Calculation of vibrational frequencies and tools for their analysis

Y. Noël F. Pascale and R. Dovesi

Lab PMMP Université Paris 6 (France)

Harmonic frequency in solids with CRYSTAL

Building the Hessian matrix

$$W_{ij}(k=0) = \sum_{G} \frac{H_{ij}^{0G}}{\sqrt{M_i M_j}}$$

Isotopic shift can be

Harmonic frequencies at the central zone are obtained by diagonalising the mass weighted Hessian matrix, W

Isotopic shift can be calculated at no cost!

CRYSTAL frequency calculation input

CRYSTAL frequency calculation output

Frequencies, symmetry analysys, IR intensities, IR and Raman activities

MODES		EV	FREQUENCIES		IRREP	IR	INTENS	RAMAN
		(AU)	(CM**-1)	(THZ)			(KM/MOL)	
1-	1	0.00000000	-0.0119	-0.0004	(A2U)	A (0.00)	I
2-	3	0.00000000	-0.0063	-0.0002	(EU)	A (0.00)	I
4-	5	0.00292461	277.9957	8.3341	(EG)	Ι (0.00)	A
6-	7	0.00501644	364.0844	10.9150	(EU)	A (521.22)	I
8-	8	0.00778792	453.6439	13.5999	(A1G)	Ι (0.00)	A
9-	10	0.00796426	458.7511	13.7530	(EU)	A (1118.00)	I
11-	11	0.00940657	498.5628	14.9465	(A2U)	A (267.76)	I
12-	13	0.02442204	803.3324	24.0833	(EG)	Ι (0.00)	A
14-	14	0.56009552	3847.1164	115.3336	(A1G)	Ι (0.00)	A
15-	15	0.56772589	3873.2330	116.1166	(A2U)	A (193.78)	I

- Document the accuracy (with respect to experiment, when experiment is accurate)
- Document the numerical stability of the computational process
- Interpret the spectrum and attribute the modes

The garnet example will be used

Garnets: $X_3Y_2(SiO_4)_3$

Х	Y	Name
Mg	Al	Pyrope
Ca	Al	Grossular
Ca	Fe	Andradite
Ca	Cr	Uvarovite
Mn	Al	Spessartine

Space Group: Ia-3d 80 atoms in the primitive cell (240 modes) $\Gamma^{rid} = 3A_{1g} + 5A_{2g} + 8E_g + 14 F_{1g} + 14 F_{2g} + 5A_{1u} + 5 A_{2u} + 10E_u + 18F_{1u} + 16F_{2u}$ 17 IR (F_{1u}) and 25 RAMAN (A_{1g}, E_g, F_{2g}) active modes

Silicate garnet grossular structure: Ca₃Al₂(SiO₄)₃

Hessian construction and Symmetry (Garnet example)

Each SCF+Gradient calculation provides one line of H_{ik}

- 80 atoms = 240+1 SCF+G calculations with low (null) symmetry
- 1. Point symmetry is used to generate lines of atoms symmetry related
- 2. Other symmetries (among x, y, z lines; translational invariance) further reduce the required lines
- \Rightarrow At the end only 9 SCF+G calculations are required

Numerical stability of the computational process

DFT integration grid

 $\left|\overline{\Delta}\right|$ is the mean absolute deviation of frequencies between 2 values of an option. (in cm⁻¹)

Grid	(Rad,Ang)
Standard	(55,434)
Large	(75,974)
XLarge	(99,1454)

⇒Standard grid is enough (For the pyrope case)

•SCF convergence

$$\text{Tol}_{\Delta E} = 10^{-10} \text{ (UA)} \xrightarrow{|\overline{\Delta}| = 0.2} \text{Tol}_{\Delta E} = 10^{-11} \text{ (UA)}$$

Calculated frequencies stability : Hessian construction

Basis set effect

	BSA	BSB	BSC
Mg	8-511G(d)	-	-
AI	8-511G(d)	+sp	-
Si	8-631G(d)	+sp	+d
0	8-411G(d)	-	+d

Description of the three basis sets adopted for the calculation of the vibrational frequencies of <u>pyrope</u>. 8-511G(d) means that a 8G contraction is used for the 1s shell; a 5G contraction for the 2sp, and a single G for the 3sp and 4sp shells, plus a single G d shell (1+4+4+4+5=18 AOs per Mg or Al atom).

+sp and +d means that a diffuse sp or d shell has been added to basis set A.

