Strategies in geometry optimization of solids

Claudio M. Zicovich-Wilson Facultad de Ciencias, U. A. del Edo. de Morelos, México

Ab initio Simulation of Crystalline Systems ASCS2006

September 17-22, 2006 - Spokane, Washington (USA)

• The same chemical compound *(same atoms, same bonds)* may have many configurations in what concerns its nuclear positions.

- The same chemical compound *(same atoms, same bonds)* may have many configurations in what concerns its nuclear positions.
- In general these nuclear configurations have different energies, and experimentally they appear as an statistical distribution of nuclear arrangements.

- The same chemical compound (same atoms, same bonds) may have many configurations in what concerns its nuclear positions.
- In general these nuclear configurations have different energies, and experimentally they appear as an statistical distribution of nuclear arrangements.
- What of such configurations (geometries) can be adopted as a suitable representative of the compound in order to compute the energy dependent properties?

- The same chemical compound (same atoms, same bonds) may have many configurations in what concerns its nuclear positions.
- In general these nuclear configurations have different energies, and experimentally they appear as an statistical distribution of nuclear arrangements.
- What of such configurations (geometries) can be adopted as a suitable representative of the compound in order to compute the energy dependent properties?

Potential Energy of a nuclear configuration

According to the Born-Oppenheimer approximation, the *static* total energy depends uniquely on the nuclear positions:

$$E = F(x_1, x_2, \cdots, x_{3N})$$

 $(x_i \text{ Cartesian coordinates of the } N \text{ núclei})$

Internal degrees of freedom

Molecules:

Internal degrees of freedom

• There are infinite choices to define the ${\cal M}$ internal coordinates

- There are infinite choices to define the ${\cal M}$ internal coordinates
- The best one should be that who makes easier the study of the potential energy function

- $\bullet\,$ There are infinite choices to define the M internal coordinates
- The best one should be that who makes easier the study of the potential energy function
 - Let's assume that $\mathbf{v} = (v_1, v_2, \cdots, v_M)$ is the *nuclear configuration* vector in a given coordinate choice

A Potential Energy Hypersurface (PEH)

$$E=F(v_1,v_2,\cdots,v_M)$$

How to describe the features of the PEH?

♥ Facultad de Ciencias

A Potential Energy Hypersurface (PEH)

$$E=F(v_1,v_2,\cdots,v_M)$$

How to describe the features of the PEH?

A relevant information (invariant under the coordinate system choice) is provided by the critical points $(v_0, v'_0 \ y \ v''_0)$

Facultad de Ciencias

Critical Points

Condition:

$${f g}({f v}_0)\equiv g_i({f v}_0)=rac{\partial F}{\partial v_i}({f v}_0)=0$$

If v is M-dimensional, there are M + 1 different types of critical points. The most relevant in quantum chemistry are:

Critical Points

Condition:

$${f g}({f v}_0)\equiv g_i({f v}_0)=rac{\partial F}{\partial v_i}({f v}_0)=0$$

If v is M-dimensional, there are M + 1 different types of critical points. The **most** relevant in quantum chemistry are:

• minima (v_0,v_0')

Critical Points

Condition:

$${f g}({f v}_0)\equiv g_i({f v}_0)=rac{\partial F}{\partial v_i}({f v}_0)=0$$

If v is M-dimensional, there are M + 1 different types of critical points. The **most** relevant in quantum chemistry are:

• minima (v_0, v_0')

saddle points (v_0'')

The Hessian Matrix

$$H_{ij} = rac{\partial^2 F}{\partial v_i \partial v_j} igg|_{\mathrm{v}_0}$$

Eigenvalue equation:

$$\mathbf{H}\mathbf{t}_{\mu} = h_{\mu}\mathbf{t}_{\mu}$$

 $h_{\mu} \longrightarrow$ real (surface curvature in the c. p.). \mathbf{t}_{μ} are special directions in the coordinate space.

The order of a critical point v_0 is the number of negative eigenvalues (n) of the Hessian in that point.

The order of a critical point v_0 is the number of negative eigenvalues (n) of the Hessian in that point.

