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Bravais lattice




The Wigner-Seitz cell

Wigner-Seitz cell. the portion of
space which is closer to one
lattice point than to anyone else.

There are 14 different types of
Wigner-Seitz cells.

A Wigner-Seitz cell is primitive by
construction.




The reciprocal lattice

A reciprocal lattice with lattice basis vectors b,, b,, b, corresponds
to every real (or direct) lattice with lattice basis vectors a,, a,, a,.
Basis vectors obey the following orthogonality rules:

b,-a; =2m b,-a, =21 b,-a, =21

or, equivalently,
b,=2m/Va,Na; b,=2m/VaN\a, by=2m/Va\a,

V=ajaN\a; V*¥=2m3V



The first Brillouin zone

transformation to the
reciprocal space

—

First Brillouin zone
for a fcc lattice

Unit cells for face-
centered-cubic crystals

Brillouin zone: Wigner-Seitz cell in the
reciprocal space.
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Special points in the Brillouin zone have
been classified and labelled with letters,
used in the specification of paths.

Wigner-Seitz cell for
body-centered-cubic
crystals
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The model of a perfect crystal

A real crystal: a macroscopic finite array of a very large number n of atoms/ions
with surfaces

= the fraction of atoms at the surface is proportional to n -1/3 (very small)

= if the surface is neutral, the perturbation due to the boundary is limited to a few
surface layers

= a real crystal mostly exhibits bulk features and properties

A macro-lattice of N unit cells is good model of such a crystal

= as N is very large and surface effects are negligible in the bulk, the macro-lattice

can be repeated periodically under the action of translation vectors N, a,, N, a,,
N, a; without affecting its properties

» thus, our model of a perfect crystal coincides with the crystallographic model of an
infinite array of cells containing the same group of atoms



The macro-lattice

—1

T =(T.) =T,

Na; Q;

Commutative group of N
translation operators T,



Our model of a crystal consists of an infinite array of macro-lattices.

Every macro-lattice contains N unit cells

Every function or operator defined for the crystal then admits the following
boundary conditions:

- f(r+Na)=f(r) fori=1,2,3
\ a new metric is defined

translation
symmetry




Pack-Monkhorst net

A reciprocal lattice can be associated with the macro-lattice with metric A:
the reciprocal micro-lattice with metric B = N-' b

= this micro-lattice is much denser than the original reciprocal lattice
with metric b

= the unit cell of the original reciprocal lattice with metric b can be

partitioned into N micro-cells, each located by a vector (wave vector)
k .

m*

m m .
k =—1tb, + M b, +—Db, m,, m,,m, integers
Nl 2 3

When referred to the 1t Brillouin zone, the complete set of the k,, vectors form

the Pack-Monkhorst net

Integers N, are called the shrinking factors




Character Table of the translation group

N translation operations = Nclasses = N one-dimensional irreducible
representations

0 Ij Ij, associated with
N k., vectors of
0 1 SO | RO | Brillouin Zone
K| 1 exp(ik,, 1) exp(ik -1.)
. Due to the

. orthogonality
...... between rows

k| 1 exp(ikm,.lj) exp(l‘km,.lj,) ...... and columns

l

Zexp[i(km—km,)-lj =No, . & iexp[ikm-(lj—lj,)]:Né'ﬁ,
m=1



The reduced Pack-Monkhorst net

If vector k; =K, | — km belongs to Pack-Monkhorst net, it may happen:

(m)

o k,=k,
one of the two points (any) is assigned to 5 K /® k;
the reduced Pack-Monkhorst net (type C). / ®
12) k =k K, &
the point is assigned to the reduced Pack-Monkhorst SRS F i

net (type R); itcanonly be k,, =(000)ork, = (2"
72)

N e
Zlexp(ikm-(lj—”)):]\fé‘jj, — lemcos(km.(|j_|j,):5jjl

1
Wm — N(z_gkjnkm)



L.C.A.O method

(Linear Combination of Atomic Orbitals)

Choice of a set of local functions ——

= M atomic orbitals y, () per cell




Translation invariance of matrix elements

Ifin fw(ljl,lj)=j;c;(r—l,-f)f(r)zv(r—l,-) dr
the origin is translated It;y ;.
fw(o,lj_lj,)zj;(;(r) f+U)z r=(1,-1,)] dr

but, for translation invariance and if f(r) is periodic with the same
periodicity of the direct lattice,

Zﬂ(r_lj'):;(u(r)
;(V(r—lj)zzv[r—(lj—Ij,)]z;(v(r—lj,,)
f(n=rr+l,)

so that matrix elements are also translation invariant

fﬂv(lj,,lj)=fﬂv(0,lj —Ij,)sz(O,Ij,,)



Representation of operators in the AO basis

Consequences of translation invariance:  f, (I,,1,)= 7, (0,1, -1,)

