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Outline

*From the full Hamiltonian to a spin Hamiltonian
*The main terms in the EPR spin Hamiltonian

=Spin density, hyperfine structure and nuclear
quadrupole interaction constants in paramagnetic
defects: electron holes in alkaline earth oxides
and alkali halides. Comparison with EPR and
ENDOR experimental data.




Relativistic and nonrelativistic theories

a four-component wavefunction
describes the electron’s behaviour

Foldy-Wouthuysen transformation

the wavefunction has two components
and the spin is treated in the Pauli sense

The Foldy-Woutuysen transformation converts the Dirac equation into a
form that looks like a Schrodinger equation with perturbation corrections:
the corresponding physical picture (model) allows easier interpretation.




The nonrelativistic Hamiltonian

A full system can be characterised by the following Hamiltonian:

H=H°+H’

N

H® electrostatic Hamiltonian

H' the small terms obtained from a perturbation treatment
of the relativistic Hamiltonian up to a given order

The eigenfunctions of H’ can be factorised in terms of the electronic and
the nuclear wave functions (Born-Oppenheimer approximation):

0 0
(DkMK - lI'kM ®K

0 . . .
TkM and @K are chosen to be eigenfunctions of the electronic and
nuclear spin operators.




Hamiltonian small terms
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Gaussian
Term Description Operator Atomic units units
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1.5 Electron-electron orbital interaction Zk + 2 a('ﬁ =Tt V) o%o
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1.6 Electron-electron orbital interaction Y [rdlr) eV — 15 Vi)l x* & oap 4p
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Terms depending on spin but not field

(Electron spin)

ka(r;)

2.1 Spin-orbit interaction <— %—Z‘. or il S, (r;, x V) 28 4ad 4p?
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(Nuclear spin)
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(Electron and nuclear spins)

. . . ) l‘. WY{ MY
2.1t Dipolar hyperfine interaction (— g9—»!:0( J,)[ (S LN, )]) (%)z’d’oao 4BBn
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Terms depending on field but not spin
kR Orbital Zeeman interaction Z(—— %(rj x V) B) oage 28
J
. L . i A . h\?
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Terms depending on spins and field (electron spin)

4.1 (Electron spin) Zeeman
4.2 (Electron spin) Zeeman kinetic energy correction
43 Spin-orbit Zeeman gauge correction
44 Electron-electron spin-orbit Zeeman gauge correction
4.5 Spin-other-orbit Zeeman gauge correction
(Nuclear spin)
4.6 Nuclear Zeeman
4.7 Electronic nuclear Zeeman correction
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J. H. Harriman — Theoretical Foundations of Electron Spin Resonance — Academic Press, 1978.



The partition method

The solutions of the time-independent Schrodinger equation

(H-E)® =0
are sought as linear combinations of the set of the d)gMK functions.

If we are interested only in the eigenfunctions

of group a of nearly degenerate states, we can group a
isolate these terms from all the others, which

will belong to group b, and write @ as:

O = ZZZCkMK\PEM(a +ZZZCEMK‘P2M

kea M feb M
(b=a)

group b




The Schrodinger equation can be written in matrix form in such a way that
the a and b blocks are clearly identified

[(Haa o Elaa) Hab ] (ca] . 0
H,, (H,, —E1,,) ¢y

and separate into the two following matrix equations:
{(Haa -E1_)e,+ H ¢, =0
H,c,+(H,,-El;)c, =0

Since E refers to group a, the latter equation can formally be solved to give

-1
¢, =(El,, -H,,) Hc,
and substituting for ¢, in the first equation, this becomes

[Haa + Hab(Elbb _be)_1 Hba B Elaa] €, = 0



or, equivalently,

[H'aa +(H(a)1b +H'ab)(Elbb _be)_1 (Hga +H;3a)_(E o E;))laa] ca — 0

Since H), =H,. =0, ‘E — Eg‘ << ‘Eg‘ and H,, << H,, , the matrix
equation relative to a is approximated as

[H,, +H,, (E]1,, —Hj) ' H, —(E-E)1_]ec, =0

where we identify a first and a second order term

H" =H,
[HY +H® -E'1Je,=0 (H" =H (E]1,-H;)" H,
E'=E-E!