The order of a critical point v_0 is the number of negative eigenvalues (n) of the Hessian in that point.

• $n = 0 \longrightarrow minimum$

• $n = 1 \longrightarrow$ saddle point

The order of a critical point v_0 is the number of negative eigenvalues (n) of the Hessian in that point.

Reaction path in a bidimensional PEH

$$\mathbf{A} - \mathbf{B} \cdots \mathbf{C} \to \mathbf{A} \cdots \mathbf{C} - \mathbf{B}$$

Reaction path in a bidimensional PEH

Critical points

Critical points <	<u>minima</u> :	$Clasic \rightarrow$	0 K most stable $\downarrow \text{ temp.}$ $\simeq \text{ most probable}$
	saddle point:	Quantum \rightarrow semi-clasic \rightarrow	\approx most probable zero-point correction thermochemistry Transition state \approx Activation energy Kinetics
	<		Reaction Path

Optimization Methods

Optimization Methods

non-gradient

Optimization Methods

non-gradientgradient

Non gradient methods: line optimization

Extension to multiple parameters

Direction set method

Extension to multiple parameters

Direction set method

• Each parameter is separately line-optimized in a given sequence

Extension to multiple parameters

Direction set method

- Each parameter is separately line-optimized in a given sequence
- A cycle finishes when all parameters have been line-optimized

Extension to multiple parameters

Direction set method

- Each parameter is separately line-optimized in a given sequence
- A cycle finishes when all parameters have been line-optimized
- Convergence is reached when the total energy becomes stable under a given numerical criterion

Convergence of the direction set method in a bidimensional surface.

→ Directions are not fully independent (conjugate)

Second order Taylor decomposition of F:

$$\begin{array}{ll} F(\mathbf{u}) &= F(\mathbf{0}) + \sum_{i} \frac{\partial F}{\partial u_{i}} u_{i} + \frac{1}{2} \sum_{ij} \frac{\partial^{2} F}{\partial u_{i} \partial u_{j}} u_{i} u_{j} + \cdots \\ &\approx c - \mathbf{b} \cdot \mathbf{u} + \frac{1}{2} \mathbf{u} \cdot \mathbf{H} \cdot \mathbf{u} \end{array}$$

Second order Taylor decomposition of F:

$$egin{aligned} F(\mathbf{u}) &= F(\mathbf{0}) + \sum_i rac{\partial F}{\partial u_i} u_i + rac{1}{2} \sum_{ij} rac{\partial^2 F}{\partial u_i \partial u_j} u_i u_j + \cdots \ &pprox c - \mathbf{b} \cdot \mathbf{u} + rac{1}{2} \mathbf{u} \cdot \mathbf{H} \cdot \mathbf{u} \end{aligned}$$

where

* $\mathbf{u} = \mathbf{v} - \mathbf{v}_0$,	step
* $c = F(0) = F(\mathbf{v}_0)$,	energy at \mathbf{v}_0
$*$ $\mathbf{b}=-\mathbf{g}(\mathbf{v}_{0})$,	gradient at \mathbf{v}_0
* H,	Hessian matrix

• Approximate gradient:

 $g(v) \equiv g(u) = Hu - b.$

• Approximate gradient:

$$\mathbf{g}(\mathbf{v}) \equiv \mathbf{g}(\mathbf{u}) = \mathbf{H}\mathbf{u} - \mathbf{b}.$$

• The function is optimized along direction t. —> gradient change along displacement: $\delta t = \epsilon t$

$$\delta \mathbf{g} = \mathbf{H} \cdot \delta \mathbf{t} = \epsilon \left(\mathbf{H} \cdot \mathbf{t} \right).$$

• Approximate gradient:

$$\mathbf{g}(\mathbf{v}) \equiv \mathbf{g}(\mathbf{u}) = \mathbf{H}\mathbf{u} - \mathbf{b}.$$

• The function is optimized along direction t. —> gradient change along displacement: $\delta t = \epsilon t$

$$\delta \mathbf{g} = \mathbf{H} \cdot \delta \mathbf{t} = \epsilon \left(\mathbf{H} \cdot \mathbf{t}
ight).$$

