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From the full Hamiltonian to a spin Hamiltonian

The main terms in the EPR spin Hamiltonian

Spin density, hyperfine structure and nuclear
quadrupole interaction constants in paramagnetic
defects: electron holes in alkaline earth oxides
and alkali halides. Comparison with EPR and 
ENDOR experimental data.



Relativistic and Relativistic and nonrelativisticnonrelativistic theoriestheories

Relativistic
theory (Dirac):

a four-component wavefunction
describes the electron’s behaviour

Nonrelativistic
theory:

the wavefunction has two components
and the spin is treated in the Pauli sense

Foldy-Wouthuysen transformation

The Foldy-Woutuysen transformation converts the Dirac equation into a 
form that looks like a Schrödinger equation with perturbation corrections: 
the corresponding physical picture (model) allows easier interpretation.



A full system can be characterised by the following Hamiltonian:
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The The nonrelativisticnonrelativistic HamiltonianHamiltonian

electrostatic Hamiltonian

the small terms obtained from a perturbation treatment
of the relativistic Hamiltonian up to a given order
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The eigenfunctions of       can be factorised in terms of the electronic and 
the nuclear wave functions (Born-Oppenheimer approximation): 
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nuclear spin operators.



Hamiltonian small termsHamiltonian small terms







J. H. Harriman – Theoretical Foundations of Electron Spin Resonance – Academic Press, 1978.



The solutions of the time-independent Schrödinger equation
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are sought as linear combinations of the set of the           functions.0
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group a
If we are interested only in the eigenfunctions
of group a of nearly degenerate states, we can 
isolate these terms from all the others, which 
will belong to group b, and write      as:Φ

The partition methodThe partition method



The Schrödinger equation can be written in matrix form in such a way that
the a and b blocks are clearly identified
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Since E refers to group a, the latter equation can formally be solved to give
1( )b bb bb a abE −= −c 1 H H c

and substituting for cb in the first equation, this becomes
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and        depend on space and spin operators that, however, after 
some manipulations can be replaced by pure spin operators and 
parameters to give a spin hamiltonian. Thus the behaviour of an actual 
system is simulated by means of a fictitious spin system, described by a 
phenomenological spin hamiltonian, that may be used conveniently in the 
interpretation of experimental results. Theory provides recipes for 
calculating the parameters.
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The spin HamiltonianThe spin Hamiltonian

A spin hamiltonian that includes linear, quadratic and bilinear terms in magnetic field, 
electron spin and nuclear spin takes the form:
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but for a state having its maximum degeneracy associated with MS and MI the linear 
terms do not contribute in first order, so that
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= diamagnetic term + Heisenberg term + …
= zero field splitting
= electron Zeeman term
= nuclear Zeeman terms
= hyperfine interaction terms
= nuclear spin-nuclear spin coupling terms
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H0(B,S)
diamagnetic term: no splittings, not observable in EPR
Heisenberg term: effects of near degeneracies (rare, biradicals)

S · D · S

contributions independent of magnetic field strength
1st order: spin-spin contact term (independent of MS, neglected)

spin-spin dipolar term (vanishes if S<1)
2nd order: spin-orbit corrections (smaller than 1st order contributions)

S · g · B

interaction of electron magnetic moments with the external field.
The relevant parameter is tensor g.
1st order: kinetic energy corrections

gauge corrections to the Zeeman interactions
2nd order: spin-orbit cross terms

orbital Zeeman cross terms



IN · gn · B
This includes a first-order nuclear Zeeman term independent of the electronic 
wave function and additional 1st and 2nd order terms leading to the shielding 
tensor and chemical shift effects (usually very small in EPR)

S · A · IN

1st order: Fermi contact term (isotropic)
dipolar hyperfine interaction (anisotropic)

2nd order: orbital hyperfine and spin-orbit cross terms (negligible)

Considering terms up to 1st order for a one-unpaired-electron system, tensor 
A includes only the isotropic and anisotropic terms

0 3A= +A 1 T
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The isotropic term depends on a scalar

The anisotropic term depends on T, a real traceless and symmetric tensor, 
whose general element is expressed as
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T, which depends on the mutual orientation of the field and the crystal, can 
be transformed into diagonal form
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so that at this level of approximation the hyperfine interaction in spectra can 
be interpreted in terms of three scalars:

isotropic hyperfine constant
anisotropic hyperfine constant
deviation from uniaxial symmetry