Basis set effect : IR frequencies of Pyrope

	Calculated Modes				S	Exp a)	
	BS	SA	BS	SB	B	SC	
-	υ	Δυ	υ	Δυ	υ	Δυ	IR-TO modes (F_{1u}) of pyrope as a function of the basis set size.
	988	16	970	-2	964	-8	972 Frequency differences (Δv) are
_	913	11	896	-6	890	-12	902 evaluated with respect to
-	882	11	865	6	850	-12	871 experimental data. υ and $\Delta \upsilon$ in cm ⁻¹ .
<	691	41	674	24	673	23	~650 a) Hofmeister et. al. Am. Mineral. 1996 . 81, 418
_	594	13	500	2	501	-0	581
_	538	3	533	-2	532	-3	535 Δv 0 5 10 15 20 +
_	505	27	484	6	481	3	478
	471	16	459	4	457	2	455 →
_	428	6	423	1	423	1	422
-	390	7	383	0	383	-0	•BSA is to small
-	353	17	349	13	349	13	336
-	338	2	334	-2	335	-1	•BSB and BSC are good
-	261	2	260	1	259	-0	259 \Rightarrow Let's use BSB
_	220	-1	216	-5	217	-4	221
	193	-2	189	-6	191	-4	¹⁹⁵ Why so large differences with
-	142	8	140	6	140	6	134 exp for this mode?
_	133	-1	121	-13	120	-14	¹³⁴ See next slide

Pyrope : IR intensities

Calcı	Calculated Modes (BSB)						
υ cm ⁻¹	$\Delta \upsilon \ \text{cm}^{-1}$	Calculated Intensity (kM/mol)	υ cm ⁻¹				
970	-2	5715	972				
896	-6	5648	902				
865	-6	14028	871				
674	24	4	~650				
583	2	1326	581				
533	-2	869	535				
484	6	753	478				
459	4	13721	455				
423	1	1309	422				
383	0	3552	383				
349	13	85	336				
334	-2	6296	336				
260	1	720	259				
216	-5	8	221				
189	-6	3330	195				
140	6	24	134				
121	-13	2904	134				

IR-TO modes of **pyrope** and their intensity. Frequency differences (Δv) are evaluated with respect to experimental data.

a) Hofmeister et. al. Am. Mineral. 1996. 81, 418

When the mode intensity is to small, the mode frequency can not be accurately determined by experiment.

Or sometimes can't be observed at all ! See next slide

Grossular : IR intensities

Ca	Exp a)		
υ	Δυ	Intensity (kM/mol)	υ
903	-11	6652	914
851	-9	3148	860
830	-13	16321	843
627	9	739	618
547	5	740	542
509	4	148	505
481	7	326	474
441	-8	19909	449
424	-6.	88	430
407	-	18	-
395	-4	9164	399
357	1	162	356
303	1	751	302
242	-3	1176	245
207	2	322	205
183	-3	939	186
153	-6	293	159

IR-TO modes (F_{1u}) of **grossular** and their intensity. Frequency differences (Δv) are evaluated with respect to experimental data.

a) Hofmeister et. al. Am. Mineral. 1996. 81, 418

Pyrope raman modes : Calc vs Exp

Calculat	ed Modes	Observed Modes			
В	SB	Exp. a)	Exp. b)	Exp. c)	
υ	$\Delta \upsilon$ a)	υ	υ	υ	
1063	-3	1066	1062	1066	
930	-15	945	938	-	
921	-7	928	925	927	
890	-12	902	899	-	
861	-	-	911(867)	-	
855	-16	871	866	870	
654	3	651	648	648	
635	-	-	626	-	
604	6	598	598	-	
565	2	563	562	561	
529	4	525	524	-	
514	2	512	510	511	
494	2	492	490	492	

Frequency differences (Δv) are evaluated with respect to experimental data of Kolesov, 1998. v and Δv in cm⁻¹.

in parentheses unpublished results reported by Chaplin et al, *Am*. *Mineral*, **1998.** 83, 841

The Eg mode at 439 cm⁻¹ and F2g mode at 285 cm⁻¹ reported by Hofmeiser and Chopelas have not been included in the table, because they do not correspond to any calculated frequency.

a) Kolesov et. al.

Phys. Chem. Min. 1998. 25, 142

b) Hofmeister et. al.

Phys. Chem. Min. 1991. 17, 503

c) Kolesov et. al.

Phys. Chem. Min. 2000. 27, 645

Pyrope raman modes : Calc vs Exp

Calculat	ed Modes	Observed Modes			
B	SB	Exp. a)	Exp. b)	Exp. c)	
υ	$\Delta \upsilon$ a)	υ	υ	υ	
383	-0	383	379	384	
379	4	375	365(379)	-	
356	-8	364	362	363	
353	-0	353	350	352	
337	-8	345	-	343	
320	_2	322	<u>318(342)</u>	320	
309	25	284	342(309)	-	
269	-		272	273	
204	-9	213	230	209	
209	-2	211	203	-	
173	-	-	208	-	
106	-31	137	-	127	

Frequency differences $(\Delta \upsilon)$ are evaluated with respect to experimental data of Kolesov, 1998. υ and $\Delta \upsilon$ in cm⁻¹.