0

Square Matrix: N2
blocks of size M




In this basis set the

matrix element /|
depends on two new
indices: k., and k...

which are vectors of
the reciprocal space:




Bloch theorem

f k )_ Ze iK1 Z iK,, .ijﬂv(lj,’lj)

for translation invariance and after multlplylng and dividing by e

S (Ko K, )—_i ottt ZNleikm'(lj_lj,)fuv(o’lj_Ij’)

ik,

mj

j'=1 j=1
but, as the sum over j extends to all direct lattice vectors, it is equivalent
to summing over all vectors I,. = |, - I,
N
(K=K ) K,
fyv(km’k )__Z; ;e fyv(o’lj")
= =

and recalling the character orthogonality relation for rows, we get

N 1 -l .
Sy (Ko K = §k’”k’”' Zlelkm ’ S (Ij)
=



Consequences of Bloch theorem

the AO basis Bloch function basis

2, (r-1;) . (K,.r)

0
f

d,

N blocks of size M associated with k




Calculation of the Crystalline Orbitals with
the Self-consistent-field approximation

Calculation of (M 2x N) elements of F:  F (I)

® Representation in the basis of Bloch functions:

At every point k_, of Pack-Monkhorst net:

N
F, (k)= exp(k,-1,) F, ()
j=1
® Atevery Kk, , the eigenvalue equation of size M is solved:
Fk,)C(k,)=35(k,)C(k,)E(K,)

M crystalline orbitals W _(k ,r) associated with ¢, (K,,)

¥, (K1) =2 (K,) 6, (K,1)



Calculation of the Crystalline Orbitals with
the Self-consistent-field approximation

A 4 \uivau |JI III\JI'JIU 11 |J\J|JUICALII Iu vivuLlu Vi liv vdliuo

Y Fermi Energy &-

© Calculation of density matrix elements in the AO basis from occupied CO

% in reciprocal space

P (Ky) = 2{ i Cr(Kp) €, (km)*)}

T occupied

% in direct space
P;‘f“l(lj)— Zexp( —iK I)P"”“l( )

% ready for the calculation of F in the AO basis during the next iterative step



Band structure representation

n : number of states per direct lattice cell

states-

g.(K.) T energy band

T

}

EF

n states

£.(Ky)

partially filled band

/2 doubly

occupied bands
(closed shell)

full band

£.(Ky)

X

—3

b,

M

I

ol

_;<>/
[N




Fermi energy

M N with  §(x)=0 if x < 0 and
Hstates = 2|:ZZQ(8F — & (km))i|/N Ggg:'l :fiZ 0 i

=1 m=1

M
n, = 2{ 1 Z J' O(e, —¢&.(K)) dk}
QBZ t=1 Bz
& definition of a new function :
1 M
Ptates (g) =2 Z _[ ‘9(‘9 — & (k)) dK
QBZ =1Q,,

— iterative evaluation of & (n (€)-n

states states)



Definition of the density matrix

P;itala) = 2|:Q];;Z 25“210/; (k, 1) O(¢, —¢.(K)) dk:|

P, (K, 1)=C,. (k) C, (K)exp(-ik-I)



Fourier analysis of energy bands

Analytic expression of even periodic function ¢.(k) in reciprocal space
¢, (k+K)=¢ (k)
¢, (k) =¢,(-k)

"y
Fourier expansion of g,(K): g.(K) = ZDJTf] (k)
v
D = Zwm fiky,) e (k)
m=1

1, (k)= J @ @I){Zcosm w}




Gilat net

Definition of a denser mesh than Pack-Monkorst in BZ

kn:pnlb1+pn2b2+pn3b3 0<p.<S -1
A S, AR

The first BZis partitioned into S = S, S, S; domains centred at k|

-1/2 -1/2 -1/2
=1 n=1 Pn1 Pn2 Pn3

Ayoctrons (€) = i{ii J'pn1+1/2 J- o +Ll2 J-pn3+1/2 0(e - & (K)) dpldpzdpS}

Linear expansion of £(k) in the domain of point k,,

£.()~e.(,)+ 260 (K,) (.- p,)



Calculating the density matrix: quadrature

1
Q

P/j‘f“l(l)z{ f j P (k1) O(e, —e.(K)) dk}

Bz =l g,

Ny
Fourier expansion P (K) ~ ZD;V].(I) /;(K)
=1

IR bW I TR A )

recip L T =1 m=1

Ny

an =W, QiT fz(km)

i=1

1
Q

| £,(<) 0z, —£.(K)) dk

BZ QBZ

0]-




Calculation of the quadrature coefficients

full bands: W'=w

partially occupied bands: W' =w »|0| f,(K,.)

In Gilat net:

2 4112 o p+LI2 o p o+1]2
0;|= [Zvnfnj [ T 0=, (K)) dpldpzdpg}
n=1

p—112 dp,,-112 Jp,3-1/2