0A
b
η



IM · qMN · IN

Effects of nuclear structure and finite nuclear size
1st order: nuclear quadrupole term

direct dipole-dipole interaction (negligible in EPR)
2nd order: coupling of nuclear spins (negligible in EPR)

The only really important contribution in EPR is that from the nuclear 
quadrupole term (M = N). q is a real traceless and symmetric tensor, 
whose general element is expressed as
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eQN and eqefg denote the nuclear quadrupole moment and the electric 
field gradient, respectively. q can be put in diagonal form
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0 1 0
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q depends on two constants: P and η (deviation from uniaxial symmetry)



Electron holes in alkaline earth oxides Electron holes in alkaline earth oxides 
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S16 supercell: 16 M2+-O2- ion pairs per cell

M = Mg, Ca, Sr

X  = H, D, Li, Na

An electron hole is formed when a 
monovalent atom X is substituted for
one divalent atom M in the oxide.

Formally:

MO:[M] (s) + X (g) → MO:[X]0 (s) + M (g)

The defective system is neutral and 
ionic, but one electron is lost after 
substitution has taken place:

the electron hole is localized at one O 
ion (O1)

M3



VVOHOH centrescentres in alkaline earth oxides (X = H) in alkaline earth oxides (X = H) 

The substitution of H for M in alkaline earth oxides has been studied
with the Unrestricted Hartree-Fock (UHF) approximation.

Relaxation (Å) in MO:[H]0 calculated with S16.

Relaxed Atom
System

H O1 O2 O3

MgO:[H]0 ∆z -1.13 0.10 0.01 0.00

∆r — — — 0.11

CaO:[H]0 ∆z -1.42 0.18 0.03 -0.01

∆r — — — 0.13

SrO:[H]0 ∆z -1.62 0.24 0.03 0.00

∆r — — — 0.16

Displacements from the perfect
lattice sites:

∆z along the O1–H–O2 axis
(positive sign: upward shift)

∆r radially and orthogonally
to the O1–H–O2 axis

(positive sign: outward shift)

0.9475.19SrO:[H]0
0.9654.83CaO:[H]0
0.9694.21MgO:[H]0

O2–H 
distance

Lattice 
parameter

A. Lichanot, Ph. Baranek, M. Mérawa, R. Orlando, R. Dovesi, Phys. Rev. B 62, 12812 (2000)



Formation energy of VFormation energy of VOHOH centrescentres

VOH denotes a neutral cation vacancy, with formation of an hydroxyl group
at O2 and an electron hole at O1

is formed upon irradiation

formation energy can be calculated for the following formal reaction:

System ∆E ∆EH ∆EH,O

MgO:[H]0 0.429 0.297 0.279

CaO:[H]0 0.427 0.242 0.217

SrO:[H]0 0.443 0.233 0.204

Formation energy (hartree) of the 
MO:[H]0 defect calculated with S16.

MO:[M] (s) + H (g) → MO:[H]0 (s) + M (g)

∆E: no relaxation, H at the
perfect lattice site of M

∆EH: after relaxing H

∆EH,O: after relaxing H and the
six O nearest neighbours



IonicityIonicity and spin distribution at  Vand spin distribution at  VOHOH centrescentres

System H O1 O2 O3 M3

MgO:[H]0 0.545 -1.077 -1.592 -1.941 1.973

CaO:[H]0 0.442 -1.054 -1.508 -1.907 1.941

SrO:[H]0 0.383 -1.025 -1.416 -1.920 1.942

System H O1 O3

MgO:[H]0 -0.001 0.974 0.004

CaO:[H]0 0.000 0.986 0.001

SrO:[H]0 0.000 0.991 0.001

Net atomic charges (electrons) for the MO:[H]0
defect calculated with S16 according to the Mulliken
partition scheme of the electron charge density

positive net charges correspond
to an excess of nuclear charge

negative net charges correspond
to an excess of electron charge

Spin moments (electrons) for the 
MO:[H]0 defect calculated with S16
according to the Mulliken partition
scheme of the electron spin densitypositive spin moments correspond to

an excess of majority spin electrons (α)

negative spin moments correspond to 
an excess of minority spin electrons (β)



Electron charge and spin densities at  VElectron charge and spin densities at  VOHOH

Electron charge density maps: ∆ρ = 0.01 e/bohr3

Spin density maps: ∆ρ = 0.001 e/bohr3

continuous lines: increase in α spin density

dashed lines:       increase in β spin density

dot-dashed lines: zero spin density
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Valence band structures of  VValence band structures of  VOHOH centrescentres
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EPR coupling constants for  VEPR coupling constants for  VOHOH centrescentres
a b P

Calc. Exp. Calc. Exp. Calc. Exp.