- Previously, the function has been optimized along direction s (the gradient has becomed perpendicular to s).
- To keep that condition it is required that $\mathbf{g} \perp \mathbf{s}$ along all the displacement \longrightarrow

$$0 = \mathbf{s} \cdot \delta \mathbf{g} = \mathbf{s} \mathbf{H} \mathbf{t}.$$

Conjugate directions

• Hessian behaves as a metric (quadratic functions):

 $\overline{\langle \mathbf{u} \left| \mathbf{v}
ight
angle } = \mathbf{u} \mathbf{H} \mathbf{v}$

Conjugate directions

• Hessian behaves as a metric (quadratic functions):

 $\langle \mathbf{u} \left| \mathbf{v}
ight
angle = \mathbf{u} \mathbf{H} \mathbf{v}$

• Degree of "dependency" between parameters.

Conjugate directions

• Hessian behaves as a metric (quadratic functions):

 $\overline{\langle \mathbf{u} \left| \mathbf{v}
ight
angle } = \mathbf{u} \mathbf{H} \mathbf{v}$

Degree of "dependency" between parameters.

scalar product: $\langle \mathbf{u} | \mathbf{v} \rangle = \begin{cases} 0 & \text{fully independent} \\ (\text{conjugate}) \\ 1 & \text{fully dependent} \end{cases}$

• Scheme similar to direction set method

• Scheme similar to direction set method

 Directions are modified along the procedure to be conjugate (within quadratic behavior of the function).

• Scheme similar to direction set method

• Directions are modified along the procedure to be conjugate (within quadratic behavior of the function).

Dependent on the coordinate system choice

- Gradient contains information on what is the direction of the steepest energy descent
- This permits to improve the minimum search

- Gradient contains information on what is the direction of the steepest energy descent
- This permits to improve the minimum search
- The numerical calculation of the gradient is costly and a gain in efficiency with respect to non gradient methods is not ensured.

- Gradient contains information on what is the direction of the steepest energy descent
- This permits to improve the minimum search
- The numerical calculation of the gradient is costly and a gain in efficiency with respect to non gradient methods is not ensured.
- In some *ab initio* methods, the gradient can be obtained through analytic formulae

- Gradient contains information on what is the direction of the steepest energy descent
- This permits to improve the minimum search
- The numerical calculation of the gradient is costly and a gain in efficiency with respect to non gradient methods is not ensured.
- In some *ab initio* methods, the gradient can be obtained through analytic formulae
- For periodic systems, the implementation of the analytic gradient is not a mere extension to the molecular case, as infinite sums appear that are to be numerically approximated by means of suitable techniques.

- Gradient contains information on what is the direction of the steepest energy descent
- This permits to improve the minimum search
- The numerical calculation of the gradient is costly and a gain in efficiency with respect to non gradient methods is not ensured.
- In some *ab initio* methods, the gradient can be obtained through analytic formulae
- For periodic systems, the implementation of the analytic gradient is not a mere extension to the molecular case, as infinite sums appear that are to be numerically approximated by means of suitable techniques.
- CRYSTAL2006 includes the implementation of the analytic energy derivatives with respect to
 - * Atomic positions: K. Doll, V.R. Saunders, N.M. Harrison, *Int. J. Quant. Chem. 82* 1 (2001)
 - ★ Cell parameters: K. Doll, R. Dovesi, R. Orlando. *Theor. Chem. Acc. 112*, 394-402 (2004)

1. How could one exploit the information contained in the gradient?

- 1. How could one exploit the information contained in the gradient?
- 2. The most straightforward strategy would be the **Steepest descent method**

- 1. How could one exploit the information contained in the gradient?
- 2. The most straightforward strategy would be the **Steepest descent method**
- 3. One takes the opposite direction to the gradient

- 1. How could one exploit the information contained in the gradient?
- 2. The most straightforward strategy would be the **Steepest descent method**
- 3. One takes the opposite direction to the gradient
- 4. A line minimization along such a direction is then performed

- 1. How could one exploit the information contained in the gradient?
- 2. The most straightforward strategy would be the **Steepest descent method**
- 3. One takes the opposite direction to the gradient
- 4. A line minimization along such a direction is then performed
- 5. Iterate since a given convergence criterion (on Energy or gradient norm) is attained

- 1. How could one exploit the information contained in the gradient?
- 2. The most straightforward strategy would be the **Steepest descent method**
- 3. One takes the opposite direction to the gradient
- 4. A line minimization along such a direction is then performed
- 5. Iterate since a given convergence criterion (on Energy or gradient norm) is attained

Independent on the coordinate system choice

Convergence of the steepest descent method in a bidimensional surface.

