkhorst
net (type R); it can only be km = (0 0 0) or km = (½ ½
½)
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Atomic orbital basis set

L.C.A.O method 
(Linear Combination of Atomic Orbitals)

Choice of a set of local functions

⇒ M atomic orbitals per cell( )µχ r

the local basis set
M×N atomic orbitals

( )jµχ r - l

representation of
operator f

( , )j jfµν ′l l

*( , ) ( ) ( ) ( - )  j jj j
V

f f dµµν νχ χ′ ′= ∫l l r - l r r l r



Translation invariance of matrix elements
*( , ) ( ) ( ) ( )  j jj j

V
f f dµµν νχ χ′ ′= − −∫l l r l r r l r

( ) ( )jµ µχ χ′− =r l r

but, for translation invariance and if f(r) is periodic with the same
periodicity of the direct lattice,

( ) ( ) ( )j j j jν ν νχ χ χ′ ′′⎡ ⎤− = − − = −⎣ ⎦r l r l l r l

the origin is translated by lj’

If in

( ) ( )*, ( ) ( )   j jj j j
V

f f dµµν νχ χ′ ′ ′⎡ ⎤− −⎣ ⎦= + −∫0 l l r r l r l l r

( ) ( )jff ′= +r r l
so that matrix elements are also translation invariant

( ) ( ) ( ), , ,j jj j jf f fµν µν µν′ ′ ′′−= =0l l l l 0 l



Representation of operators in the AO basis

( , ) ( , )j j j jf fµν µν′ ′= −l l 0 l lConsequences of translation invariance:

lj0

Square Matrix: N2

blocks of size M

lj’



Bloch functions

The local basis
M×N atomic orbitals

( )jµχ r - l

Bloch function basis
basis for the irreducible representation

of the translations group

( , )mµφ k r

1

1( , ) exp( ) ( )
N

m m j j
j

i
Nµ µφ χ

=

= ⋅ −∑k r k l r l

In this basis set the 
matrix element fµν
depends on two new 
indices: km and km’
which are vectors of 
the reciprocal space:
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Bloch theorem

for translation invariance and after multiplying and dividing by
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but, as the sum over j extends to all direct lattice vectors, it is equivalent
to summing over all vectors lj” = lj – lj’
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and recalling the character orthogonality relation for rows, we get
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Consequences of Bloch theorem

Bloch function basis
( , )mµφ k r

the AO basis
( )jµχ r - l

0

0
0

N blocks of size M associated with km



Representation of one-electron operator F in the basis of the AOs :

Calculation of the Crystalline Orbitals with
the Self-consistent-field approximation

( )Fµν lCalculation of (M 2 × N) elements of F:

At every km, the eigenvalue equation of size M is solved:

Representation in the basis of Bloch functions:

1
) exp( ) ( )

N

m m j j
j

F i Fµν µν
=

= ⋅∑(k k l l

At every point km of Pack-Monkhorst net:

F( ) C( ) S( )C( )E( )m m m m m=k k k k k

M crystalline orbitals associated with( , )mτΨ k r ( )mτε k

1
( , ) ( ) ( , )

M

m m mCτ µτ µ
µ

φ
=

Ψ =∑k r k k r



Aufbau principle in populating electronic bands

Calculation of the Crystalline Orbitals with
the Self-consistent-field approximation

Fermi Energy εF

Calculation of density matrix elements in the AO basis from occupied CO

in reciprocal space

*
m m m

 
( ) 2 ( ) ( ) )

M
total

occupied
P C Cµν µτ ντ

τ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑k k k

in direct space

m j m
1

1) exp( ) ( )
N

total total

m
P i P

Nµν µν
=

= − ⋅∑j(l k l k

ready for the calculation of F in the AO basis during the next iterative step



m(k )τε m(k )τε

⎯⎯→⎯
mk

m(k )τε

nstates: number of states per direct lattice cell

τth energy band

εF
nstates/2 doubly 
occupied bands 
(closed shell)

partially filled band

full band

Band structure representation



Fermi energy
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⇒ iterative evaluation of εF (nstates(ε)-nstates)



Definition of the density matrix
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Fourier analysis of energy bands

Analytic expression of even periodic function ετ(k) in reciprocal space
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( ) ( )τ τε ε= −k k
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Gilat net

Definition of a denser meshdenser mesh than Pack-Monkorst in BZ
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Calculating the density matrix: quadrature
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Calculation of the quadrature coefficients

m mW wτ =full bands:

m
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In Gilat net:
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