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Geometries

• The same chemical compound (same atoms, same bonds) may have many
configurations in what concerns its nuclear positions.

• In general these nuclear configurations have different energies, and experi-
mentally they appear as an statistical distribution of nuclear arrangements.

• What of such configurations (geometries) can be adopted as a suitable
representative of the compound in order to compute the energy dependent
properties?

⇓

GEOMETRY
OPTIMIZATION
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Potential Energy of a nuclear configuration

According to the Born-Oppenheimer approximation, the static total energy depends
uniquely on the nuclear positions:

E = F (x1, x2, · · · , x3N)

(xi Cartesian coordinates of the N núclei)

Invariance under
translation-
rotations

−→ Internal degrees of freedom
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Molecules:

M = 3N︸︷︷︸
cartesian

−
translational︷︸︸︷

3 −
rotational︷ ︸︸ ︷
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Internal degrees of freedom

Molecules:

M = 3N︸︷︷︸
cartesian

−
translational︷︸︸︷

3 −
rotational︷ ︸︸ ︷
3[or 2]

3D Crystals:

M = 3N︸︷︷︸
cartesian

−
translational︷︸︸︷

3 + ( 9 −
rotational︷︸︸︷

3 )︸ ︷︷ ︸
lattice
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Coordinate systems

• There are infinite choices to define the M internal coordinates

• The best one should be that who makes easier the study of the
potential energy function

• Let’s assume that v = (v1, v2, · · · , vM) is the nuclear configuration
vector in a given coordinate choice
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A Potential Energy Hypersurface (PEH)

E = F (v1, v2, · · · , vM)

v0

v0" v0’

t1
t2

How to describe the features of
the PEH?
A relevant information (inva-
riant under the coordinate sys-
tem choice) is provided by the
critical points (v0, v′

0 y v′′
0 )
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Critical Points

Condition:

g(v0) ≡ gi(v0) =
∂F

∂vi

(v0) = 0

If v is M -dimensional, there are M + 1 different types of critical points. The most
relevant in quantum chemistry are:
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Critical Points

Condition:

g(v0) ≡ gi(v0) =
∂F

∂vi

(v0) = 0

If v is M -dimensional, there are M + 1 different types of critical points. The most
relevant in quantum chemistry are:

• minima (v0, v
′
0)

• saddle points (v′′0 )
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The Hessian Matrix

Hij =
∂2F

∂vi∂vj

∣∣∣∣
v0

Eigenvalue equation:
Htµ = hµtµ

hµ −→ real (surface curvature in the c. p.).
tµ are special directions in the coordinate space.
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The critical point order

The order of a critical point v0 is the number of negative eigenvalues (n) of the
Hessian in that point.
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The critical point order

The order of a critical point v0 is the number of negative eigenvalues (n) of the
Hessian in that point.

• n = 0 −→ minimum

• n = 1 −→ saddle point

• . . .

• n = M −→ maximum
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Reaction path in a bidimensional PEH

A − B · · · C → A · · · C − B
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Reaction path in a bidimensional PEH

A − B · · · C → A · · · C − B

rCB

rAB

1

T
2

A-B...C

A...B-C
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The chemical meaning of critical points

Critical points



minima: Clasic→ 0 K most stable
↓ temp.
≈ most probable

Quantum→ zero-point correction
thermochemistry

saddle point: semi-clasic→ Transition state
≈ Activation energy
Kinetics
Reaction Path
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Optimization Methods

• non-gradient

• gradient
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Non gradient methods: line optimization

1 2 3 4 5
0

5

10

15

sample points
quadratic function
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Extension to multiple parameters

Direction set method

• Each parameter is separately line-optimized in a given sequence

• A cycle finishes when all parameters have been line-optimized

• Convergence is reached when the total energy becomes stable under a given
numerical criterion
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Convergence of the direction set method in a bidimensional
surface.
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Convergence of the direction set method in a bidimensional
surface.

−→ Directions are not fully independent (conjugate)
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The concept of conjugate directions.

Second order Taylor decomposition of F :

F (u) = F (0) +
∑

i
∂F
∂ui

ui + 1
2

∑
ij

∂2F
∂ui∂uj

uiuj + · · ·
≈ c − b · u + 1

2u · H · u
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The concept of conjugate directions.

Second order Taylor decomposition of F :

F (u) = F (0) +
∑

i
∂F
∂ui

ui + 1
2

∑
ij

∂2F
∂ui∂uj

uiuj + · · ·
≈ c − b · u + 1

2u · H · u

where

∗ u = v − v0, step

∗ c = F (0) = F (v0), energy at v0

∗ b = −g(v0), gradient at v0

∗ H, Hessian matrix
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The concept of conjugate directions.

• Approximate gradient:
g(v) ≡ g(u) = Hu − b.

• The function is optimized along direction t. −→ gradient change along displace-
ment: δt = εt

δg = H · δt = ε (H · t) .

• Previously, the function has been optimized along direction s (the gradient has
becomed perpendicular to s).

• To keep that condition it is required that g ⊥ s along all the displacement −→

0 = s · δg = sHt.
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Conjugate directions

• Hessian behaves as a metric (quadratic functions):

〈u |v〉 = uHv

• Degree of “dependency” between parameters.