HY and H(z)depend on space and spin operators that, however, after
some manipulations can be replaced by pure spin operators and
parameters to give a spin hamiltonian. Thus the behaviour of an actual
system is simulated by means of a fictitious spin system, described by a
phenomenological spin hamiltonian, that may be used conveniently in the
interpretation of experimental results. Theory provides recipes for

calculating the parameters.



The spin Hamiltonian

A spin hamiltonian that includes linear, quadratic and bilinear terms in magnetic field,
electron spin and nuclear spin takes the form:

H'=H"+H;+H;+H +H . +H_,+H,+Hg +Hg +Hg

but for a state having its maximum degeneracy associated with Mg and M, the linear
terms do not contribute in first order, so that

H®=H°(B,S)+S-D-S+S-g-B+> I ,-g, B+> S-A-l + D Iy qu-ly
N N M,N

H°(B,S) = diamagnetic term + Heisenberg term + ...
S:-D-S = zero field splitting

S-¢g-B = electron Zeeman term

|, -g. -B = nuclear Zeeman terms

S-A-l, = hyperfine interaction terms

v ‘dw Iy = nuclear spin-nuclear spin coupling terms



diamagnetic term: no splittings, not observable in EPR
Heisenberg term: effects of near degeneracies (rare, biradicals)

contributions independent of magnetic field strength

1st order: spin-spin contact term (independent of Mg, neglected)
spin-spin dipolar term (vanishes if S<1)
2nd order: spin-orbit corrections (smaller than 1st order contributions)

interaction of electron magnetic moments with the external field.
The relevant parameter is tensor g.

1st order: Kinetic energy corrections
gauge corrections to the Zeeman interactions
2nd order: spin-orbit cross terms

orbital Zeeman cross terms



This includes a first-order nuclear Zeeman term independent of the electronic
wave function and additional 1st and 2" order terms leading to the shielding

tensor and chemical shift effects (usually very small in EPR)

1st order: Fermi contact term (isotropic)
dipolar hyperfine interaction (anisotropic)
2nd order: orbital hyperfine and spin-orbit cross terms (negligible)

Considering terms up to 1st order for a one-unpaired-electron system, tensor
A includes only the isotropic and anisotropic terms

A=A1,+T



The isotropic term depends on a scalar

The anisotropic term depends on T, a real traceless and symmetric tensor,
whose general element is expressed as

T, which depends on the mutual orientation of the field and the crystal, can
be transformed into diagonal form
‘n—-1 0 0

T=b| 0 -n-1 0
L0 0 2

so that at this level of approximation the hyperfine interaction in spectra can
be interpreted in terms of three scalars:

A
b
7




Effects of nuclear structure and finite nuclear size

1st order: nuclear quadrupole term
direct dipole-dipole interaction (negligible in EPR)
2nd order: coupling of nuclear spins (negligible in EPR)

The only really important contribution in EPR is that from the nuclear
quadrupole term (M = N). q is a real traceless and symmetric tensor,
whose general element is expressed as

2 r’ o, —3rr.
qi:.\l e QN J.ptot(r)( ij : rlrjjdr eQN eqi(;fg

4121 —=Dh r 4121 =Dh

eQ, and eq® denote the nuclear quadrupole moment and the electric
fleld gradient, respectively. q can be put in diagonal form

n—1 0 0
q=P| 0 —-»-1 0
0 0 2

g depends on two constants: P and 7 (deviation from uniaxial symmetry)



Electron holes in alkaline earth oxides

S, supercell: 16 M2*-O2 jon pairs per cell

M = Mg, Ca, Sr
X =H,D, Li, Na

An electron hole is formed when a
monovalent atom X is substituted for
one divalent atom M in the oxide.

Formally:
MO:[M] (s) + X (g9) — MO:[X]°(s) + M (g)

The defective system is neutral and
ionic, but one electron is lost after
substitution has taken place:

the electron hole is localized at one O
ion (O,)




Vou centres in alkaline earth oxides (X = H)

The substitution of H for M in alkaline earth oxides has been studied
with the Unrestricted Hartree-Fock (UHF) approximation.

System

MgO:[H]° Az
Ar

CaO:[H]° Az
Ar

SrO:[H]° Az
Ar

A. Lichanot, Ph.

-1.13

-1.42

-1.62

Baranek, M.