→Newton-Raphson and other methods.

Points $\mathbf{v}_0 \longrightarrow \mathbf{v}$.

Points $\mathbf{v}_0 \longrightarrow \mathbf{v}$. Within the second order approximation of the energy, the gradient in \mathbf{v} reads

$$\mathbf{g}(\mathbf{v}) = \mathbf{H} imes (\mathbf{v} - \mathbf{v_0}) + \mathbf{g}(\mathbf{v}_0)$$

Points $\mathbf{v}_0 \longrightarrow \mathbf{v}$. Within the second order approximation of the energy, the gradient in \mathbf{v} reads

$$\mathbf{g}(\mathbf{v}) = \mathbf{H} \times (\mathbf{v} - \mathbf{v_0}) + \mathbf{g}(\mathbf{v_0})$$

Being v the minimum $\Rightarrow \mathbf{g}(\mathbf{v}) = \mathbf{0}$

$$(\mathbf{v} - \mathbf{v_0}) = -\mathbf{H}^{-1}\mathbf{g}(\mathbf{v}_0)$$

Points $\mathbf{v}_0 \longrightarrow \mathbf{v}$. Within the second order approximation of the energy, the gradient in \mathbf{v} reads

$$\mathbf{g}(\mathbf{v}) = \mathbf{H} \times (\mathbf{v} - \mathbf{v_0}) + \mathbf{g}(\mathbf{v_0})$$

Being v the minimum $\Rightarrow \mathbf{g}(\mathbf{v}) = \mathbf{0}$

$$(\mathbf{v} - \mathbf{v_0}) = -\mathbf{H}^{-1}\mathbf{g}(\mathbf{v}_0)$$

Within the quadratic approximation the minimum can be reached in <u>ONE</u> step, known the gradient vector and the Hessian matrix

Newton-Raphson method

The minimum search is made in steps i, in which the following equation is solved:

$$\mathbf{v}_{i+1} - \mathbf{v}_i = -\mathbf{H}_i^{-1}\mathbf{g}(\mathbf{v}_i)$$

Newton-Raphson method

The minimum search is made in steps i, in which the following equation is solved:

$$\mathbf{v}_{i+1} - \mathbf{v}_i = -\mathbf{H}_i^{-1}\mathbf{g}(\mathbf{v}_i)$$

↑ A few cycles are required to reach the minimum even in non quadratic PEHs

Newton-Raphson method

The minimum search is made in steps i, in which the following equation is solved:

$$\mathbf{v}_{i+1} - \mathbf{v}_i = -\mathbf{H}_i^{-1}\mathbf{g}(\mathbf{v}_i)$$

↑ A few cycles are required to reach the minimum even in non quadratic PEHs

The hessian calculation is costly from the computational point of view.

Newton-step control

In non-quadratic functions the Newton step may not be the best choice and should be controlled:

Newton-step control

In non-quadratic functions the Newton step may not be the best choice and should be controlled:

level-shift trust region: A trust radius τ of an hypersphere into which the function is supposed quadratically behaved. A parameter μ is computed so that the displacement v_{i+1} - v_i = -(H_i - Iμ)⁻¹g(v_i) is kept within the trust region.

Newton-step control

In non-quadratic functions the Newton step may not be the best choice and should be controlled:

• level-shift trust region: A trust radius τ of an hypersphere into which the function is supposed quadratically behaved. A parameter μ is computed so that the displacement $\mathbf{v}_{i+1} - \mathbf{v}_i = -(\mathbf{H}_i - \mathbf{I}\mu)^{-1}\mathbf{g}(\mathbf{v}_i)$ is kept within the trust region.