The Eg mode at 439 cm⁻¹ and F2g mode at 285 cm⁻¹ reported by Hofmeister and Chopelas have not been included in the table, because they do not correspond to any calculated frequency.

a) Kolesov et. al.

Phys. Chem. Min. **1998**. 25, 142 *b) Hofmeister et. al.*

Phys. Chem. Min. 1991. 17, 503

c) Kolesov et. al.

Phys. Chem. Min. 2000. 27, 645

Garnets : Satistics

	Systems	$\left \overline{\Delta}\right $	$\overline{\Delta}$	Δ_{\max}
	Grossular	7.5	3.0	32
_	Pyrope	7.6 (3.6)	-3.2 (-2.4)	31 (21)
Raman a) and c)	Andradite	5.3	-5.1	11
	Uvarovite	4.2	-0.4	22
IR b)	Grossular	7.5	-2.1	13
	Pyrope	4.6	-0.7	13
	Andradite	8.5	-8.5	17

a) Kolesov et. al. *Phys. Chem. Min.* **1998.** *25*, 142

b) Hofmeister et. al. *Am. Mineral*, **1998**. *83*, 841

c) Kolesov et al. *Phys. Chem. Min.* **2000.** *27*, 645

Statistical analysis of calculated IR and Raman modes of garnets compared with experimental data. For Pyrope in parentheses experimental ^{c)} data from Kolesov et. al. 2000.

The isotopic shift

- As a tool for the assignement of the modes and for the interpretation of the spectrum.
- Each atom at a time
- In some cases also infinite mass

Isotopic shift on the vibrational frequencies of pyrope when ²⁶Mg is substituted for ²⁴Mg.

Pyrope : ${}^{27}AI \rightarrow {}^{29}AI$ $\Delta v (cm^{-1})$ 0 -5 * -. -10 AU BU EU F10 F2U 200 600 1000 v (cm⁻¹) 700 300

Isotopic shift on the vibrational frequencies of pyrope when ²⁹Al is substituted for ²⁷Al.

Isotopic shift on the vibrational frequencies of pyrope when ¹⁸O is substituted for ¹⁶O.

Isotopic shift on the vibrational frequencies of pyrope when ³⁰Si is substituted for ²⁸Si.

Internal/external modes

Si-O bonds stronger than the others

- \Rightarrow Modes separated in 2 types:
- Internal modes (deformation of the tetrahedra)
- External modes (solid tetrahedra)

Isolated tetrahedra modes (internal modes)

Pyrope : Stretching modes

Mg Al Si O

Pyrope : normal modes attribution

A related family:

From Garnets to Hydrogarnets

a) R. Orlando et. al. J. Phys. Chem. B. 2006. 110, 692

Grossular and katoite: a detailed view

The disparition of the Si-O bonds makes katoite softer than grossular

The unit cell content of katoite Ca₃Al₂[(OH)₄]₃

- •There are 8 Al(OH)₆³⁻ octahedra in the unit cell;
- •The space between octahedra is filled by 12 Ca²⁺ ions.
- •The SiO₄ tetrahedra of garnets are here replaced by $(OH)_4$ tetrahedral "defects".

- how to interpret the vibrational spectrum?
- is it possible to factorize it in terms of subunits?
- who is responsible for the very low frequencies?

The role of Hydrogen

- Is it possible to identify H modes?
- Can we define, in particular:

a) O-H stretchingb) AI-O-H bendingc) H rotations with respect to the AI-O axis?

Infinite mass substitution

Katoite : $Ca_2AI_3(OH)_{12}$ 116 atoms in the unit cell \rightarrow 348 modes To many modes to analyse Aluminium octahedra are no more bonded through Si tetrahedra \rightarrow Focus on a single Al(OH)₆ octahedron

Infinite mass substitution

 \rightarrow Focus on a single octahedron

How to proceed ?

 \rightarrow Performing an isotopic substitution (at no cost) where all atoms <u>except</u> <u>one Al(OH)₆</u> octahedron have an infinite mass

The isotopic effect

- 2 types of isotopic effects:
- Infinite mass attributed to a fraction of the atoms.