MgO:[H]0 0.088 0.044 2.256 2.376

0.101 2.376

0.070 2.360

MgO:[D]0 0.014 0.007 0.346 0.363 0.160 0.173

CaO:[H]0 0.030 0.028 1.323 ±1.365

±0.011 1.365

0.026 1.356

CaO:[D]0 0.005 0.005 0.203 0.209 0.174 0.188

SrO:[H]0 0.011 0.011 0.980 1.009

±0.010 ±1.023

SrO:[D]0 0.002 0.007 0.150 0.195 0.202 0.158

SystemIsotropic (a) and 
anisotropic (b) hyperfine
coupling constants and 
nuclear quadrupole
coupling constant (P) at 
H (D) for the MO:[H]0
(MO:[D]0) defect. The 
calculated values have
been obtained with S48.

Units: MHz

a = A0 · 10-6 / h

The electron g factor has 
been approximated by the 
free electron ge factor



Spin density along OSpin density along O11——OO22 inin VVOHOH centrescentres
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Effect of the Effect of the supercellsupercell size with Vsize with VOHOH centrescentres

Cell Lattice a c α ∆EH,O a b P

S16 I √3 a0 109.5º 0.217 0.707 1.435 0.174

S32 P 2 a0 90º 0.225 0.731 1.771 0.174

S64 F 4 a0 60º 0.215 0.027 1.307 0.175

S24 P √2 a0 3 a0 0.233 0.033 1.280 0.173

S32 P √2 a0 4 a0 0.232 0.044 1.154 0.173

S48 P 2 a0 3 a0 0.220 0.030 1.323 0.174

S64 P 2 a0 4 a0 0.220 0.027 1.253 0.174

S80 P 2 a0 5 a0 0.220 0.028 1.216 0.174

S96 P 2√2 a0 3 a0 0.216 0.028 1.371 0.174

Importance of the 
supercell size in the 
determination of the 
defect formation energy
∆EH,O (hartree), the 
isotropic (a) and 
anisotropic (b) hyperfine
coupling constants and 
nuclear quadrupole
coupling constant (P) at 
H for the CaO:[H]0
defect.

a and c cell parameters are 
given in units of the 
conventional CaO cell:

a0 = 4.83 Å



VVOHOH centrescentres with various Hamiltonianswith various Hamiltonians
UHF SPZ

BLYP B3LYP

PBE

O1

H
O2

O3

Mg3



LiLi--doped doped MgOMgO
UHF SPZ

BLYP B3LYP

PBE

O1

Li

O2

O3

Mg3



EPR constants for doped EPR constants for doped MgOMgO

MgO:[H]0 MgO:[Li]0

a b a b P

UHF 0.073 2.366 -2.393 2.258 -0.017

LDA -0.256 -0.189 -3.691 -0.129 -0.003

BLYP -0.694 -0.043 -3.078 0.092 -0.003

PBE -0.379 0.115 -3.979 -0.202 -0.010

B3LYP -0.074 1.142 -3.339 0.480 -0.004

Exp. 0.044 2.376 -4.539 2.313 -0.014

0.101 2.371

0.070 2.360

Isotropic (a) and anisotropic
(b) hyperfine coupling
constants and nuclear
quadrupole coupling constant
(P) at H for the MgO:[H]0
defect and at Li in MgO:[Li]0. 
The calculated values have
been obtained with S48.

Exact exchange is crucial in the “correct” determination of spin density

Units: MHz

a = A0 · 10-6 / h

The electron g factor has been 
approximated by the free electron ge
factor



Li/NaLi/Na--doped alkaline earth oxidesdoped alkaline earth oxides

System M O1 O2

MgO:[Li]0 0.988 -1.084 -1.971

CaO:[Li]0 0.980 -1.047 -1.932

SrO:[Li]0 0.984 -1.025 -1.941

MgO:[Na]0 1.114 -1.100 -1.998

CaO:[Na]0 0.998 -1.053 -1.928

SrO:[Na]0 0.986 -1.029 -1.937

System M O1 O2

MgO:[Li]0 -0.001 0.964 0.000

CaO:[Li]0 0.000 0.985 0.002

SrO:[Li]0 0.000 0.990 0.003

MgO:[Na]0 -0.004 0.970 0.000

CaO:[Na]0 -0.002 0.986 0.003

SrO:[Na]0 -0.001 0.990 0.004

Net atomic charges (electrons) for
the MO:[Li]0 and MO:[Na]0 defects
calculated with S16 according to the 
Mulliken partition scheme of the 
UHF electron charge density.