• Line search: A parameter α_i is found so that a minimum is found along the Newton step direction:

$$\mathbf{v}_{i+1} - \mathbf{v}_i = -lpha_i \mathbf{H}_i^{-1} \mathbf{g}(\mathbf{v}_i)$$

Along the optimization the changes in the gradient between steps provide useful information on the surface curvature (second derivatives):

Along the optimization the changes in the gradient between steps provide useful information on the surface curvature (second derivatives):

* Conjugate gradient: the information is accumulated implicitly (Polak-Ribiere, Berny –implemented in CRYSTAL–)

Along the optimization the changes in the gradient between steps provide useful information on the surface curvature (second derivatives):

- * Conjugate gradient: the information is accumulated implicitly (Polak-Ribiere, Berny –implemented in CRYSTAL–)
- * Variable metric: an approximation to the inverse of the Hessian matrix \mathbf{H}^{-1} is built during the optimization process.

Along the optimization the changes in the gradient between steps provide useful information on the surface curvature (second derivatives):

- * Conjugate gradient: the information is accumulated implicitly (Polak-Ribiere, Berny –implemented in CRYSTAL–)
- * Variable metric: an approximation to the inverse of the Hessian matrix \mathbf{H}^{-1} is built during the optimization process. Several updating formulae:
 - Fletcher-Powell
 - Murtagh-Sargent (SR1)
 - Powell-Symetric-Broyden (PSB)
 - Broyden-Fletcher-Godfarb-Shanno (BFGS)

↓ **Identity matrix:** positive definite, no structure: very inefficient.

- ↓ **Identity matrix:** positive definite, no structure: very inefficient.
- → Numerical Hessian: close to exact, fast convergence, high calculation cost (good for very difficult cases: Transition State –see later–)

- ↓ **Identity matrix:** positive definite, no structure: very inefficient.
- → Numerical Hessian: close to exact, fast convergence, high calculation cost (good for very difficult cases: Transition State –see later–)
 - ↑ Model Hessian: good and cheap approximation to the actual Hessian. Based on valence forcefields. Significant improvement with respect to Identity matrix.

$$\mathsf{TS} \longrightarrow \mathsf{critical} \ \mathsf{point} \longrightarrow \mathbf{g}(\mathbf{v}) = \mathbf{0}$$

$$\downarrow \\ (\mathbf{v} - \mathbf{v}_0) = -\mathbf{H}^{-1}\mathbf{g}(\mathbf{v}_0)$$

$$\mathsf{TS} \longrightarrow \mathsf{critical} \ \mathsf{point} \longrightarrow \mathbf{g}(\mathbf{v}) = \mathbf{0}$$

$$\downarrow \\ (\mathbf{v} - \mathbf{v_0}) = -\mathbf{H}^{-1}\mathbf{g}(\mathbf{v}_0)$$

Hessian is not positive definite → search is not always downwards

$$\mathsf{TS} \longrightarrow \mathsf{critical} \ \mathsf{point} \longrightarrow \mathbf{g}(\mathbf{v}) = \mathbf{0}$$

$$\downarrow \\ (\mathbf{v} - \mathbf{v_0}) = -\mathbf{H}^{-1}\mathbf{g}(\mathbf{v}_0)$$

- Hessian is not positive definite —> search is not always downwards
- Much more costly than minima optimization

Necessary conditions for a TS optimization

The starting point must be <u>close</u> to the TS (*Pre-optimization:* systematic exploration, L(Q)ST, etc)

Necessary conditions for a TS optimization

- The starting point must be <u>close</u> to the TS (*Pre-optimization:* systematic exploration, L(Q)ST, etc)
- Start from an accurately estimated Hessian (analytically or numerically).