Advantages with respect to subunits investigated with clusters (ex: isolated $AI(OH)_6$):

- a) the atoms move in the field created by the infinite system.
- b) and in the presence of the other atoms
- c) and the hessian matrix is the correct one
- Isotopic substitution (ex: ²⁹Al for ²⁷Al)

Octahedron fragment in katoite

Assignment	****	²⁹ Al	¹⁸ O	D
	υ	Δυ	Δυ	Δυ
Octahedron	163.8	-1.9	-6.3	-3.2
Translation	194.7	-1.6	-8.6	-2.3
Octahedron	198.3	0	-11.2	-1.9
Rotation	200.4	0	-10.9	-5.2
	264.5	-0.1	-14.4	-7.5
	286.8	-0.1	-15.3	-10.9
	357	0	-18.9	-17.4
	374.9	0	-18.8	-26.7
AlO ₆	398.9	0	-22.2	-7.2
Modes	400	-1.7	-17.8	-24.4
	423.3	-4.8	-15.9	-22
	524.5	-9	-12.9	-101.3
	538.4	0	-29.4	-142.3
	547.9	-7.7	-15.2	-61.7

Lowest part : modes < 550cm⁻¹

Calculated modes of octahedron fragment and the effect of ²⁹Al, ¹⁸O and D isotopic substitution.

Octahedron fragment in katoite

_					
		H. ****	²⁹ Al	¹⁸ O	D
Assignment	υ	v^*	Δυ	Δυ	Δυ
	553.5	549.6	0	-0.6	-33.3
	599.5	590.4	-0.2	-2	-71.1
Rotation	662.9	658.1	0	-0.6	-187.1
Н	669.2	656.9	-0.2	-1.5	-145.3
	802.5	770.5	0	-4.2	-200.4
	825.4	787.8	-1.2	-3.6	-185.8
Bending	855.5	795	-1.8	-5.2	-190.2
H-O-Al	867.7	820.6	0	-6.4	-199.2
	3847.8	3735.2	0	-12.5	-1038.1
	3849.4	3736.4	0	-12.5	-1039.1
Stretching	3850.7	3738.5	0	-12.4	-1039.9
U-H	3851.4	3739.6	0	-12.4	-1039.5

The H_6 modes are obtained by "freezing" all atoms but the six hydrogen atoms of the single octahedron

v* corresponds to the modes
of free hydrogen in the
octahedron fragment

Highest part : modes > 550cm⁻¹

Katoite : Isotopic substitution

Simulated vibrational spectrum

Katoite : H modes

Katoite : Al octahedra modes

O-AI Stretching 541 cm⁻¹

Octahedron Rotation 179 cm⁻¹

Octahedron Traslation 156 cm⁻¹

Calculated and experimental O-H stretching modes of katoite. The calculated modes have been corrected by using the anharmonicity constant (86 cm⁻¹) obtained for the fully decoupled OH stretching. v and Δv in cm⁻¹.

	Calc.		Exp.ª		Exp. ^b	
	υ	Δ	υ	Δ	υ	Δ
IR	3672-3689	17	3655-3701	46	3663-3703	40
Raman	3672-3686	14	3648-3699	44	-	-

a) Kolesov and Geiger Am. Mineral. 2005. 90, 1335

b) Rossman and Aines. Am. Mineral. 1991. 76, 1153

Experimental data (only one IR mode)

3663 cm⁻¹ [WHBH 40 cm⁻¹] Rossman & Aines, Am. Mineral 1991

Calculated anharmonic frequency 3682 cm⁻¹ [isolated H; the A_{1g} mode of the 48 H is 9 cm⁻¹ lower]

How is changing with pressure? see next slide

References

• **Pyrope:** Pascale F.; Zicovich-Wilson C.M.; Orlando R.; Ugliengo P.; Dovesi R. "Vibration frequencies of Mg₃Al₂Si₃O₁₂ Pyrope: An ab-inito study with Crystal code" *J. Phys. Chem. B.* **2005**. *109*, 6146.

• Andradite: Pascale F.; Catti M.; Damin. A.; Orlando R.; Saunders V.R.; Dovesi R. "Vibration frequencies of Ca₃Fe₂Si₃O₁₂ Andradite: An ab-inito study with Crystal code" *J. Phys. Chem. B.* 2005. 109, 18522.

• **Grossular:** Zicovich-Wilson C.M.; Torres F. J.; Pascale F.; Orlando R.; Dovesi R. (2005) "The ab-initio simulation of the IR spectra of Pyrope, Grossular and Andradite" in progress.

• **Katoite:** Orlando R.; Torres F. J.; Pascale F.; Ugliengo P.; Zicovich-Wilson C.M.; Dovesi R. "Vibrational Spectrum of Katoite Ca₃Al₂[(OH)₄]₃: a periodic ab-inito study" *J. Phys. Chem. B.* **2006.** *110*, 692.

Acknowledgments

For Code Implementation:

Prof. R. Orlando Prof. C. Zicovich-Wilson Prof. C. Roetti

For Garnets:

Ph.D. F. Pascale Mr. J. Torres

For Graphical Tools:

Prof. P. Ugliengo Mr. F. Arroba

