

Computed energy	System1	System2	Example				
Cohesive	Bulk	Atoms	Ionic, covalent crystals				
Interaction	Bulk	Molecules	Molecular crystals				
Relative stability	Bulk	Bulk	Polymorphism				
Solid state reaction	Bulk	Bulk	$MgO + Al_2O_3 \rightarrow MgAl_2O_4$				
Superexchange	AFM bulk	FM bulk	NiO				
Surface	Bulk	Slab	MgO(100)				
Surface stability	Slab	Slab	MgO(100) vs MgO(110)				
Interface	Slab	Slabs	MgO monolayer on Ag(100)				
Adsorption	Slab + molecule	Slab, molecule	CO on MgO(100)				
Adsorption	Bulk (microporous)	molecule	NH ₃ in acidic zeolites				
Substitution	Bulk with defect	Bulk, atoms	C in Si				
Reliable? It dep • Required acc • Big or small r	pends uracy umbers						
		adsorption)				

ASCS2006, Spokane, 17-22/09/2006

Method	α-Crystobalite	α -Tridymite	
HF	0.0	1.5	
HF+corr	2.2	3.5	
SVWN	9.3	12.6	
B3LYP	1.4	4.0	
HF//SM-HF	0.5	1.8	
B3LYP//SM-B3	0.9	3.3	
HF//SM-Exp	-1.1	-0.5	
B3LYP//SM-Exp	2.4	3.7	
SM-HF	-3.8	-3.0	
SM-B3	1.6	7.4	
SM-Exp	3.5	4.9	
Experiment	2.8±2.2	3.2±2.6	
Experiment'	2.6	2.9	
elative energies with	n respect to α -0	Quartz (kJ/mo	I/SiO_2)

Axial def	ect	UHF	$\Delta E = (E_{de}$	ef +	$E_{Be}) - (E_{per})$	+ E _{Li})
Supe	ercell	E _{tot} (BeO)	E _{BeO}		E _{tot} (BeOLi)	ΔE
S ₃₂	(2 2 2)	-1435.23633	-89.70227		-1427.83826	0.25818
S ₄₈	(2 2 3)	-2152.85450	-89.70227		-2145.45400	0.26061
S ₆₄	(2 2 4)	-2870.47266	-89.70227		-2863.07115	0.26162
S ₇₂	(3 3 2)	-3229.28175	-89.70227		-3221.89975	0.24211
S ₁₀₈	(3 3 3)	-4843.92262	-89.70227		-4836.53959	0.24314
S ₁₄₄	(3 3 4)	-6458.56349	-89.70227		-6451.18019	0.24341
S ₁₈₀	(3 3 5)	-8073.20437	-89.70227		-8065.82080	0.24368
S ₂₁₆	(3 3 6)	-9687.84524	-89.70227		-9680.46139	0.24396
S ₂₅₂	(3 3 7)	-11302.48612	-89.70227		-11295.10206	0.24417
S ₁₂₈	(4 4 2)	-5740.94533	-89.70227		-5733.56656	0.23888
S ₁₉₂	(4 4 3)	-8611.41799	-89.70227		-8604.03731	0.24079
S ₂₅₆	(4 4 4)	-11481.89066	-89.70227		-11474.50982	0.24095
S ₃₀₀	(5 5 3)	-13455.34061	-89.70227		-13447.96104	0.23968
E _{Beo} = -89.70	227 ; E _{Be} = -1	4.56948 ; E _{Li} = -7.429	59		Energi	es in Hartree

Useful references

For other information:

R. Dovesi, "*Total energy and related properties*" in C. Pisani (Ed.), Lecture Notes in Chemistry, 67 (1996)

R. Dovesi, B. Civalleri, R. Orlando, C. Roetti, V.R. Saunders *"Ab initio Quantum Simulation in Solid State Chemistry"* in Reviews in Computational Chemistry 21 (2005) 1

ASCS2006, Spokane, 17-22/09/2006

41