Necessary conditions for a TS optimization

- The starting point must be <u>close</u> to the TS (*Preoptimization:* systematic exploration, L(Q)ST, etc)
- Start from an accurately estimated Hessian (analytically or numerically).
- Some techniques can help in the search (– Eigenvalue Following, Step Walking Surface, NEB–)

Choice of the coordinate system

- Good performance ←→ Quadratical behavior.
- Coordinate transformation:

$$v_i = v_i(s_1, s_2, \cdots, s_M)$$

• Transformation of $F(\mathbf{v})$ results in a new function F':

$$F'(s_1, s_2, \dots, s_M) = F(v_1(s_1, s_2, \dots, s_M), v_2(s_1, s_2, \dots, s_M), \dots, v_M(s_1, s_2, \dots, s_M))$$

• One would like the transformation to give rise to function F' that behaves quadratically around the critical point.

Internal valence coordinates

- Defined in terms of bond distances, bond angles, and bond torsions.
- Expected that the functional dependence on them is more or less factorized into additive terms.
- The behavior is assumed to be close to quadratic (good for optimizations)

• The most widely used \rightarrow Z-MATRIX

Z-Matrix coordinate system

- Ordered definition of the atomic positions in terms of distances, angles and torsions with reference to previously defined atoms
- Easy way to obtain non-redundant *internal* valence coordinates
- The choice is in general arbitrary

Scheme of the Z-matrix logic

Internal valence coordinates for periodic systems

- Periodic systems feature in most cases an infinite number of valence loops (unless molecular crystals, or 1D polymers)
- The arbitrariness of the Z-Matrix valence coordinates is higher than in molecules.

Coordinate systems suitable for crystals

Cartesian coordinates + lattice parameters

- \uparrow Easy definition
- ↓ Non quadratic behavior (in general)
- $\downarrow~$ When the cell is not kept fixed during optimization $\rightarrow~$ high degree of dependency between coordinates and lattice parameters

Coordinate systems suitable for crystals

Fractionary coordinates + lattice parameters

Atomic coordinates are defined in the basis set of the lattice vectors.

- ↑ Easy to keep fixed special symmetry positions.
- ↓ In general, non quadratic behavior
- ↑ Not too high degree of dependency between coordinates and lattice parameters

Dependency of cartesian and fractionary systems on the lattice parameters

Coordinate systems suitable for crystals

Redundant internal coordinates

- All valence coordinates (bond distances, angles and torsions) are considered to form a set of redundant coordinates.
- Hessian, gradient and geometry displacements are built in terms of the redundant coordinates.
- The redundancies are eliminated to obtain the actual geometry (in the cartesian non-redundant space) using numerical approximations

Coordinate systems suitable for crystals

Redundant internal coordinates

- ↑ Quadratic behavior.
- ↑ Easy choice of the geometrical parameters
- ↑ Easy to constrain "chemical" degrees of freedom (bond length, angles or dihetrals)
- (!!) control optimization for reactivity studies
- ↓ The size of the redundant space may be very large
- The back-transformation from the redundant to the non-redundant (real) space, is a very tricky task.

Comparison between redundant and fractionary+latt coordinate systems. Schlegel Model Hessian

Compound	Dim	Hamil	Num Steps		E_{red} - $E_{\mathrm{fr}-\mathrm{l}}$
			$N_{\rm red}$	$N_{\rm fr-l}$	$(\mu Hartree)$
ZrO ₂ (cubic)	3D	PBE0	3	5	-0.2
TiO_2 (rutile)	3D	PW91	5	5	0.0
lpha-quartz	3D	B3LYP	7	8	-0.2
eta-quartz	3D	LDA	7	7	0.1
Si-Faujasite	3D	PBE0	16	17	-1.7
Edingtonite (100)+NH $_3$	2D	B3LYP	8	10	-18.1
Corundum(001)12 layers	2D	B3LYP	21	18	-6240.9
$NaNO_2$	3D	B3PW91	18	18	-0.0
CaCO ₃	3D	B3PW91	7	8	0.3
$ZnGeP_2$	3D	LDA	6	4	-361.5
Formaldehyde	3D	B3LYP	17	19	1.9
Oxalic Acid	3D	B3LYP	25	56	4.7
lce	3D	PW91	12	19	1.4
Li-dopped PA	1D	B3LYP	12	14	0.3
H_2O polymer	1D	PBE0	18	19	-0.6

- Analitic gradient cell+atoms
 - ★ Several Hamiltonians (HF and DFT)
 - ★ Periodicity 0D, 1D, 2D and 3D at the same level of theory.
 - ★ All-electron or pseudopotentials.