⇓

scalar product: 〈u |v〉 =


0 fully independent

(conjugate)

1 fully dependent
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Powell’s quadratically convergent method

• Scheme similar to direction set method

• Directions are modified along the proce-
dure to be conjugate (within quadratic
behavior of the function).

↓ Dependent on the coordinate system choice
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Gradient methods

• Gradient contains information on what is the direction of the steepest energy descent

• This permits to improve the minimum search

• The numerical calculation of the gradient is costly and a gain in efficiency with respect

to non gradient methods is not ensured.

• In some ab initio methods, the gradient can be obtained through analytic formulae

• For periodic systems, the implementation of the analytic gradient is not a mere extension

to the molecular case, as infinite sums appear that are to be numerically approximated

by means of suitable techniques.

• Crystal2006 includes the implementation of the analytic energy derivatives with respect

to

? Atomic positions: K. Doll, V.R. Saunders, N.M. Harrison, Int. J. Quant. Chem. 82 1

(2001)

? Cell parameters: K. Doll, R. Dovesi, R. Orlando. Theor. Chem. Acc. 112, 394-402

(2004)
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Steepest descent method

1. How could one exploit the information contained in the gradient?

2. The most straightforward strategy would be the Steepest descent method

3. One takes the opposite direction to the gradient

4. A line minimization along such a direction is then performed

5. Iterate since a given convergence criterion (on Energy or gradient norm) is attained

Independent on the coordinate system choice
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Convergence of the steepest descent method in a bidimensional
surface.

−→Newton-Raphson and other methods.
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Quadratic behavior

Points v0 −→ v.
Within the second order approximation of the energy, the gradient in v reads

g(v) = H× (v − v0) + g(v0)

Being v the minimum ⇒ g(v) = 0

(v − v0) = −H−1g(v0)

Within the quadratic
approximation the minimum can
be reached in ONE step, known

the gradient vector and the
Hessian matrix
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vi+1 − vi = −H−1
i g(vi)



23

Newton-Raphson method

The minimum search is made in steps i, in which the following equation is solved:

vi+1 − vi = −H−1
i g(vi)

↑ A few cycles are required to reach the minimum
even in non quadratic PEHs



23

Newton-Raphson method

The minimum search is made in steps i, in which the following equation is solved:

vi+1 − vi = −H−1
i g(vi)

↑ A few cycles are required to reach the minimum
even in non quadratic PEHs

↓ The hessian calculation is costly from the compu-
tational point of view.
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Newton-step control

In non-quadratic functions the Newton step may not be the best choice and should
be controlled:

• level-shift trust region: A trust radius τ of an hypersphere into which the
function is supposed quadratically behaved. A parameter µ is computed so
that the displacement vi+1 − vi = −(Hi − Iµ)−1g(vi) is kept within the
trust region.

• Line search: A parameter αi is found so that a minimum is found along
the Newton step direction:

vi+1 − vi = −αiH−1
i g(vi)
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Improvements to gradient methods

Along the optimization the changes in the gradient between steps provide useful
information on the surface curvature (second derivatives):

∗ Conjugate gradient: the information is accumulated implicitly
(Polak-Ribiere, Berny –implemented in Crystal–)

∗ Variable metric: an approximation to the inverse of the Hessian
matrix H−1 is built during the optimization process. Several
updating formulae:

• Fletcher-Powell
• Murtagh-Sargent (SR1)
• Powell-Symetric-Broyden (PSB)
• Broyden-Fletcher-Godfarb-Shanno (BFGS)
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A quite good Hessian to start the procedure may drastically
reduce the optimization process

↓ Identity matrix: positive definite, no structure: very inefficient.

→ Numerical Hessian: close to exact, fast convergence, high cal-
culation cost (good for very difficult cases: Transition State –see
later–)

↑ Model Hessian: good and cheap approximation to the actual
Hessian. Based on valence forcefields. Significant improvement
with respect to Identity matrix.
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Transition state (TS) optimization

•

TS −→ critical point −→ g(v) = 0

↓
(v − v0) = −H−1g(v0)

• Hessian is not positive definite −→ search is not always
downwards

• Much more costly than minima optimization
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Necessary conditions for a TS optimization

• The starting point must be close to the TS (Pre-
optimization: systematic exploration, L(Q)ST,
etc)

• Start from an accurately estimated Hessian
(analytically or numerically).

• Some techniques can help in the search (–
Eigenvalue Following, Step Walking Surface,
NEB–)
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Choice of the coordinate system

• Good performance ←→ Quadratical behavior.

• Coordinate transformation:

vi = vi(s1, s2, · · · , sM)

• Transformation of F (v) results in a new function F ′:

F ′(s1, s2, . . . , sM) = F (v1(s1, s2, . . . , sM), v2(s1, s2, . . . , sM),
. . . , vM(s1, s2, . . . , sM))

• One would like the transformation to give rise to function F ′ that
behaves quadratically around the critical point.
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Internal valence coordinates

• Defined in terms of bond distances, bond angles, and
bond torsions.