Relaxed Atom

o1 02
0.10 0.01
0.18 0.03
0.24 0.03

0.00

0.11

-0.01

0.13

0.00

0.16

Displacements from the perfect
lattice sites:

Az along the O,—H-0, axis
(positive sign: upward shift)

Ar  radially and orthogonally
to the O,—H-0, axis
(positive sign: outward shift)

Lattice O,-H

parameter distance
MgO:[H]° 4.21 0.969
CaO:[H]° 4.83 0.965
SrO:[H]° 5.19 0.947

Mérawa, R. Orlando, R. Dovesi, Phys. Rev. B 62, 12812 (2000)




Formation energy of V,, centres

Voy denotes a neutral cation vacancy, with formation of an hydroxyl group
at O, and an electron hole at O,

is formed upon irradiation

formation energy can be calculated for the following formal reaction:

Formation energy (hartree) of the
MO:[H]° defect calculated with S,.

System AE AE, AE,

AE: no relaxation, H at the

H,0 perfect lattice site of M
. 0
MgO:[H] 0.429 0.297 0.279 AE,: after relaxing H
CaO:[H]° 0.427 0.242 0.217

AEy o: after relaxing H and the
SrO:[H]° 0.443 0.233 0.204 six O nearest neighbours




lonicity and spin distribution at V,, centres

Net atomic charges (electrons) for the MO:[H]°
defect calculated with S,5 according to the Mulliken

partition scheme of the electron charge density

(System H 0,00 Ma oo of nudlear chargs

MgO:[H]° 0545  -1.077  -1.592
CaO:[H]° 0.442 1.054  -1.508
SrO:[H]° 0383  -1.025  -1.416

positive spin moments correspond to
an excess of majority spin electrons (a)

negative spin moments correspond to
an excess of minority spin electrons (B)

positive net charges correspond

-1.941 1.973 .

negative net charges correspond
-1.907 1.941 to an excess of electron charge
-1.920 1.942

Spin moments (electrons) for the
MO:[H]° defect calculated with S,4
according to the Mulliken partition

scheme of the electron spin density

MgO:[H]° -0.001 0.974 0.004
CaO:[H]° 0.000  0.986 0.001
SrO:[H]° 0.000  0.991 0.001




Electron charge and spin densities at Vg,

Electron charge density maps: Ap = 0.01 e/bohrd

Spin density maps: Ap =0.001 e/bohr®

continuous lines: increase in a spin density
dashed lines: increase in B spin density

dot-dashed lines: zero spin density




Valence band structures of Vg, centres

-0.5




EPR coupling constants for V,, centres

i a b P
Isqtroplc ( ) and : System
anisotropic ( ) hyperﬁne Calc. Exp. Calc. Exp. Calc. Exp.
coupling constants and
piing MgO:[H]° 0.088 0.044 2.256 2.376
nuclear quadrupole
coupling constant ( ) at
H (D) for the MO:[H]° il A
(MO:[D]°) defect. The
calculated values have 0.070 2.360
been obtained with S,s.  WEVECHET 0.014 0.007 0.346 0.363 0.160 0.173
CaO:[H]° 0.030 0.028 1.323 +1.365
_ +0.011 1.365
Units: MHz
— . -6
a=Ag-10%/h 0.026 1.356

The electron g factor has
been approximated by the CaO:[D]° 0.005 0.005 0.203 0.209 0.174 0.188

free electron g, factor
SrO:[H]° 0.011 0.011 0.980 1.009

+0.010 +1.023

SrO:[D]° 0.002 0.007 0.150 0.195 0.202 0.158



Spin density profiles along the Vg
defect axis
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Effect of the supercell size with V,, centres

Importancg of _the Cell Lattice a
supercell size in the
determlnatlon_ of the S, | V3a,
defect formation energy
.AEH,O (hartree), the s,, - 2a,
isotropic ( ) and
anisotropic ( ) hyperfine

: Ses F 4a,
coupling constants and
nuclear quadrupole

: S P V2 a
coupling constant ( ) at 24 0
H for the CaO:[H]°
defect. Ss, P 2 a,
a and c cell parameters are Sag 5 2 3
given in units of the
conventional CaO cell: Ses P 2a,

ap=4.83A
Seo P 2a,
Ses P 2\2 a,

3a

4 a

3a,

4 a

5a

3a

109.5°

90°

60°

AE,

H,0

0.217

0.225

0.215

0.233

0.232

0.220

0.220

0.220

0.216

0.707

0.731

0.027

0.033

0.044

0.030

0.027

0.028

0.028

1.435

1.771

1.307

1.280

1.154

1.323

1.253

1.216

1.371

0.174

0.174

0.175

0.173

0.173

0.174

0.174

0.174

0.174




Vo centres with various Hamiltonians
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Li-doped MgO