Spin moments (electrons) for the 
MO:[H]0 and MO:[Na]0 defects
calculated with S16 according to the 
Mulliken partition scheme of the 
UHF electron spin density

The unpaired electron is well localized at O1,,O1 being essentially O–.



Li/NaLi/Na--doped alkaline earth oxidesdoped alkaline earth oxides

a b P

Calc. Exp. Calc. Exp. Calc. Exp.

MgO:[Li]0 -3.521 -4.539 2.580 2.313 -0.015 -0.014

CaO:[Li]0 -0.819 -2.472 1.468 1.317 0.001 0.009

SrO:[Li]0 -0.306 -1.198 1.060 0.866 0.012 0.013

MgO:[Na]0 -1.715 -6.338 4.274 4.706 0.883 0.790

CaO:[Na]0 -2.538 -9.145 1.558 1.877 0.449 0.446

SrO:[Na]0 -1.620 -7.248 1.014 1.067 0.221 0.245

System

Isotropic (a) and anisotropic (b) hyperfine coupling constants
and nuclear quadrupole coupling constant (P) at Li/Na for the 
MgO:[Li/Na]0 defect. The calculated values have been obtained
with S48 and the UHF approximation.

The accurate determination the isotropic hyperfine coupling constant a appears as critical: 
to what amount of spin density at the Li/Na nuclei do these values of a correspond?

A. Lichanot, C. Larrieu, C. Zicovich-Wilson, C. Roetti, R. Orlando, R. Dovesi, J. Phys. Chem. Solids 59, 1119 (1998)



Spin density in LiSpin density in Li--doped doped CaOCaO

O1

Li
O3

Ca3

O2

O1

Li

00.01 e/bohr3

The experimental technique is very sensitive to spin density: isotropic hyperfine coupling
(constant a) at Li is determined by a very small amount of unbalanced spin density (β)



Sources of error in spin density calculationsSources of error in spin density calculations

•Lack of electron correlation: UHF does include part of the electron 
correlation as results from the exchange interaction, but disregards an
important part of it; unfortunately, DFT cannot be used to estimate 
correlation in these cases, as no stable configuration with a localized
unpaired electron is obtainable with DFT.

•UHF is a one-electron approximation for which eigenstates are not
pure spin states; spin contamination is expected to affect spin density 
at the nuclei.

•Insufficient size of the supercell.

•Basis set inadequacies might be at the origin of a poor determination
of spin density at nuclei.



Basis set a b P

A -0.754 1.378 0.000

B -0.626 1.379 0.001

C -0.626 1.379 0.001

D -0.774 1.363 0.002

E -0.755 1.373 0.002

EPR constants and basis setEPR constants and basis set

Influence of the basis set in the  
UHF calculation of the isotropic (a) 
and anisotropic (b) hyperfine
coupling constants and electric
field gradient (P) at Li for the 
CaO:[Li]0 defect.

A: 8-51G contraction for O

[Hay-Wadt] 31G(d) for Ca

6-11G contraction for Li

B: same as A + decontraction of 1s shell of Li

C: same as B + two p-type valence atomic orbitals
for Li

D: same as C, but 8-411G contraction for O

E: same as D + one d polarization function for O

Improving the basis set does not correspond to real improvement in the hyperfine coupling constants.



InterionicInterionic distances in Li/Nadistances in Li/Na--doped oxidesdoped oxides
M—O1 O1—O2

Calc. Exp. Calc. Exp.

MgO:[Li]0 2.44 2.37–2.59 4.38 4.55

(2.10) 2.56±0.17 (4.21)

2.55

CaO:[Li]0 2.91 2.86–3.05 5.04 5.02

(2.52) 2.83±0.19 (4.83)

SrO:[Li]0 3.30 3.29–3.46 5.42 5.43

(2.60) 3.56±0.51 (5.19)

MgO:[Na]0 2.30 1.64–1.91 4.39 4.21

(2.10) (4.21)

CaO:[Na]0 2.74 2.23–2.46 5.09 4.77

(2.52) (4.83)

SrO:[Na]0 3.02 2.70–2.90 5.47 5.21

(2.60) (5.19)

SystemM—O1 and O1—O2 distances (Å) in 
Li- and Na-doped alkaline earth
oxides calculated with S48 and the 
UHF approximation. 