- Analitic gradient cell+atoms
 - ★ Several Hamiltonians (HF and DFT)
 - \star Periodicity 0D, 1D, 2D and 3D at the same level of theory.
 - ★ All-electron or pseudopotentials.
 - Coordinate systems

- Analitic gradient cell+atoms
 - ★ Several Hamiltonians (HF and DFT)
 - ★ Periodicity 0D, 1D, 2D and 3D at the same level of theory.
 - ★ All-electron or pseudopotentials.
- Coordinate systems
 - \star Choices
 - Cartesian/fixed cell
 - Fractionary+cell
 - 🐥 redundant internal valence coordinates

- Analitic gradient cell+atoms
 - ★ Several Hamiltonians (HF and DFT)
 - $\star\,$ Periodicity 0D, 1D, 2D and 3D at the same level of theory.
 - ★ All-electron or pseudopotentials.
- Coordinate systems
 - ★ Choices
 - Cartesian/fixed cell
 - Fractionary+cell
 - redundant internal valence coordinates
 - ★ Constraints
 - 🐥 some atoms fixed
 - some cell parameters fixed
 - fix cell shape (volume optimization or partial fixing) + atoms
 - fix symmetrized fractionary coordinates
 - fix internal valence coordinates
 - symmetry constraints

Optimization in CRYSTAL2006. Implementation.

- Analitic gradient cell+atoms
 - ★ Several Hamiltonians (HF and DFT)
 - $\star\,$ Periodicity 0D, 1D, 2D and 3D at the same level of theory.
 - ★ All-electron or pseudopotentials.
- Coordinate systems
 - ★ Choices
 - Cartesian/fixed cell
 - Fractionary+cell
 - redundant internal valence coordinates
 - ★ Constraints
 - 🐥 some atoms fixed
 - some cell parameters fixed
 - fix cell shape (volume optimization or partial fixing) + atoms
 - fix symmetrized fractionary coordinates
 - fix internal valence coordinates
 - symmetry constraints
- Different Hessian updating schemes: Berny, BFGS, Powell, . . .

Optimization in CRYSTAL2006. Implementation.

- Analitic gradient cell+atoms
 - ★ Several Hamiltonians (HF and DFT)
 - $\star\,$ Periodicity 0D, 1D, 2D and 3D at the same level of theory.
 - ★ All-electron or pseudopotentials.
- Coordinate systems
 - ★ Choices
 - Cartesian/fixed cell
 - Fractionary+cell
 - redundant internal valence coordinates
 - ★ Constraints
 - 🐥 some atoms fixed
 - some cell parameters fixed
 - fix cell shape (volume optimization or partial fixing) + atoms
 - fix symmetrized fractionary coordinates
 - fix internal valence coordinates
 - symmetry constraints
- Different Hessian updating schemes: Berny, BFGS, Powell, . . .
- Starting Model Hessians: Lindh, Schlegel.

Structure of Si-Octadecasyl (AST)

F⁻ occluded in a D4R unit in as-synthesized zeolites

Seeking for a mechanism of F^- elimination

- Octadecasyl has been chosen because of a previous experimental work (Villaescusa *et al*, 1998)
- The unit cell consists of 30 atoms
- Cell parameters has been kept fixed in the experimental values
- Atomic positions were fully optimized; all stationary points has been characterized as minima or transition states by means of the ab initio vibrational analysis
- Methodological level: B3LYP/DZVP//TZVP.
- All energies corrected by ZPE (at DZVP level) and BSSE (at TZVP)
- The starting point of the path has been chosen to be the protonated F-D4R unit, as it is assumed these species are present at the final steps of the template decomposition.

Protonated F-D4R: reactant

Protonated F-D4R: transition state

Protonated F-D4R: product

The role of a water molecule

HF elimination and Si-O-Si bridge condensation: transition state

HF elimination and Si-O-Si bridge condensation: product

Periodic B3LYP reaction profile for the F⁻ elimination (energies in kJ/mol)