• Expected that the functional dependence on them is more
or less factorized into additive terms.

• The behavior is assumed to be close to quadratic (good
for optimizations)

• The most widely used → Z-MATRIX
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Z-Matrix coordinate system

• Ordered definition of the atomic positions in terms of
distances, angles and torsions with reference to previously
defined atoms

• Easy way to obtain non-redundant internal valence coor-
dinates

• The choice is in general arbitrary
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Scheme of the Z-matrix logic
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Internal valence coordinates for periodic systems

• Periodic systems feature in most cases an infinite number of
valence loops (unless molecular crystals, or 1D polymers)

• The arbitrariness of the Z-Matrix valence coordinates is higher
than in molecules.
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Coordinate systems suitable for crystals

Cartesian coordinates + lattice parameters

↑ Easy definition

↓ Non quadratic behavior (in general)

↓ When the cell is not kept fixed during optimization → high degree
of dependency between coordinates and lattice parameters
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Coordinate systems suitable for crystals

Fractionary coordinates + lattice parameters

Atomic coordinates are defined in the basis set of the lattice vectors.

↑ Easy to keep fixed special symmetry positions.

↓ In general, non quadratic behavior

↑ Not too high degree of dependency between coordinates and
lattice parameters
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Dependency of cartesian and fractionary systems on the lattice
parameters

FRACT

CART
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Coordinate systems suitable for crystals

Redundant internal coordinates

• All valence coordinates (bond distances, angles and torsions) are
considered to form a set of redundant coordinates.

• Hessian, gradient and geometry displacements are built in terms
of the redundant coordinates.

• The redundancies are eliminated to obtain the actual geometry
(in the cartesian non-redundant space) using numerical approxi-
mations
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Coordinate systems suitable for crystals

Redundant internal coordinates

↑ Quadratic behavior.

↑ Easy choice of the geometrical parameters

↑ Easy to constrain “chemical” degrees of freedom (bond length,
angles or dihetrals)

(!!) control optimization for reactivity studies

↓ The size of the redundant space may be very large

↓ The back-transformation from the redundant to the non-redundant
(real) space, is a very tricky task.
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Comparison between redundant and fractionary+latt coordinate
systems. Schlegel Model Hessian

Compound Dim Hamil Num Steps Ered - Efr−l

Nred Nfr−l (µHartree)
ZrO2(cubic) 3D PBE0 3 5 -0.2
TiO2 (rutile) 3D PW91 5 5 0.0
α-quartz 3D B3LYP 7 8 -0.2
β-quartz 3D LDA 7 7 0.1
Si-Faujasite 3D PBE0 16 17 -1.7
Edingtonite (100)+NH3 2D B3LYP 8 10 -18.1
Corundum(001)12 layers 2D B3LYP 21 18 -6240.9
NaNO2 3D B3PW91 18 18 -0.0
CaCO3 3D B3PW91 7 8 0.3
ZnGeP2 3D LDA 6 4 -361.5
Formaldehyde 3D B3LYP 17 19 1.9
Oxalic Acid 3D B3LYP 25 56 4.7
Ice 3D PW91 12 19 1.4
Li-dopped PA 1D B3LYP 12 14 0.3
H2O polymer 1D PBE0 18 19 -0.6
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Optimization in Crystal2006. Implementation.

• Analitic gradient cell+atoms

? Several Hamiltonians (HF and DFT)

? Periodicity 0D, 1D, 2D and 3D at the same level of theory.

? All-electron or pseudopotentials.

• Coordinate systems

? Choices

♣ Cartesian/fixed cell

♣ Fractionary+cell

♣ redundant internal valence coordinates

? Constraints

♣ some atoms fixed

♣ some cell parameters fixed

♣ fix cell shape (volume optimization or partial fixing) + atoms

♣ fix symmetrized fractionary coordinates

♣ fix internal valence coordinates

♣ symmetry constraints

• Different Hessian updating schemes: Berny, BFGS, Powell,. . .

• Starting Model Hessians: Lindh, Schlegel.
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Structure of Si-Octadecasyl (AST)
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F− occluded in a D4R unit in as-synthesized zeolites
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Seeking for a mechanism of F− elimination

• Octadecasyl has been chosen because of a previous experimental work (Villaes-
cusa et al, 1998)

• The unit cell consists of 30 atoms

• Cell parameters has been kept fixed in the experimental values

• Atomic positions were fully optimized; all stationary points has been charac-
terized as minima or transition states by means of the ab initio vibrational
analysis

• Methodological level: B3LYP/DZVP//TZVP.

• All energies corrected by ZPE (at DZVP level) and BSSE (at TZVP)

• The starting point of the path has been chosen to be the protonated F-D4R
unit, as it is assumed these species are present at the final steps of the template
decomposition.
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Protonated F-D4R: reactant
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Protonated F-D4R: transition state
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Protonated F-D4R: product



47

The role of a water molecule
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HF elimination and Si-O-Si bridge condensation: transition state
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HF elimination and Si-O-Si bridge condensation: product
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Periodic B3LYP reaction profile for the F− elimination (energies
in kJ/mol)