EPR constants for doped MgO

Isotropic ( ) and anisotropic

( ) hyperfine coupling
constants and nuclear
quadrupole coupling constant

( ) at H for the MgO:[H]° UHF 0.073 2.366 -2.393 2.258 -0.017
. . . . 0
defect and at Li in MgO:[Li]°. LDA -0.256 -0.189 -3.691 -0.129 -0.003
The calculated values have BLYP -0.694 -0.043 3.078 0.092 -0.003
been obtained with S,g.
PBE -0.379 0.115 -3.979 -0.202 -0.010
Uinfiese [T B3LYP -0.074 1.142 -3.339 0.480 -0.004

a:Ao' 10_6/h

The electron g factor has been
approximated by the free electron g,
factor

Exact exchange is crucial in the “correct” determination of spin density



Li/Na-doped alkaline earth oxides

MgO:[Li° 0.988  -1.084  -1.971 MgO:[Li]° -0.001 0.964 0.000
CaO:[Li]° 0980  -1.047  -1.932 CaO:[Li]° 0.000  0.985 0.002
SrO:[Li]® 0.984  -1.025  -1.941 SrO:[Li]° 0.000  0.990 0.003
MgO:[Na]° 1114 1100  -1.998 MgO:[Na]° -0.004  0.970 0.000
CaO:[Na]° 0.998  -1.053  -1.928 CaO:[Na]° -0.002  0.986 0.003
SrO:[Na]° 0986  -1.029  -1.937 SrO:[Na]° -0.001 0.990 0.004

Net atomic charges (electrons) for Spin moments (electrons) for the

the MO:[Li]° and MO:[Na]® defects MO:[H]? and MO:[Na]° defects

calculated with S,4 according to the calculated with S,5 according to the

Mulliken partition scheme of the Mulliken partition scheme of the
electron charge density. electron spin density

The unpaired electron is well localized at O,, O, being essentially O.




Li/Na-doped alkaline earth oxides

A. Lichanot, C. Larrieu, C. Zicovich-Wilson, C. Roetti, R. Orlando, R. Dovesi, J. Phys. Chem. Solids 59, 1119 (1998)

Isotropic ( ) and anisotropic ( ) hyperfine coupling constants
and nuclear quadrupole coupling constant ( ) at Li/Na for the
MgO:[Li/Na]® defect. The calculated values have been obtained

with S,g and the approximation.

MgO:[Li]° -3.521 -4.539 2.580 2.313 -0.015 -0.014
CaO:[Li]° -0.819 -2.472 1.468 1.317 0.001 0.009
SrO:[Li]° -0.306 -1.198 1.060 0.866 0.012 0.013
MgO:[Na]° -1.715 -6.338 4.274 4.706 0.883 0.790
CaO:[Na]° -2.538 -9.145 1.558 1.877 0.449 0.446
SrO:[Na]° -1.620 -7.248 1.014 1.067 0.221 0.245

The accurate determination the isotropic hyperfine coupling constant appears as critical:

to what amount of spin density at the Li/Na nuclei do these values of correspond?




Spin density in Li-doped CaO

0.01

The experimental technique is very sensitive to spin density: isotropic hyperfine coupling

(constant ) at Li is determined by a very small amount of unbalanced spin density ()




Sources of error in spin density calculations

*Lack of electron correlation: UHF does include part of the electron
correlation as results from the exchange interaction, but disregards an
important part of it; unfortunately, DFT cannot be used to estimate
correlation in these cases, as no stable configuration with a localized
unpaired electron is obtainable with DFT.

*UHF is a one-electron approximation for which eigenstates are not
pure spin states; spin contamination is expected to affect spin density
at the nuclei.

*Insufficient size of the supercell.

*Basis set inadequacies might be at the origin of a poor determination
of spin density at nuclei.




EPR constants and basis set

Influence of the basis set in the
calculation of the isotropic ( )
and anisotropic ( ) hyperfine

coupling constants and electric A: 8-51G contraction for O

field gradient ( ) at Li for the [Hay-Wadt] 31G(d) for Ca

CaO:[Li]° defect. _ _
6-11G contraction for Li

B: same as A + decontraction of 1s shell of Li

A -0.754 1.378 0.000

B -0.626 1379 0.001 C: same as B + two p-type valence atomic orbitals
for Li

C -0.626 1.379 0.001

D .0.774 1363 0.002 D: same as C, but 8-411G contraction for O

E -0.755 1.373 0.002 E: same as D + one d polarization function for O

Improving the basis set does not correspond to real improvement in the hyperfine coupling constants.




