Structural Stability and Vibrational analysis of Yttrium oxide from the Bulk to the (n,0) Nanotubes. An ab initio description

T. Larbi^{a)}, K. Doll^{b)} and M.Amlouk^{a)}

^a Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis, Tunisia.

^b University of Stuttgart, Molpro Quantum Chemistry Software, Institute for Theoretical Chemistry, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

*Corresponding author: e-mail: 107tarek@yahoo.fr

In this work, we report reliable *ab initio* quantum mechanical simulations of a variety of physical properties concerning the Yttrium oxide (Y_2O_3) in different arrangements from the bulk, the monolayer $(h-Y_2O_3)$, to the (n,0)single-walled nanotubes in the range from n = 6 to 64. Structural parameters. phonon modes frequencies and intensities are computed via Density functional theory (DFT/B3LYP) level of theory where the trend towards the $(h-Y_2O_3)$ monolayer for large nanotube radius is discussed. For the (n,0) Y₂O₃ nanotube family, two sets of IR active phonon modes in the $(300-400 \text{ cm}^{-1})$ and (700- 00 cm^{-1}) ranges are determined. Both of them tend smoothly with different slope, towards the optical vibrational modes of the $h-Y_2O_3$ layer. Three sets of active phonon bands are obtained in their Raman spectrum. The first one namely A in the in the 0- 100 cm⁻¹ range contains two phonon modes, their vibration frequencies tend to zero at very large tube radius and found to be connected to the elastic constant C_{11} and C_{66} of the $h-Y_2O_3$ monolayer as the $1D \rightarrow 2D$ transition is approached. The second one namely B in 250-400 cm⁻¹ range tends to the optical modes of the monolayer. The third set namely C in the 650-800 cm⁻¹ rang contains two active modes, their intensities tend to zero in the limit of large nanotube without change in their vibration frequencies.