Equilibrium geometry is one primary
observable from ab initio calculations
and is obtained by minimization of the 
total energy.

The spreading of the experimental 
values corresponds to the choice of 
various interpreting models used in 
their derivation from EPR data.

In parentheses: the lattice parameter
of the conventional cubic cell.



FF--centrescentres in in LiFLiF

An F-centre is formed in LiF by
abstraction of a Li atom: an unpaired
electron localizes at the vacancy

F-centre Li F

UHF -1.002 0.978 -0.975

LSDA -0.887 0.986 -0.961

F-centre Li F

UHF 1.085 0.003 -0.009

LSDA 0.951 0.007 0.001

Net atomic charges (electrons) 
at an F-centre and its nearest
neighbours in LiF calculated
with S16 according to the 
Mulliken partition scheme of 
the electron charge density.

Mulliken spin moments
(electrons) at an F-centre and 
its nearest neighbours in LiF. 

Valence and lower conduction band 
structure of an F-centre in LiF. 

Pure LiFspin α spin β

F-centre



FF--centrescentres in in LiFLiF

UHF

LSDA

Li F

0 0.01
e/bohr3

0.02



Li100 F110 Li111 F200 Li210 F211 F220

UHF 39.17 76.40 0.11 0.89 0.07 0.46 0.83

LSDA 47.20 145.20 1.49 -0.05 0.42 2.56 3.55

Exp. 39.06 105.94 0.50 0.48 0.27 0.88 1.34

δUHF +0.3 -27.9 -78.4 +85.2 -73.3 -48.0 -38.4

δLSDA +20.8 +37.1 +197.2 -110.4 +55.6 +191.1 +165.0

EPR coupling constants forEPR coupling constants for FF--centrescentres in in LiFLiF

Isotropic (a) hyperfine coupling constant at various neighbours of 
an F-centre in LiF. The calculated values have been obtained with
S48 in the UHF and LSDA approximations.

Xhkl denotes the X nucleus with cartesian coordinates (h, k, l) in units
of Li+—F- distance (1.995 Å)

δ percentage deviation from experiment

G. Mallia , R. Orlando, C. Roetti, P. Ugliengo, R. Dovesi, Phys. Rev. B 63, 235102 (2001)



Li100 F110 Li111 F200 Li210 F211 F220

UHF 3.25 11.47 0.72 1.17 0.34 0.66 0.43

LSDA 2.84 14.01 0.69 0.47 0.33 0.83 0.70

Exp. 3.20 14.96 0.68 1.12 0.28 0.69 0.56

δHF +1.5 -23.3 +5.7 +4.2 +21.8 -3.9 -
22.7

δLDA -11.2 -6.4 +1.6 -57.7 +18.9 +19.9 +24.
8

EPR coupling constants forEPR coupling constants for FF--centrescentres in in LiFLiF

F110 Li210 F211 F220

UHF 0.38 0.00 0.03 0.07

LSDA 0.76 0.00 0.11 0.03

Anisotropic (b) hyperfine
coupling constant at various
neighbours of an F-centre in 
LiF. The calculated values
have been obtained with S48
in the UHF and LSDA
approximations.

Anisotropic (c=bη) hyperfine coupling
constant at various neighbours of an F-centre
in LiF. The calculated values have been
obtained with S48 in the UHF and LSDA
approximations.



ConclusionsConclusions

•The hyperfine structure of paramagnetic defects (electron holes) in 
alkaline earth oxides and alkali halides can be computed ab initio fairly
accurately

•Despite of being a one-electron approximation (no correlation correction, 
no pure spin states), Unrestricted Hartree-Fock theory predicts most
features of the hyperfine spectra correctly, mainly because of the 
presence of exact exchange

•The isotropic hyperfine coupling constant (Fermi contact) is the most 
delicate observable to calculate, because it depends on the very precise 
determination of an amount of spin density at a single point in space (a 
nucleus), where it can be extremely small.

•In some cases Density Functional Theory is unable to reproduced the 
localization of an unpaired electron in paramagnetic defects