Interionic distances in Li/Na-doped oxides

M—O, .. 0,—0,

UHF

Equilibrium geometry is one primary
observable from ab initio calculations
and is obtained by minimization of the
total energy.

The spreading of the experimental
values corresponds to the choice of
various interpreting models used in
their derivation from EPR data.

In parentheses: the lattice parameter
of the conventional cubic cell.

System

MgO:[Li]°

CaO:[Li]°

SrO:[Li]°

MgO:[Na]°

CaO:[Na]°

SrO:[Nal°

2.91
(2.52)
3.30
(2.60)
2.30
(2.10)
2.74
(2.52)
3.02

(2.60)

Exp.
2.37-2.59

2.56+0.17

2.55
2.86-3.05
2.83+0.19
3.29-3.46
3.56+0.51

1.64-1.91

2.23-2.46

2.70-2.90

5.04
(4.83)
5.42
(5.19)
4.39
(4.21)
5.09
(4.83)
5.47

(5.19)

5.02

5.43

4.21

4.77

5.21




F-centres in LiF

Valence and lower conduction band
structure of an F-centre in LiF.

An F-centre is formed in LiF by

abstraction of a Li atom: an unpaired
electron localizes at the vacancy

Net atomic charges (electrons)
at an F-centre and its nearest
neighbours in LiF calculated
with S,4 according to the

Mulliken partition scheme of
the electron charge density.

UHF -1.002 0.978 -0.975
LSDA  -0.887 0.986 -0.961

Mulliken spin moments
(electrons) at an F-centre and
its nearest neighbours in LiF.

UHF 1.085 0.003 -0.009
LSDA 0.951 0.007 0.001




F-centres in LiF

0.02

0.01

e/bohr3



EPR coupling constants for F-centres in LiF

Isotropic ( ) hyperfine coupling constant at various neighbours of
an F-centre in LiF. The calculated values have been obtained with

S,g in the and approximations.

UHF 39.17 76.40 0.11 0.89 0.07 0.46 0.83
LSDA 4720  145.20 1.49 -0.05 0.42 2.56 3.55
unr +0.3 -27.9 -78.4 +85.2 -73.3 -48.0 -38.4

3 soa +20.8 +37.1 +197.2  -110.4 +556  +191.1  +165.0
X,,q denotes the X nucleus with cartesian coordinates (h, k, I) in units
of Li*—F" distance (1.995 A)

® percentage deviation from experiment

G. Mallia, R. Orlando, C. Roetti, P. Ugliengo, R. Dovesi, Phys. Rev. B 63, 235102 (2001)




EPR coupling constants for F-centres in LiF

Anisotropic ( ) hyperfine
coupling constant at various

UHF 3.25 1147  0.72 1.17 0.34 CERROER R neighbours of an F-centre in
LSDA  2.84 14.01  0.69  0.47 0.33 Wexy Ol LiF. The calculated values
T R SR B R R ) ave been obtained wih Sq

_ in the and
By +1.5 233  +57  +42 +21.8 -3.9 2252 approximations.
8 pa -11.2 6.4 +1.6  -57.7 +18.9 +199 24

8

Anisotropic ( = ) hyperfine coupling _
constant at various neighbours of an F-centre

in LiF. The calculated values have been a7 Uaske 03 LEE
obtained with S,z in the and LSDA  0.76 0.00 011 0.03
approximations.




Conclusions

*The hyperfine structure of paramagnetic defects (electron holes) in
alkaline earth oxides and alkali halides can be computed ab initio fairly
accurately

*Despite of being a one-electron approximation (no correlation correction,
no pure spin states), Unrestricted Hartree-Fock theory predicts most
features of the hyperfine spectra correctly, mainly because of the
presence of exact exchange

*The isotropic hyperfine coupling constant (Fermi contact) is the most
delicate observable to calculate, because it depends on the very precise
determination of an amount of spin density at a single point in space (a
nucleus), where it can be extremely small.

*In some cases Density Functional Theory is unable to reproduced the
localization of an unpaired electron in paramagnetic defects




